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Abstract

This document describes the capabilities and operations of PT-ScOTCH
and LIBSCOTCH, a software package and a software library which compute par-
allel static mappings and parallel sparse matrix block orderings of distributed
graphs. It gives brief descriptions of the algorithms, details the input/output
formats, instructions for use, installation procedures, and provides a number
of examples.

PT-ScoTcH is distributed as free/libre software, and has been designed
such that new partitioning or ordering methods can be added in a straight-
forward manner. It can therefore be used as a testbed for the easy and quick
coding and testing of such new methods, and may also be redistributed, as
a library, along with third-party software that makes use of it, either in its
original or in updated forms.
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1 Introduction

1.1 Static mapping

The efficient execution of a parallel program on a parallel machine requires that
the communicating processes of the program be assigned to the processors of the
machine so as to minimize its overall running time. When processes have a limited
duration and their logical dependencies are accounted for, this optimization problem
is referred to as scheduling. When processes are assumed to coexist simultaneously
for the entire duration of the program, it is referred to as mapping. It amounts to
balancing the computational weight of the processes among the processors of the
machine, while reducing the cost of communication by keeping intensively inter-
communicating processes on nearby processors.

In most cases, the underlying computational structure of the parallel programs
to map can be conveniently modeled as a graph in which vertices correspond to
processes that handle distributed pieces of data, and edges reflect data dependencies.
The mapping problem can then be addressed by assigning processor labels to the



vertices of the graph, so that all processes assigned to some processor are loaded
and run on it. In a SPMD context, this is equivalent to the distribution across
processors of the data structures of parallel programs; in this case, all pieces of data
assigned to some processor are handled by a single process located on this processor.

A mapping is called static if it is computed prior to the execution of the program.
Static mapping is NP-complete in the general case [10]. Therefore, many studies
have been carried out in order to find sub-optimal solutions in reasonable time,
including the development of specific algorithms for common topologies such as the
hypercube [8, 16]. When the target machine is assumed to have a communication
network in the shape of a complete graph, the static mapping problem turns into the
partitioning problem, which has also been intensely studied [3, 17, 25, 26, 40]. How-
ever, when mapping onto parallel machines the communication network of which is
not a bus, not accounting for the topology of the target machine usually leads to
worse running times, because simple cut minimization can induce more expensive
long-distance communication [16, 43]; the static mapping problem is gaining pop-
ularity as most of the newer massively parallel machines have a strongly NUMA
architecture

1.2 Sparse matrix ordering

Many scientific and engineering problems can be modeled by sparse linear systems,
which are solved either by iterative or direct methods. To achieve efficiency with di-
rect methods, one must minimize the fill-in induced by factorization. This fill-in is a
direct consequence of the order in which the unknowns of the linear system are num-
bered, and its effects are critical both in terms of memory and of computation costs.

Because there always exist large problem graphs which cannot fit in the memory
of sequential computers and cost too much to partition, it is necessary to resort to
parallel graph ordering tools. PT-ScOTCH provides such features.

1.3 Contents of this document

This document describes the capabilities and operations of PT-ScOTCH, a software
package devoted to parallel static mapping and sparse matrix block ordering. It is
the parallel extension of SCOTCH, a sequential software package devoted to static
mapping, graph and mesh partitioning, and sparse matrix block ordering. While
both packages share a significant amount of code, because PT-SCOTCH transfers
control to the sequential routines of the LIBSCOTCH library when the subgraphs on
which it operates are located on a single processor, the two sets of routines have
a distinct user’s manual. Readers interested in the sequential features of SCoTCH
should refer to the SCOTCH User’s Guide [35].

The rest of this manual is organized as follows. Section 2 presents the goals
of the SCOTCH project, and section 3 outlines the most important aspects of the
parallel partitioning and ordering algorithms that it implements. Section 5 defines
the formats of the files used in PT-ScoOTCH, section 6 describes the programs of
the PT-ScoTrcH distribution, and section 7 defines the interface and operations of
the parallel routines of the LIBSCOTCH library. Section 8 explains how to obtain
and install the ScoTcH distribution. Finally, some practical examples are given in
section 9.



2 The ScoOTCH project

2.1 Description

SCOTCH is a project carried out at the Laboratoire Bordelais de Recherche en Infor-
matique (LaBRI) of the Université Bordeaux I, and now within the Bacchus project
of INRIA Bordeaux Sud-Ouest. Its goal is to study the applications of graph theory
to scientific computing, using a “divide and conquer” approach.

It focused first on static mapping, and has resulted in the development of the
Dual Recursive Bipartitioning (or DRB) mapping algorithm and in the study of
several graph bipartitioning heuristics [33], all of which have been implemented in
the SCOTCH software package [37]. Then, it focused on the computation of high-
quality vertex separators for the ordering of sparse matrices by nested dissection, by
extending the work that has been done on graph partitioning in the context of static
mapping [38, 39]. More recently, the ordering capabilities of SCOTCH have been
extended to native mesh structures, thanks to hypergraph partitioning algorithms.
New graph partitioning methods have also been recently added [6, 34]. Version 5.0
of SCOTCH was the first one to comprise parallel graph ordering routines [7], and
version 5.1 started offering parallel graph partitioning features, while parallel static
mapping will be available in the next release.

2.2 Availability

Starting from version 4.0, which has been developed at INRIA within the ScAlAp-
plix project, SCOTCH is available under a dual licensing basis. On the one hand, it
is downloadable from the SCOTCH web page as free/libre software, to all interested
parties willing to use it as a library or to contribute to it as a testbed for new
partitioning and ordering methods. On the other hand, it can also be distributed,
under other types of licenses and conditions, to parties willing to embed it tightly
into closed, proprietary software.

The free/libre software license under which ScoTcH 6.0 is distributed is
the CeCILL-C license [4], which has basically the same features as the GNU
LGPL (“Lesser General Public License”) [29]: ability to link the code as a
library to any free/libre or even proprietary software, ability to modify the
code and to redistribute these modifications. Version 4.0 of SCOTCH was dis-
tributed under the LGPL itself. This version did not comprise any parallel features.

Please refer to section 8 to see how to obtain the free/libre distribution of
SCOTCH.

3 Algorithms

3.1 Parallel static mapping by Dual Recursive Bipartitioning

For a detailed description of the sequential implementation of this mapping algo-
rithm and an extensive analysis of its performance, please refer to [33, 36]. In the
next sections, we will only outline the most important aspects of the algorithm.



3.1.1 Static mapping

The parallel program to be mapped onto the target architecture is modeled by a val-
uated unoriented graph S called source graph or process graph, the vertices of which
represent the processes of the parallel program, and the edges of which the commu-
nication channels between communicating processes. Vertex- and edge- valuations
associate with every vertex vg and every edge eg of S integer numbers wg(vg) and
wg(eg) which estimate the computation weight of the corresponding process and
the amount of communication to be transmitted on the channel, respectively.

The target machine onto which is mapped the parallel program is also modeled
by a valuated unoriented graph 7T called target graph or architecture graph. Vertices
vr and edges er of T are assigned integer weights wr(vr) and wr(er), which
estimate the computational power of the corresponding processor and the cost of
traversal of the inter-processor link, respectively.

A mapping from S to T consists of two applications 74, : V(S) — V(T') and
psr @ E(S) — P(E(T)), where P(E(T)) denotes the set of all simple loopless
paths which can be built from E(T'). 7s+(vs) = vr if process vg of S is mapped
onto processor vr of T, and ps r(es) = {ex, €%, ..., e} if communication channel
es of S is routed through communication links ek, €2, ..., e of T. |psr(es)]
denotes the dilation of edge eg, that is, the number of edges of E(T") used to route

€s.

3.1.2 Cost function and performance criteria

The computation of efficient static mappings requires an a priori knowledge of the
dynamic behavior of the target machine with respect to the programs which are
run on it. This knowledge is synthesized in a cost function, the nature of which
determines the characteristics of the desired optimal mappings. The goal of our
mapping algorithm is to minimize some communication cost function, while keeping
the load balance within a specified tolerance. The communication cost function fo
that we have chosen is the sum, for all edges, of their dilation multiplied by their
weight:
fe(Tsrspsr) = Z ws(es) |psr(es)| -

esEE(S)

This function, which has already been considered by several authors for hypercube
target topologies [8, 16, 20], has several interesting properties: it is easy to compute,
allows incremental updates performed by iterative algorithms, and its minimization
favors the mapping of intensively intercommunicating processes onto nearby pro-
cessors; regardless of the type of routage implemented on the target machine (store-
and-forward or cut-through), it models the traffic on the interconnection network
and thus the risk of congestion.

The strong positive correlation between values of this function and effective
execution times has been experimentally verified by Hammond [16] on the CM-2,
and by Hendrickson and Leland [21] on the nCUBE 2.

The quality of mappings is evaluated with respect to the criteria for quality that
we have chosen: the balance of the computation load across processors, and the
minimization of the interprocessor communication cost modeled by function fe.
These criteria lead to the definition of several parameters, which are described
below.

For load balance, one can define p,qp, the average load per computational
power unit (which does not depend on the mapping), and d,,4p, the load imbalance



ratio, as
> ws(vs)
det VSEV(S)

b )
’UTEV(T)

and

E: HG%ZES E: IUS(US) — Hmap
vr €V (T) vs € V(S5)
def 7s,7(vs) = vr

5ma -
P >, ws(vs)
vs€V(S)

However, since the maximum load imbalance ratio is provided by the user in input
of the mapping, the information given by these parameters is of little interest, since
what matters is the minimization of the communication cost function under this
load balance constraint.

For communication, the straightforward parameter to consider is fo. It can be
normalized as flezp, the average edge expansion, which can be compared to g,
the average edge dilation; these are defined as

> lpsx(es)]

def esEE(S)

def fC
- and it = ]

Hexp = Z 'LUS(CS)
esEE(S)

dexp = 'L;ﬁzf is smaller than 1 when the mapper succeeds in putting heavily inter-

communicating processes closer to each other than it does for lightly communicating
processes; they are equal if all edges have same weight.

3.1.3 The Dual Recursive Bipartitioning algorithm

Our mapping algorithm uses a divide and conquer approach to recursively allocate
subsets of processes to subsets of processors [33].

It starts by considering a set of processors, also called domain, containing all
the processors of the target machine, and with which is associated the set of all
the processes to map. At each step, the algorithm bipartitions a yet unprocessed
domain into two disjoint subdomains, and calls a graph bipartitioning algorithm to
split the subset of processes associated with the domain across the two subdomains,
as sketched in the following.
mapping (D, P)

Set_0f _Processors D;

Set_0f _Processes P;

{
Set_0f_Processors DO, Di1;
Set_0f _Processes PO, P1;

if (|P| == 0) return; /* If nothing to do. */

if (ID] == 1) { /* If one processor in D */
result (D, P); /* P is mapped onto it. */
return;

}

(DO, D1) = processor_bipartition (D);
(PO, P1) = process_bipartition (P, DO, D1);
mapping (DO, PO); /* Perform recursion. */
mapping (D1, P1);

}

The association of a subdomain with every process defines a partial mapping of
the process graph. As bipartitionings are performed, the subdomain sizes decrease,



up to give a complete mapping when all subdomains are of size one.

The above algorithm lies on the ability to define five main objects:

e a domain structure, which represents a set of processors in the target archi-
tecture;

e a domain bipartitioning function, which, given a domain, bipartitions it in
two disjoint subdomains;

e a domain distance function, which gives, in the target graph, a measure of the
distance between two disjoint domains. Since domains may not be convex nor
connected, this distance may be estimated. However, it must respect certain
homogeneity properties, such as giving more accurate results as domain sizes
decrease. The domain distance function is used by the graph bipartitioning
algorithms to compute the communication function to minimize, since it allows
the mapper to estimate the dilation of the edges that link vertices which belong
to different domains. Using such a distance function amounts to considering
that all routings will use shortest paths on the target architecture, which
is how most parallel machines actually do. We have thus chosen that our
program would not provide routings for the communication channels, leaving
their handling to the communication system of the target machine;

e a process subgraph structure, which represents the subgraph induced by a
subset of the vertex set of the original source graph;

e a process subgraph bipartitioning function, which bipartitions subgraphs in
two disjoint pieces to be mapped onto the two subdomains computed by the
domain bipartitioning function.

All these routines are seen as black boxes by the mapping program, which can thus
accept any kind of target architecture and process bipartitioning functions.

3.1.4 Partial cost function

The production of efficient complete mappings requires that all graph bipartition-
ings favor the criteria that we have chosen. Therefore, the bipartitioning of a
subgraph S’ of S should maintain load balance within the user-specified tolerance,
and minimize the partial communication cost function f(,, defined as

fé’(TS,Tva,T) = Z wS({U7UI}) |pS.T({U’UI})| )

v e V(S
{v,v'} € E(S)

which accounts for the dilation of edges internal to subgraph S’ as well as for the
one of edges which belong to the cocycle of S’ as shown in Figure 1. Taking into
account the partial mapping results issued by previous bipartitionings makes it pos-
sible to avoid local choices that might prove globally bad, as explained below. This
amounts to incorporating additional constraints to the standard graph bipartition-
ing problem, turning it into a more general optimization problem termed as skewed
graph partitioning by some authors [23].



Do D

a. Initial position. b. After one vertex is moved.

Figure 1: Edges accounted for in the partial communication cost function when
bipartitioning the subgraph associated with domain D between the two subdomains
Dy and Dy of D. Dotted edges are of dilation zero, their two ends being mapped
onto the same subdomain. Thin edges are cocycle edges.

3.1.5 Parallel graph bipartitioning methods

The core of our parallel recursive mapping algorithm uses process graph parallel
bipartitioning methods as black boxes. It allows the mapper to run any type of
graph bipartitioning method compatible with our criteria for quality. Bipartitioning
jobs maintain an internal image of the current bipartition, indicating for every vertex
of the job whether it is currently assigned to the first or to the second subdomain. It
is therefore possible to apply several different methods in sequence, each one starting
from the result of the previous one, and to select the methods with respect to the
job characteristics, thus enabling us to define mapping strategies. The currently
implemented graph bipartitioning methods are listed below.

Band

Like the multi-level method which will be described below, the band method
is a meta-algorithm, in the sense that it does not itself compute partitions, but
rather helps other partitioning algorithms perform better. It is a refinement
algorithm which, from a given initial partition, extracts a band graph of given
width (which only contains graph vertices that are at most at this distance
from the separator), calls a partitioning strategy on this band graph, and
prolongs' back the refined partition on the original graph. This method was
designed to be able to use expensive partitioning heuristics, such as genetic
algorithms, on large graphs, as it dramatically reduces the problem space by
several orders of magnitude. However, it was found that, in a multi-level
context, it also improves partition quality, by coercing partitions in a problem
space that derives from the one which was globally defined at the coarsest
level, thus preventing local optimization refinement algorithms to be trapped
in local optima of the finer graphs [6].

