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Outline
• Recognition problem

• Search for the most likely word sequence matching the input 
speech, given the various models

• Illustrated using Sphinx-3 (original)

• Lextree search (Sphinx-3.2)
• Search organization

• Pruning

• Experiments

• Conclusion
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Recognition Problem
• Search organization

• Continuous speech recognition

• Cross-word triphone modeling

• Language model integration

• Pruning for efficiency
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Search Organization in Sphinx-3
• Flat lexical structure

• Cross-word triphone modeling
• Multiplexing at word beginning
• Replication at word end
• Single-phone words: combination of both

• LM score applied upon transition into word
• Trigram language model
• However, only single best history maintained

• Beam-based pruning
• Long-tailed distribution of active HMMs/frame



19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Sphinx-3 Lexical Structure
• Flat lexicon; every word treated independently:

• Evaluating an HMM w.r.t. input speech: Viterbi search
• Score the best state-sequence through HMM, given the input
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5-state HMM
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Viterbi Search

time
Initial state initialized with path-score = 1.0
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Viterbi Search (contd.)

time

State with best path-score
State with path-score < best
State without a valid path-score

P (t)j = max [P (t-1) a   b  (t)]i ij ji

Total path-score ending up at state j at time t

State transition probability, i to j

Score for state j, given the input at time t
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Viterbi Search (contd.)

time



19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Viterbi Search (contd.)

time
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Viterbi Search Summary
• Instantaneous score: how well a given HMM state matches 

the speech input at a given time frame
• Path: A sequence of HMM states traversed during a 

given segment of input speech
• Path-score: Product of instantaneous scores and state 

transition probabilities corresponding to a given path
• Viterbi search: An efficient lattice structure and algorithm 

for computing the best path score for a given segment 
of input speech
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Single Word Recognition
• Search all words in parallel

• Initialize start state of every word with path-score 1.0
• For each frame of input speech:

• Update path scores within each HMM
• Propagate exit state score from one HMM to initial state of its 

successor (using Viterbi criterion)

• Select word with best exit state path-score
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Continuous Speech Recognition
• Add null transitions from word ends to beginnings:

• Apply Viterbi search algorithm to the modified network
• Q: How to recover the recognized word sequence?

UW

ONE

TWO

THREE

T

AHW N

RTH IY



19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

• Each word exit recorded in the BP table:

• Upon transitioning from an exited word A to another B:
• Inject pointer to BP table entry for A into start state of B.  (This 

identifies the predecessor of B.)
• Propagate these pointers along with path-scores during Viterbi 

search

• At end of utterance, identify best exited word and trace 
back using predecessor pointers

The Backpointer Table

time

Word ID                
Path Score 

Predecessor BP Entry

BP table entry
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The Backpointer Table (contd.)
• Some additional information available from BP table:

• All candidate words recognized during recognition
• Word segmentations
• Word segment acoustic scores
• “ Lattice density” : No. of competing word hypotheses at any 

instant

• Useful for postprocessing steps:
• Lattice rescoring
• N-best list generation
• Confidence measures
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Beam Search (Pruning)
• Exhaustive search over large vocabulary too expensive, 

and unnecessary

• Use a “ beam”  to “ prune”  the set of active HMMs:
• At start of each frame, find best available path-score S
• Use a scale-factor f (< 1.0) to set a pruning threshold T = S*f

• Deactivate an HMM if no state in it has path score >= T

• Effect: No. of active HMMs larger if no clear frontrunner

• Two kinds of beams:
• To control active set of HMMs

• No. of active HMMs per frame typically 10-20% of total space

• To control word exits taken (and recorded in BP table)
• No. of words exited typically 10-20 per frame

• Recognition accuracy essentially unaffected
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Incorporating a Language Model
• Language models essential for recognition accuracy

• Reduce word error rate by an order of magnitude
• Reduce active search space significantly

• Implementation: associate LM probabilities with 
transitions between words.  E.g.:

P(two | three)

P(two | one)

P(two | two)UW
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TWO

THREE

T

AHW N
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Bigram Backoff Language Model
• Two issues with large vocabulary bigram LMs:

• With vocabulary size V and N word exits per frame, NxV cross-
word transitions per frame

• Bigram probabilities very sparse; mostly “ backoff”  to unigrams

• Optimize cross-word transitions using “ backoff node” :
• Viterbi decision at backoff node selects single-best predecessor

Lexicon

A

B

Backoff node

A’s bigram successors

B’s bigram successors
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Cross-Word Triphone Modeling
• Sphinx uses “ triphone”  or “ phoneme-in-context”  HMMs

• Cross-word transitions use appropriate exit-model, and 
inject left-context into entry state

AHONE W N

Context-
dependent 
AH  HMM

Separate 
N  HMM 
instances 
for each 
possible 
right 
context

Multiplexed W  HMM; inherited left context 
propagated along with path-scores, and 
dynamically modifies the state model 
(Replication is too expensive)
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Sphinx-3 Search Algorithm
initialize start state of <S> with path-score = 1;
for each frame of input speech {

evaluate all active HMMs; find best path-score, pruning thresholds;
for each active HMM {

if above pruning threshold {
activate HMM for next frame;
transition to and activate successor HMM within word, if any
if word-final HMM and above word-pruning threshold

record word-exit in BP table;
}

}
transition from words exited into initial state of entire lexicon (using the

LM), and activate HMMs entered;
}
find final </S> BP table entry and back-trace through table to retrieve result;
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Lextree Search: Motivation
• Most active HMMs are word-initial models, decaying 

rapidly subsequently
• On 60K-word Hub-4 task, 55% of active HMMs are word-initial
• (Same reason for handling left/right contexts differently.)

• But, no. of distinct word-initial model types much fewer:

• Use a “ prefix-tree”  structure to maximize sharing 
among words

START S-T-AA-R-TD 
STARTING S-T-AA-R-DX-IX-NG 
STARTED S-T-AA-R-DX-IX-DD            
STARTUP S-T-AA-R-T-AX-PD 
START-UP S-T-AA-R-T-AX-PD
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Lextree Structure in Sphinx-3.2

• Nodes shared if triphone “ State-Sequence ID”  (SSID) 
identical

• Leaf (word-final) nodes not shared
• In 60K-word BN task, word-initial models reduced ~50x

S T AA

R

R T

TD

DX
IX

IX

NG

DD

AX
PD

PD

start

starting

started

startup

start-up
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Cross-Word Triphones (left context)

• Root nodes replicated for left context
• Again, nodes shared if SSIDs identical
• During search, very few distinct incoming left-contexts at any 

time; so only very few copies activated

S T AA

R

R T

TD

DX
IX

IX

NG

DD

AX
PD

PD

start

starting

started

startup

start-up

left-contexts

to rest of lextree

S-models for 
different left 
contexts
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Cross-Word Triphones (right context)
• Leaf nodes use “ composite”  SSID models

• Simplifies lextree and backpointer table implementation
• Simplifies cross-word transitions implementation

Leaf node Triphones for all right contexts

HMM 
states for 
triphones

unique 
states

composite 
states; 

average of 
component 

states

Composite SSID model
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Lextree Search: LM Integration
• Problem: LM probabilities cannot be determined upon 

transition to lextree root nodes
• Root nodes shared among several unrelated words

• Several solutions possible:
• Incremental evaluation, using composite LM scores

• Lextree replication (Ney, Antoniol)
• Rescoring at every node (BBN)

• Post-tree evaluation (Sphinx-II)
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• Incremental LM score accumulation; e.g. (bigram LM):

• Large computation and memory requirements
• Overhead for dynamic lextree creation/destruction

LM Integration: Lextree Replication

A

B
S = set of words  
reachable from x

x

W ε S
LM probability entering into x =  Sum  [P(W | B)]

B

LextreeA

LextreeB

LextreeC
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• Again, incremental LM score accumulation:

• Still, large computation/memory requirements and 
overhead for dynamic lextree maintenance

• Multiple LM transitions between some word pairs

Lextree Copies With Explicit Backoff

A

B

unigram
lextree 

lextree for bigrams of A

lextree for bigrams of B

B

backoff node through 
which all word exits 
transition to unigram
lextree
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Post-Lextree LM Evaluation (Sphinx-II)
• Single lextree