Diffusion
This global optimization method, the sequential formulation of which is pre-
sented in [34], flows two kinds of antagonistic liquids, scotch and anti-scotch,
from two source vertices, and sets the new frontier as the limit between ver-
tices which contain scotch and the ones which contain anti-scotch. In order to

IWhile a projection is an application to a space of lower dimension, a prolongation refers to
an application to a space of higher dimension. Yet, the term projection is also commonly used to
refer to such a propagation, most often in the context of a multilevel framework.
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add load-balancing constraints to the algorithm, a constant amount of liquid
disappears from every vertex per unit of time, so that no domain can spread
across more than half of the vertices. Because selecting the source vertices is
essential to the obtainment of useful results, this method has been hard-coded
so that the two source vertices are the two vertices of highest indices, since
in the band method these are the anchor vertices which represent all of the
removed vertices of each part. Therefore, this method must be used on band
graphs only, or on specifically crafted graphs.

Multi-level
This algorithm, which has been studied by several authors [3, 18, 25] and
should be considered as a strategy rather than as a method since it uses other
methods as parameters, repeatedly reduces the size of the graph to bipartition
by finding matchings that collapse vertices and edges, computes a partition for
the coarsest graph obtained, and prolongs the result back to the original graph,
as shown in Figure 2. The multi-level method, when used in conjunction with

Refined partitio
O PrOJECtEd partlt@

Coarsening Uncoarsenlng

phase @ phase

Initial partitioning

Figure 2: The multi-level partitioning process. In the uncoarsening phase, the light
and bold lines represent for each level the prolonged partition obtained from the
coarser graph, and the partition obtained after refinement, respectively.

the banded diffusion method to refine the prolonged partitions at every level,
usually stabilizes quality irrespective of the number of processors which run
the parallel static mapper.

3.1.6 Mapping onto variable-sized architectures

Several constrained graph partitioning problems can be modeled as mapping the
problem graph onto a target architecture, the number of vertices and topology of
which depend dynamically on the structure of the subgraphs to bipartition at each
step.

Variable-sized architectures are supported by the DRB algorithm in the follow-
ing way: at the end of each bipartitioning step, if any of the variable subdomains
is empty (that is, all vertices of the subgraph are mapped only to one of the sub-
domains), then the DRB process stops for both subdomains, and all of the vertices
are assigned to their parent subdomain; else, if a variable subdomain has only one
vertex mapped onto it, the DRB process stops for this subdomain, and the vertex
is assigned to it.

The moment when to stop the DRB process for a specific subgraph can be con-
trolled by defining a bipartitioning strategy that tests for the validity of a criterion

11



at each bipartitioning step, and maps all of the subgraph vertices to one of the
subdomains when it becomes false.

3.2 Parallel sparse matrix ordering by hybrid incomplete
nested dissection

When solving large sparse linear systems of the form Az = b, it is common to
precede the numerical factorization by a symmetric reordering. This reordering is
chosen in such a way that pivoting down the diagonal in order on the resulting
permuted matrix PAPT produces much less fill-in and work than computing the
factors of A by pivoting down the diagonal in the original order (the fill-in is the
set of zero entries in A that become non-zero in the factored matrix).

3.2.1 Hybrid incomplete nested dissection

The minimum degree and nested dissection algorithms are the two most popular
reordering schemes used to reduce fill-in and operation count when factoring and
solving sparse matrices.

The minimum degree algorithm [42] is a local heuristic that performs its pivot
selection by iteratively selecting from the graph a node of minimum degree. It is
known to be a very fast and general purpose algorithm, and has received much
attention over the last three decades (see for example [1, 13, 31]). However, the
algorithm is intrinsically sequential, and very little can be theoretically proved
about its efficiency.

The nested dissection algorithm [14] is a global, recursive heuristic algorithm
which computes a vertex set S that separates the graph into two parts A and B, or-
dering S with the highest remaining indices. It then proceeds recursively on parts A
and B until their sizes become smaller than some threshold value. This ordering
guarantees that, at each step, no non zero term can appear in the factorization
process between unknowns of A and unknowns of B.

Many theoretical results have been obtained on nested dissection order-
ing [5, 30], and its divide and conquer nature makes it easily parallelizable.
The main issue of the nested dissection ordering algorithm is thus to find small
vertex separators that balance the remaining subgraphs as evenly as possible.
Provided that good vertex separators are found, the nested dissection algorithm
produces orderings which, both in terms of fill-in and operation count, compare
favorably [15, 25, 38] to the ones obtained with the minimum degree algorithm [31].
Moreover, the elimination trees induced by nested dissection are broader, shorter,
and better balanced, and therefore exhibit much more concurrency in the con-
text of parallel Cholesky factorization [2, 11, 12, 15, 38, 41, and included references].

Due to their complementary nature, several schemes have been proposed to
hybridize the two methods [24, 27, 38]. Our implementation is based on a tight
coupling of the nested dissection and minimum degree algorithms, that allows each
of them to take advantage of the information computed by the other [39].

However, because we do not provide a parallel implementation of the minimum
degree algorithm, this hybridization scheme can only take place after enough steps
of parallel nested dissection have been performed, such that the subgraphs to be
ordered by minimum degree are centralized on individual processors.
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3.2.2 Parallel ordering

The parallel computation of orderings in PT-SCOTCH involves three different levels
of concurrency, corresponding to three key steps of the nested dissection process:
the nested dissection algorithm itself, the multi-level coarsening algorithm used to
compute separators at each step of the nested dissection process, and the refinement
of the obtained separators. Each of these steps is described below.

Nested dissection As said above, the first level of concurrency relates to the
parallelization of the nested dissection method itself, which is straightforward thanks
to the intrinsically concurrent nature of the algorithm. Starting from the initial
graph, arbitrarily distributed across p processors but preferably balanced in terms
of vertices, the algorithm proceeds as illustrated in Figure 3 : once a separator
has been computed in parallel, by means of a method described below, each of
the p processors participates in the building of the distributed induced subgraph
corresponding to the first separated part (even if some processors do not have any
vertex of it). This induced subgraph is then folded onto the first [ 5] processors, such
that the average number of vertices per processor, which guarantees efficiency as it
allows the shadowing of communications by a subsequent amount of computation,
remains constant. During the folding process, vertices and adjacency lists owned
by the | %] sender processors are redistributed to the [£] receiver processors so as
to evenly balance their loads.

The same procedure is used to build, on the [£] remaining processors, the
folded induced subgraph corresponding to the second part. These two constructions
being completely independent, the computations of the two induced subgraphs and
their folding can be performed in parallel, thanks to the temporary creation of an
extra thread per processor. When the vertices of the separated graph are evenly
distributed across the processors, this feature favors load balancing in the subgraph
building phase, because processors which do not have many vertices of one part
will have the rest of their vertices in the other part, thus yielding the same overall
workload to create both graphs in the same time. This feature can be disabled
when the communication system of the target machine is not thread-safe.

At the end of the folding process, every processor has a folded subgraph fragment
of one of the two folded subgraphs, and the nested dissection process car recursively
proceed independently on each subgroup of § (then %, £, etc.) processors, until
each subgroup is reduced to a single processor. From then on, the nested dissection
process will go on sequentially on every processor, using the nested dissection rou-
tines of the SCOTCH library, eventually ending in a coupling with minimum degree
methods [39], as described in the previous section.

Graph coarsening The second level of concurrency concerns the computation
of separators. The approach we have chosen is the now classical multi-level one [3,
22, 27]. Tt consists in repeatedly computing a set of increasingly coarser albeit
topologically similar versions of the graph to separate, by finding matchings which
collapse vertices and edges, until the coarsest graph obtained is no larger than a
few hundreds of vertices, then computing a separator on this coarsest graph, and
prolonging back this separator, from coarser to finer graphs, up to the original graph.
Most often, a local optimization algorithm, such as Kernighan-Lin [28] or Fiduccia-
Mattheyses [9] (FM), is used in the uncoarsening phase to refine the partition that
is prolonged back at every level, such that the granularity of the solution is the one
of the original graph and not the one of the coarsest graph.
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Figure 3: Diagram of a nested dissection step for a (sub-)graph distributed across
four processors. Once the separator is known, the two induced subgraphs are built
and folded (this can be done in parallel for both subgraphs), yielding two subgraphs,
each of them distributed across two processors.

The main features of our implementation are outlined in Figure 4. Once the
matching phase is complete, the coarsened subgraph building phase takes place.
It can be parametrized so as to allow one to choose between two options. Either
all coarsened vertices are kept on their local processors (that is, processors that
hold at least one of the ends of the coarsened edges), as shown in the first steps
of Figure 4, which decreases the number of vertices owned by every processor and
speeds-up future computations, or else coarsened graphs are folded and duplicated,
as shown in the next steps of Figure 4, which increases the number of working copies
of the graph and can thus reduce communication and increase the final quality of
the separators.

As a matter of fact, separator computation algorithms, which are local heuristics,
heavily depend on the quality of the coarsened graphs, and we have observed with
the sequential version of SCOTCH that taking every time the best partition among
two ones, obtained from two fully independent multi-level runs, usually improved
overall ordering quality. By enabling the folding-with-duplication routine (which
will be referred to as “fold-dup” in the following) in the first coarsening levels, one
can implement this approach in parallel, every subgroup of processors that hold a
working copy of the graph being able to perform an almost-complete independent
multi-level computation, save for the very first level which is shared by all subgroups,
for the second one which is shared by half of the subgroups, and so on.

The problem with the fold-dup approach is that it consumes a lot of memory.
Consequently, a good strategy can be to resort to folding only when the number
of vertices of the graph to be considered reaches some minimum threshold. This
threshold allows one to set a trade off between the level of completeness of the
independent multi-level runs which result from the early stages of the fold-dup
process, which impact partitioning quality, and the amount of memory to be used
in the process.

Once all working copies of the coarsened graphs are folded on individual pro-
cessors, the algorithm enters a multi-sequential phase, illustrated at the bottom of
Figure 4: the routines of the sequential SCOTCH library are used on every processor
to complete the coarsening process, compute an initial partition, and prolong it
back up to the largest centralized coarsened graph stored on the processor. Then,
the partitions are prolonged back in parallel to the finer distributed graphs, select-
ing the best partition between the two available when prolonging to a level where
fold-dup had been performed. This distributed prolongation process is repeated
until we obtain a partition of the original graph.
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Figure 4: Diagram of the parallel computation of the separator of a graph dis-
tributed across four processors, by parallel coarsening with folding-with-duplication
in the last stages, multi-sequential computation of initial partitions that are locally
prolonged back and refined on every processor, and then parallel uncoarsening of
the best partition encountered.

Band refinement The third level of concurrency concerns the refinement heuris-
tics which are used to improve the prolonged separators. At the coarsest levels of
the multi-level algorithm, when computations are restricted to individual proces-
sors, the sequential FM algorithm of SCOTCH is used, but this class of algorithms
does not parallelize well.

This problem can be solved in two ways: either by developing scalable and
efficient local optimization algorithms, or by being able to use the existing sequential
FM algorithm on very large graphs. In [6] has been proposed a solution which
enables both approaches, and is based on the following reasoning. Since every
refinement is performed by means of a local algorithm, which perturbs only in a
limited way the position of the prolonged separator, local refinement algorithms
need only to be passed a subgraph that contains the vertices that are very close to
the prolonged separator.

The computation and use of distributed band graphs is outlined in Figure 5.
Given a distributed graph and an initial separator, which can be spread across
several processors, vertices that are closer to separator vertices than some small
user-defined distance are selected by spreading distance information from all of
the separator vertices, using our halo exchange routine. Then, the distributed
band graph is created, by adding on every processor two anchor vertices, which are
connected to the last layers of vertices of each of the parts. The vertex weight of
the anchor vertices is equal to the sum of the vertex weights of all of the vertices
they replace, to preserve the balance of the two band parts. Once the separator of
the band graph has been refined using some local optimization algorithm, the new
separator is prolonged back to the original distributed graph.

Basing on these band graphs, we have implemented a multi-sequential refine-
ment algorithm, outlined in Figure 6. At every distributed uncoarsening step, a
distributed band graph is created. Centralized copies of this band graph are then
gathered on every participating processor, which serve to run fully independent in-
stances of our sequential FM algorithm. The perturbation of the initial state of the
sequential FM algorithm on every processor allows us to explore slightly different
solution spaces, and thus to improve refinement quality. Finally, the best refined
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Figure 5: Creation of a distributed band graph. Only vertices closest to the sep-
arator are kept. Other vertices are replaced by anchor vertices of equivalent total
weight, linked to band vertices of the last layer. There are two anchor vertices per
processor, to reduce communication. Once the separator has been refined on the
band graph using some local optimization algorithm, the new separator is prolonged
back to the original distributed graph.
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Figure 6: Diagram of the multi-sequential refinement of a separator prolonged back
from a coarser graph distributed across four processors to its finer distributed graph.
Once the distributed band graph is built from the finer graph, a centralized version
of it is gathered on every participating processor. A sequential FM optimization
can then be run independently on every copy, and the best improved separator is
then distributed back to the finer graph.

band separator is prolonged back to the distributed graph, and the uncoarsening
process goes on.

3.2.3 Performance criteria

The quality of orderings is evaluated with respect to several criteria. The first
one, NNZ, is the number of non-zero terms in the factored reordered matrix. The
second one, OPC, is the operation count, that is the number of arithmetic operations
required to factor the matrix. The operation count that we have considered takes
into consideration all operations (additions, subtractions, multiplications, divisions)
required by Cholesky factorization, except square roots; it is equal to ) n?, where
n. is the number of non-zeros of column c of the factored matrix, diagonal included.

A third criterion for quality is the shape of the elimination tree; concurrency
in parallel solving is all the higher as the elimination tree is broad and short. To
measure its quality, several parameters can be defined: Amin, fmax, and h,yg denote
the minimum, maximum, and average heights of the tree?, respectively, and hqy
is the variance, expressed as a percentage of haye. Since small separators result in
small chains in the elimination tree, h,ys should also indirectly reflect the quality

2We do not consider as leaves the disconnected vertices that are present in some meshes, since
they do not participate in the solving process.
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of separators.

4 Updates

4.1 Changes from version 5.0

PT-ScoTcH now provides routines to compute in parallel partitions of distributed
graphs.

A new integer index type has been created in the Fortran interface, to address
array indices larger than the maximum value which can be stored in a regular
integer. Please refer to Section 8.3 for more information.

A new set of routines has been designed, to ease the use of the LIBSCOTCH as
a dynamic library. The SCOTCH_version routine returns the version, release and
patchlevel numbers of the library being used. The SCOTCH_*Alloc routines, which
are only available in the C interface at the time being, dynamically allocate storage
space for the opaque API SCOTCH structures, which frees application programs from
the need to be systematically recompiled because of possible changes of ScoTCH
structure sizes.

4.2 Changes from version 5.1

Unlike its sequential counterpart, version 6.0 of PT-SCOTCH does not bring major
algorithmic improvements with respect to the latest 5.1.12 release of the 5.1 branch.

In order to ease the work of people writing numerical solvers, it exposes in its
interface a new distributed graph handling routine, SCOTCH_dgraphRedist, that
builds a redistributed graph from an existing distributed graph and partition data.
See Section 7.5.12.

5 Files and data structures

For the sake of portability and readability, all the data files shared by the differ-
ent programs of the SCOTCH project are coded in plain ASCII text exclusively.
Although we may speak of “lines” when describing file formats, text-formatting
characters such as newlines or tabulations are not mandatory, and are not taken
into account when files are read. They are only used to provide better readabil-
ity and understanding. Whenever numbers are used to label objects, and unless
explicitely stated, numberings always start from zero, not one.

5.1 Distributed graph files

Because even very large graphs are most often stored in the form of centralized
files, the distributed graph loading routine of the PT-SCOTCH package, as well as
all parallel programs which handle distributed graphs, are able to read centralized
graph files in the ScoTcH format and to scatter them on the fly across the
available processors (the format of centralized SCOTCH graph files is described
in the ScorcH User’s Guide [35]). However, in order to reduce loading time, a
distributed graph format has been designed, so that the different file fragments
which comprise distributed graph files can be read in parallel and be stored on
local disks on the nodes of a parallel or grid cluster.
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Distributed graph files, which usually end in “.dgr”, describe fragments of val-
uated graphs, which can be valuated process graphs to be mapped onto target
architectures, or graphs representing the adjacency structures of matrices to order.

In SCcOTCH, graphs are represented by means of adjacency lists: the definition
of each vertex is accompanied by the list of all of its neighbors, i.e. all of its
adjacent arcs. Therefore, the overall number of edge data is twice the number of
edges. Distributed graphs are stored as a set of files which contain each a subset
of graph vertices and their adjacencies. The purpose of this format is to speed-up
the loading and saving of large graphs when working for some time with the same
number of processors: the distributed graph loading routine will allow each of the
processors to read in parallel from a different file. Consequently, the number of
files must be equal to the number of processors involved in the parallel loading phase.

The first line of a distributed graph file holds the distributed graph file version
number, which is currently 2. The second line holds the number of files across
which the graph data is distributed (referred to as procglbnbr in LIBSCOTCH; see
for instance Figure 8, page 33, for a detailed example), followed by the number of
this file in the sequence (ranging from 0 to (procglbnbr — 1), and analogous to
proclocnum in Figure 8). The third line holds the global number of graph vertices
(referred to as vertglbnbr), followed by the global number of arcs (inappropriately
called edgeglbnbr, as it is in fact equal to twice the actual number of edges). The
fourth line holds the number of vertices contained in this graph fragment (analogous
to vertlocnbr), followed by its local number of arcs (analogous to edgelocnbr).
The fifth line holds two figures: the graph base index value (baseval) and a numeric
flag.

The graph base index value records the value of the starting index used to
describe the graph; it is usually 0 when the graph has been output by C programs,
and 1 for Fortran programs. Its purpose is to ease the manipulation of graphs within
each of these two environments, while providing compatibility between them.

The numeric flag, similar to the one used by the CHACO graph format [19], is
made of three decimal digits. A non-zero value in the units indicates that vertex
weights are provided. A non-zero value in the tenths indicates that edge weights
are provided. A non-zero value in the hundredths indicates that vertex labels are
provided; if it is the case, vertices can be stored in any order in the file; else, natural
order is assumed, starting from the starting global index of each fragment.

This header data is then followed by as many lines as there are vertices in the
graph fragment, that is, vertlocnbr lines. Each of these lines begins with the vertex
label, if necessary, the vertex load, if necessary, and the vertex degree, followed by
the description of the arcs. An arc is defined by the load of the edge, if necessary,
and by the label of its other end vertex. The arcs of a given vertex can be provided
in any order in its neighbor list. If vertex labels are provided, vertices can also be
stored in any order in the file.

Figure 7 shows the contents of two complementary distributed graph files mod-
eling a cube with unity vertex and edge weights and base 0, distributed across two
Processors.
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Figure 7: Two complementary distributed graph files representing a cube dis-
tributed across two processors.

6 Programs

6.1 Invocation

All of the programs comprised in the SCoTCH and PT-ScoTcH distributions have
been designed to run in command-line mode without any interactive prompting,
so that they can be called easily from other programs by means of “system ()”
or “popen ()” system calls, or be piped together on a single shell command line.
In order to facilitate this, whenever a stream name is asked for (either on input
or output), the user may put a single “-” to indicate standard input or output.
Moreover, programs read their input in the same order as stream names are given
in the command line. It allows them to read all their data from a single stream
(usually the standard input), provided that these data are ordered properly.

A brief on-line help is provided with all the programs. To get this help, use the
“~h” option after the program name. The case of option letters is not significant,
except when both the lower and upper cases of a letter have different meanings.
When passing parameters to the programs, only the order of file names is significant;
options can be put anywhere in the command line, in any order. Examples of use
of the different programs of the PT-SCOTCH project are provided in section 9.

Error messages are standardized, but may not be fully explanatory. However,
most of the errors you may run into should be related to file formats, and located in
“...Load” routines. In this case, compare your data formats with the definitions
given in section 5, and use the dgtst program of the PT-ScoTcH distribution to
check the consistency of your distributed source graphs.

According to your MPI environment, you may either run the programs directly,
or else have to invoke them by means of a command such as mpirun. Check your
local MPI documentation to see how to specify the number of processors on which
to run them.

6.2 File names
6.2.1 Sequential and parallel file opening

The programs of the PT-ScoTcH distribution can handle either the classical cen-
tralized SCOTCH graph files, or the distributed PT-ScoTcH graph files described
in section 5.1.

In order to tell whether programs should read from, or write to, a single file
located on only one processor, or to multiple instances of the same file on all of
the processors, or else to distinct files on each of the processors, a special grammar
has been designed, which is based on the “%” escape character. Four such escape
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sequences are defined, which are interpreted independently on every processor, prior
to file opening. By default, when a filename is provided, it is assumed that the file
is to be opened on only one of the processors, called the root processor, which is
usually process 0 of the communicator within which the program is run. Using any
of the first three escape sequences below will instruct programs to open in parallel
a file of name equal to the interpreted filename, on every processor on which they
are run.

%p  Replaced by the number of processes in the global communicator in which the
program is run. Leads to parallel opening.

%r  Replaced on each process running the program by the rank of this process in
the global communicator. Leads to parallel opening.

%-  Discarded, but leads to parallel opening. This sequence is mainly used to
instruct programs to open on every processor a file of identical name. The
opened files can be, according whether the given path leads to a shared direc-
tory or to directories that are local to each processor, either to the opening
of multiple instances of the same file, or to the opening of distinct files which
may each have a different content, respectively (but in this latter case it is
much recommended to identify files by means of the “%r” sequence).

%%  Replaced by a single “%” character. File names using this escape sequence are
not considered for parallel opening, unless one or several of the three other
escape sequences are also present.

For instance, filename “brol” will lead to the opening of file “brol” on the root
processor only, filename “Y%-brol” (or even “br%-0l") will lead to the parallel open-
ing of files called “brol” on every processor, and filename “brol¥%p-%r” will lead
to the opening of files “brol2-0” and “brol2-1”, respectively, on each of the two
processors on which which would run a program of the PT-ScoTcH distribution.

6.2.2 Using compressed files

Starting from version 5.0.6, SCOTCH allows users to provide and retrieve data in
compressed form. Since this feature requires that the compression and decompres-
sion tasks run in the same time as data is read or written, it can only be done
on systems which support multi-threading (Posix threads) or multi-processing (by
means of fork system calls).

To determine if a stream has to be handled in compressed form, SCOTCH checks
its extension. If it is “.gz” (gzip format), “.bz2” (bzip2 format) or “.1zma” (1zma
format), the stream is assumed to be compressed according to the corresponding
format. A filter task will then be used to process it accordingly if the format is
implemented in SCOTCH and enabled on your system.

To date, data can be read and written in bzip2 and gzip formats, and can
also be read in the 1zma format. Since the compression ratio of 1zma on SCOTCH
graphs is 30% better than the one of gzip and bzip2 (which are almost equivalent
in this case), the 1zma format is a very good choice for handling very large graphs.
To see how to enable compressed data handling in SCOTCH, please refer to Section 8.

When the compressed format allows it, several files can be provided on
the same stream, and be uncompressed on the Afly. For instance, the
command “cat brol.grf.gz brol.xyz.gz | gout -.gz -.gz -Mn - brol.iv”
concatenates the topology and geometry data of some graph brol and feed them
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as a single compressed stream to the standard input of program gout, hence the
”-.gz” to indicate a compressed standard stream.

6.3 Description
6.3.1 dgmap / dgpart
Synopsis

dgmap [input_graph_file [input_target_file [output-mapping_file [output_log-
file]]]] options

dgpart number_of-parts [input_graph_file [output_mapping_file [output-
log_filel]] options

Description

The dgmap program is the parallel static mapper. It uses a static mapping
strategy to compute a mapping of the given source graph to the given target
architecture. The implemented algorithms aim at assigning source graph ver-
tices to target vertices such that every target vertex receives a set of source
vertices of summed weight proportional to the relative weight of the target
vertex in the target architecture, and such that the communication cost func-
tion fo is minimized (see Section 3.1.2 for the definition and rationale of this
cost function).

Since its main purpose is to provide mappings that exhibit high concurrency
for communication minimization in the mapped application, it comprises a
parallel implementation of the dual recursive bipartitioning algorithm [33], as
well as all of the sequential static mapping methods used by its sequential
counterpart gmap, to be used on subgraphs located on single processors.

dgpart is a simplified interface to dgmap, which performs graph partitioning
instead of static mapping. Consequently, the desired number of parts has to
be provided, in lieu of the target architecture.

The -b and -c options allow the user to set preferences on the behavior of the
mapping strategy which is used by default. The -m option allows the user to
define a custom mapping strategy.

The input_graph_file filename can refer either to a centralized or to a dis-
tributed graph, according to the semantics defined in Section 6.2. The map-
ping file must be a centralized file.

Options
Since the program is devoted to experimental studies, it has many optional
parameters, used to test various execution modes. Values set by default will
give best results in most cases.

-brat
Set the maximum load imbalance ratio to rat, which should be a value
comprised between 0 and 1. This option can be used in conjunction with
option -c, but is incompatible with option -m.

-cflags
Tune the default mapping strategy according to the given preference
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flags. Some of these flags are antagonistic, while others can be combined.
See Section 7.4.1 for more information. The currently available flags are
the following.

Enforce load balance as much as possible.

Privilege quality over speed. This is the default behavior.

b

q

s  Privilege speed over quality.

t  Use only safe methods in the strategy.
bq

Favor scalability.

This option can be used in conjunction with option -b, but is incompat-
ible with option -m. The resulting strategy string can be displayed by
means of the -vs option.

-h Display the program synopsis.

-mstrat
Apply parallel static mapping strategy strat. The format of parallel
mapping strategies is defined in section 7.4.2. This option is incompatible
with options -b and -c.

-rnum
Set the number of the root process which will be used for centralized file
accesses. Set to 0 by default.

-sobj
Mask source edge and vertex weights. This option allows the user to “un-
weight” weighted source graphs by removing weights from edges and ver-
tices at loading time. obj may contain several of the following switches.
e Remove edge weights, if any.

v Remove vertex weights, if any.
-V Print the program version and copyright.

-vverb
Set verbose mode to werb, which may contain several of the following
switches.
a  Memory allocation information.

Mapping information, similar to the one displayed by the gmtst
program of the sequential SCOTCH distribution.

s  Strategy information. This parameter displays the default mapping
strategy used by gmap.

t  Timing information.
6.3.2 dgord
Synopsis
dgord [input_graph_file [output_ordering_file [output_log_file]]] options

Description

The dgord program is the parallel sparse matrix block orderer. It uses an
ordering strategy to compute block orderings of sparse matrices represented
as source graphs, whose vertex weights indicate the number of DOF's per node
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(if this number is non homogeneous) and whose edges are unweighted, in order
to minimize fill-in and operation count.

Since its main purpose is to provide orderings that exhibit high concur-
rency for parallel block factorization, it comprises a parallel nested dissection
method [14], but sequential classical [31] and state-of-the-art [39] minimum
degree algorithms are implemented as well, to be used on subgraphs located
on single processors.

Ordering methods can be combined by means of selection, grouping, and
condition operators, so as to define ordering strategies, which can be passed
to the program by means of the —o option. The -c option allows the user
to set preferences on the behavior of the ordering strategy which is used by
default.

The input_graph_file filename can refer either to a centralized or to a dis-
tributed graph, according to the semantics defined in Section 6.2. The order-
ing file must be a centralized file.

Options
Since the program is devoted to experimental studies, it has many optional
parameters, used to test various execution modes. Values set by default will
give best results in most cases.

-cflags
Tune the default ordering strategy according to the given preference flags.
Some of these flags are antagonistic, while others can be combined. See
Section 7.4.1 for more information. The resulting strategy string can be
displayed by means of the -vs option.

Enforce load balance as much as possible.
Privilege quality over speed. This is the default behavior.

Privilege speed over quality.

¢ wn Qo o

Use only safe methods in the strategy.
x  Favor scalability.

-h Display the program synopsis.

-moutput_mapping_file

Write to output_mapping_file the mapping of graph vertices to column
blocks. All of the separators and leaves produced by the nested dissection
method are considered as distinct column blocks, which may be in turn
split by the ordering methods that are applied to them. Distinct integer
numbers are associated with each of the column blocks, such that the
number of a block is always greater than the ones of its predecessors
in the elimination process, that is, its descendants in the elimination
tree. The structure of mapping files is described in detail in the relevant
section of the SCOTCH User’s Guide [35].

When the geometry of the graph is available, this mapping file may be
processed by program gout to display the vertex separators and super-
variable amalgamations that have been computed.

-ostrat
Apply parallel ordering strategy strat. The format of parallel ordering
strategies is defined in section 7.4.4.
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-rnum
Set the number of the root process which will be used for centralized file
accesses. Set to 0 by default.

—toutput_tree_file

Write to output_tree_file the structure of the separator tree. The data
that is written resembles much the one of a mapping file: after a first
line that contains the number of lines to follow, there are that many lines
of mapping pairs, which associate an integer number with every graph
vertex index. This integer number is the number of the column block
which is the parent of the column block to which the vertex belongs,
or —1 if the column block to which the vertex belongs is a root of the
separator tree (there can be several roots, if the graph is disconnected).
Combined to the column block mapping data produced by option -m, the
tree structure allows one to rebuild the separator tree.

-V Print the program version and copyright.

-vverb
Set verbose mode to wverb, which may contain several of the following
switches.

a  Memory allocation information.

Strategy information. This parameter displays the default parallel
ordering strategy used by dgord.

t  Timing information.

6.3.3 dgpart

Synopsis
dgpart [number_of-parts [input_graph_file [output-mapping_file [output_log-
file]]]] options

Description

The dgpart program is the parallel graph partitioner. It is in fact a shortcut
for the dgmap program, where the number of parts is turned into a complete
graph with same number of vertices which is passed to the static mapping
routine.

Save for the number_of parts parameter which replaces the input_target_file,
the parameters of dgpart are identical to the ones of dgmap. Please refer
to its manual page, in Section 6.3.1, for a description of all of the available
options.

6.3.4 dgscat
Synopsis
dgscat [input_graph_file [output_graph_file]] options

Description
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The dgscat program creates a distributed source graph, in the SCOTCH dis-
tributed graph format, from the given centralized source graph file.

The input_graph_file filename should therefore refer to a centralized graph,
while output_graph_file must refer to a distributed graph, according to the
semantics defined in Section 6.2.

Options
-c  Check the consistency of the distributed graph at the end of the graph
loading phase.
-h Display the program synopsis.

-rnum
Set the number of the root process which will be used for centralized file
accesses. Set to 0 by default.

-V Print the program version and copyright.

6.3.5 dgtst

Synopsis
dgtst [input_graph_file [output_data_file]] options

Description

The program dgtst is the source graph tester. It checks the consistency of
the input source graph structure (matching of arcs, number of vertices and
edges, etc.), and gives some statistics regarding edge weights, vertex weights,
and vertex degrees.

It produces the same results as the gtst program of the SCOTCH sequential
distribution.

Options

-h Display the program synopsis.

-rnum
Set the number of the root process which will be used for centralized file
accesses. Set to 0 by default.

-V Print the program version and copyright.

7 Library

All of the features provided by the programs of the PT-ScoTcH distribution may
be directly accessed by calling the appropriate functions of the LIBSCOTCH library,
archived in files 1ibptscotch.a and libptscotcherr.a. All of the existing parallel
routines belong to four distinct classes:

e distributed source graph handling routines, which serve to declare, build, load,
save, and check the consistency of distributed source graphs;

e strategy handling routines, which allow the user to declare and build parallel
mapping and ordering strategies;
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e parallel graph partitioning and static mapping routines, which allow the user
to declare, compute, and save distributed static mappings of distributed source
graphs;

e parallel ordering routines, which allow the user to declare, compute, and save
distributed orderings of distributed source graphs.

Error handling is performed using the existing sequential routines of the SCOTCH
distribution, which are described in the ScoTCH User’s Guide [35]. Their use is
recalled in Section 7.14.

A PARMEINS compatibility library, called libptscotchparmetis.a, is also
available. It allows users who were previously using PARMEIIS in their software to
take advantage of the efficieny of PT-ScoTcH without having to modify their code.
The services provided by this library are described in Section 7.16.

7.1 Running at proper thread level

Since PT-ScOTCH is based on the MPI API, all processes must call some flavor
of MPI_Init before using any routine of the library that performs communication.
The thread support level of MPI has to be set in accordance to the level required
by the library.

If PT-ScoTcH has been compiled without the ~-DSCOTCH_PTHREAD flag, a call to
the simple MPI_Init routine will suffice, because no concurrent MPI calls will be
performed by library routines. Else, the extended MPI_Init_thread initialization
routine has to be used, to request the MPI_THREAD _MULTIPLE level, and the provided
thread support level value returned by the routine must be checked carefully. If your
MPI implementation does not provide the MPI_THREAD_MULTIPLE level, you will have
to recompile PT-ScoTCcH without the ~-DSCOTCH_PTHREAD flag. Else, library calls
may cause random bugs in the communication subsystem, resulting in program
crashes.

7.2 Calling the routines of LIBSCOTCH
7.2.1 Calling from C

All of the C routines of the LIBSCOTCH library are prefixed with “SCOTCH.”. The
remainder of the function names is made of the name of the type of object to which
the functions apply (e.g. “dgraph”, “dorder”, etc.), followed by the type of action
performed on this object: “Init” for the initialization of the object, “Exit” for the
freeing of its internal structures, “Load” for loading the object from one or several
streams, and so on.

Typically, functions that return an error code return zero if the function suc-
ceeds, and a non-zero value in case of error.

For instance, the SCOTCH._dgraphInit and SCOTCH_dgraphLoad routines, de-
scribed in section 7.5, can be called from C by using the following code.

#include <stdio.h>
#include <mpi.h>
#include "ptscotch.h"

SCOTCH_Dgraph grafdat;
FILE =* fileptr;
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if (SCOTCH_dgraphInit (&grafdat) !'= 0) {
. /* Error handling */

}

if ((fileptr = fopen ("brol.grf", "r")) == NULL) {

... /* Error handling */

}

if (SCOTCH_dgraphlLoad (&grafdat, fileptr, -1, 0) != 0) {
. /* Error handling */

}

Since “ptscotch.h” uses several system and communication objects which are
declared in “stdio.h” and “mpi.h”, respectively, these latter files must be included
beforehand in your application code.

Although the “scotch.h” and “ptscotch.h” files may look very similar on
your system, never mistake them, and always use the “ptscotch.h” file as the
right include file for compiling a program which uses the parallel routines of the
LIBSCOTCH library, whether it also calls sequential routines or not.

7.2.2 Calling from Fortran

The routines of the LIBSCOTCH library can also be called from Fortran. For any C
function named SCOTCH_typeAction() which is documented in this manual, there
exists a SCOTCHF TYPEACTION () Fortran counterpart, in which the separating
underscore character is replaced by an “F”. In most cases, the Fortran routines
have exactly the same parameters as the C functions, save for an added trailing
INTEGER argument to store the return value yielded by the function when the
return type of the C function is not void.

Since all the data structures used in LIBSCOTCH are opaque, equivalent declara-
tions for these structures must be provided in Fortran. These structures must there-
fore be defined as arrays of DOUBLEPRECISIONS, of sizes given in file ptscotchf .h,
which must be included whenever necessary.

For routines that read or write data using a FILE * stream in C, the Fortran
counterpart uses an INTEGER parameter which is the numer of the Unix file descrip-
tor corresponding to the logical unit from which to read or write. In most Unix
implementations of Fortran, standard descriptors 0 for standard input (logical unit
5), 1 for standard output (logical unit 6) and 2 for standard error are opened by
default. However, for files that are opened using OPEN statements, an additional
function must be used to obtain the number of the Unix file descriptor from the
number of the logical unit. This function is called PXFFILENO in the normalized
POSIX Fortran API, and files which use it should include the USE IFPOSIX direc-
tive whenever necessary. An alternate, non normalized, function also exists in most
Unix implementations of Fortran, and is called FNUM.

For instance, the SCOTCH.dgraphInit and SCOTCH._dgraphLoad routines, de-
scribed in sections 7.5.11 and 7.6.1, respectively, can be called from Fortran by
using the following code.

INCLUDE "ptscotchf.h"
DOUBLEPRECISION GRAFDAT (SCOTCH_DGRAPHDIM)
INTEGER RETVAL
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CALL SCOTCHFDGRAPHINIT (GRAFDAT (1), RETVAL)
IF (RETVAL .NE. 0) THEN

OPEN (10, FILE=’brol.grf’)

CALL SCOTCHFDGRAPHLOAD (GRAFDAT (1), PXFFILENO (10), 1, O, RETVAL)
CLOSE (10)

IF (RETVAL .NE. 0) THEN

Although the “scotchf.h” and “ptscotchf.h” files may look very similar on
your system, never mistake them, and always use the “ptscotchf.h” file as the
include file for compiling a Fortran program that uses the parallel routines of the
LIBSCOTCH library, whether it also calls sequential routines or not.

All of the Fortran routines of the LIBSCOTCH library are stubs which call their C
counterpart. While this poses no problem for the usual integer and double precision
data types, some conflicts may occur at compile or run time if your MPI implemen-
tation does not represent the MPI_Comm type in the same way in C and in Fortran.
Please check on your platform to see in the mpi.h include file if the MPI_Comm data
type is represented as an int. If it is the case, there should be no problem in using
the Fortran routines of the PT-ScoTcH library.

7.2.3 Compiling and linking

The compilation of C or Fortran routines which use parallel routines of the LIB-
ScoTcH library requires that either ptscotch.h or ptscotchf.h be included, re-
spectively. Since some of the parallel routines of the LIBSCOTCH library must be
passed MPI communicators, it is necessary to include MPI files mpi.h or mpif.h,
respectively, before the relevant PT-ScOTCH include files, such that prototypes of
the parallel LIBSCOTCH routines are properly defined.

The parallel routines of the LIBSCOTCH library, along with taylored versions of
the sequential routines, are grouped in a library file called libptscotch.a. Default
error routines that print an error message and exit are provided in the classical
ScoTcH library file libptscotcherr.a.

Therefore, the linking of applications that make use of the LIBSCOTCH li-
brary with standard error handling is carried out by using the following options:
“~lptscotch -lptscotcherr -lmpi -1m”. The “~1lmpi” option is most often not
necessary, as the MPI library is automatically considered when compiling with com-
mands such as mpicc.

If you want to handle errors by yourself, you should not link with library file
libptscotcherr.a, but rather provide a SCOTCH_errorPrint() routine. Please
refer to Section 7.14 for more information on error handling. Section 7.14 for more
information on error handling.

Programs that use both sequential and parallel routines of SCOTCH need only
be linked against the parallel version of the library, as it also contains an adapted
version of the sequential routines. The reason why the sequential routines are
duplicated in the parallel PT-ScoTcCH library is because they are slightly modified
so as to keep track of the parallel environment. This allows one to create “multi-
sequential” routines that can exchange data with other processes, for instance.
Because the LIBSCOTCH data structures contain extra parameters, never mix the
scotch.h sequential include file and the libptscotch.a parallel library, as the
latter expects SCOTCH data structures to be larger than the ones defined in the
sequential include file. Consequently, when using only sequential routines in a
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sequential program, include the scotch.h file only and link the program against
the sequential 1libscotch.a library only. When using only parallel routines, or
when using a mix of sequential and parallel routines, include the ptscotch.h file
only and link the program against the parallel 1ibptscotch.a library only. When
using only sequential routines in a parallel program, both options can be used.

7.2.4 Machine word size issues

Graph indices are represented in SCOTCH as integer values of type SCOTCH_Num. By
default, this type equates to the int C type, that is, an integer type of size equal
to the one of the machine word. However, it can represent any other integer type.
Indeed, the size of the SCOTCH Num integer type can be coerced to 32 or 64 bits
by using the “~-DINTSIZE32” or “-DINTSIZE64” compilation flags, respectively, or
else by using the “~-DINT=" definition (see Section 8.3 for more information on the
setting of these compilation flags).

This may, however, pose a problem with MPI, the interface of which is based
on the regular int type. PT-SCOTCH has been coded so as to avoid typecast bugs,
but overflow errors may result from the conversion of values of a larger integer type
into ints when handling communication buffer indices.

Consequently, the C interface of SCOTCH uses two types of integers. Graph-
related quantities are passed as SCOTCH_Nums, while system-related values such as
file handles, as well as return values of LIBSCOTCH routines, are always passed as
ints.

Because of the variability of library integer type sizes, one must be careful when
using the Fortran interface of SCOTCH, as it does not provide any prototyping
information, and consequently cannot produce any warning at link time. In the
manual pages of the LIBSCOTCH routines, Fortran prototypes are written using
three types of INTEGERs. As for the C interface, the regular INTEGER type is used
for system-based values, such as file handles and MPI communicators, as well as for
return values of the LIBSCOTCH routines, while the INTEGER*num type should be
used for all graph-related values, in accordance to the size of the SCOTCH Num type, as
set by the “~DINTSIZEz” compilation flags. Also, the INTEGER*idz type represents
an integer type of a size equivalent to the one of a SCOTCH_Idx, as set by the
“-DIDXSIZEz” compilation flags. Values of this type are used in the Fortran interface
to represent arbitrary array indices which can span across the whole address space,
and consequently deserve special treatment.

In practice, when ScCOTCH is compiled on a 32-bit architecture so as
to use 64-bit SCOTCH Nums, graph indices should be declared as INTEGER#*8,
while error return values should still be declared as plain INTEGER (that is,
INTEGER#4) values. On a 32_64-bit architecture, irrespective of whether SCOTCH-
Nums are defined as INTEGER*4 or INTEGER*8 quantities, the SCOTCH_Idx type
should always be defined as a 64-bit quantity, that is, an INTEGER*8, because
it stores differences between memory addresses, which are represented by 64-bit
values. The above is no longer a problem if SCOTCH is compiled such that ints
equate 64-bit integers. In this case, there is no need to use any type coercing
definition.

The MEDNS v3 compatibility library provided by SCOTCH can also run on a
64-bit architecture. Yet, if you are willing to use it this way, you will have to
replace all int’s that are passed to the MEINS routines by 64-bit integer SCOTCH-
Num values (even the option configuration values). However, in this case, you will no

29



longer be able to link against the service routines of the genuine MEIIS /PARMEIIS
v3 library, as they are only available as a 32-bit implementation.

7.3 Data formats

All of the data used in the LIBSCOTCH interface are of integer type SCOTCH Num. To
hide the internals of PT-SCOTCH to callers, all of the data structures are opaque,
that is, declared within ptscotch.h as dummy arrays of double precision values,
for the sake of data alignment. Accessor routines, the names of which end in
“Size” and “Data”, allow callers to retrieve information from opaque structures.

In all of the following, whenever arrays are defined, passed, and accessed, it is
a