• Null transitions from leaf nodes back to root nodes

• No LM score upon transition into root or non-leaf node 
of lextree

• If reached a leaf node for word W:
• Find all possible LM histories of W (from BP table)
• Find LM scores for W w.r.t. each LM history
• Choose best resulting path-score for W

• Drawbacks:
• Inexact acoustic scores

• Root node evaluated w.r.t. a single left context, but resulting score 
used w.r.t. all histories (with possibly different left contexts)

• Impoverished word segmentations
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Word Segmentation Problem

Q: Which transition wins?
• Flat lexicon (separate model per word):

• At A: word ninety entered with LM score P (ninety | ninety)

• At B: word ninety entered with P (ninety | nineteen)
• Since the latter is much better, it prevails over the former

• Result: correct recognition, and segmentation for ninety

nineteen ninety

ninety ninety

nineteen

ninety
ninety

correct segmentation for ninety

incorrect segmentation for ninety

Assume P (ninety | nineteen) > P (ninety | ninety).

Decision points: A B C
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Word Segmentation Problem (contd.)

• Tree lexicon:
• At A: root node for ninety entered without any LM score
• At B: Attempt to enter root node for ninety again

• Transition may or may not succeed (no LM score used)

• At C: obtain LM score for ninety w.r.t. all predecessors
• If transition at B failed, the only candidate predecessor is ninety; 

result: incorrect segmentation for ninety(2), incorrect recognition

nineteen ninety

ninety ninety

nineteen

ninety
ninety

correct segmentation for ninety

incorrect segmentation for ninety

Assume P (ninety | nineteen) > P (ninety | ninety).

Decision points: A B C
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Lextree-LM Integration in Sphinx-3.2
• Post-lextree LM scoring (as above); however:
• Limited, static lextree replication

• Limits memory requirements
• No dynamic lextree management overhead

• Transitions into lextrees staggered across time:
• At any time, only one lextree entered

• “ -epl”  (entries per lextree) parameter: block of frames one lextree 
entered, before switching to next

• More word segmentations (start times) survive

• Full LM histories; if reached a leaf node for word W:
• Find all possible LM histories of W (from BP table)
• Include LM scores for W w.r.t. each LM history

• Create a separate BP table entry for each resulting history
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Pruning in Sphinx-3.2
• Pure beam-pruning has long-tailed distribution of active 

HMMs/frame
• Absolute pruning to control worst-case performance:

• Max. active HMMs per frame
• Implemented approximately, using “ histogram pruning”  (avoids 

expensive sorting step)

• Max. unique words exiting per frame
• Max. LM histories saved in BP table per frame
• Word error rate unaffected

• Additional beam for lextree-internal, cross-HMM 
transitions

• Unigram “ lookahead”  scores used in lextree for yet 
more pruning



19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Sphinx-3.2 Performance
• 1997 BN eval set, excluding F2 (telephone speech)
• 6K tied-state CHMM, 20 density/state model (1997)
• 60K vocab, trigram LM
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pruning param. activeWER xRT P-III
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Sphinx-3.2 Performance (contd.)
• 1998 BN Eval set
• 5K tied-state CHMM, 32 density/state model (1998)
• 60K vocab, trigram LM
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Sphinx-3.2 Performance (contd.)
• Effect of absolute pruning parameters (1998 BN):

• (Per frame) computation stats for each utterance
• Distribution of stats over entire test set (375 utts)

• Absolute pruning highly effective in controlling variance 
in computational cost
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Conclusions
• 10x CHMM system available (thanks to P-!!!)
• With lextree implementation, only about 1-2% of total 

HMMs active per frame
• Order of magnitude fewer compared to flat lexicon search

• Lextree replication improves WER noticeably
• Absolute pruning parameters improve worst-case 

behavior significantly, without penalizing accuracy
• When active search space grows beyond some threshold, no 

hope of correct recognition anyway
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What Next?
• Tree lexicon still not as accurate as flat lexicon baseline

• Residual word segmentation problems?
• Try lextree replication?

• Use of composite SSID model at leaf nodes?
• Parameters not close to optimal?

• HMM state acoustic score computation now dominant
• Back to efficient Gaussian selection/computation


