
S3QL Documentation
Release 2.26

Nikolaus Rath

Mar 04, 2018

CONTENTS

1 S3QL 1
1.1 Features . 1
1.2 Development Status . 2
1.3 Supported Platforms . 2
1.4 Contributing . 2

2 Installation 3
2.1 Dependencies . 3
2.2 Installing S3QL . 4
2.3 Development Version . 4
2.4 Running tests requiring remote servers . 4

3 Storage Backends 7
3.1 Google Storage . 7
3.2 Amazon S3 . 8
3.3 OpenStack/Swift . 9
3.4 Rackspace CloudFiles . 10
3.5 S3 compatible . 10
3.6 Local . 11

4 Important Rules to Avoid Losing Data 13
4.1 Rules in a Nutshell . 13
4.2 Consistency Window List . 14
4.3 Data Consistency . 14
4.4 Data Durability . 15

5 File System Creation 17

6 Managing File Systems 19
6.1 Changing the Passphrase . 19
6.2 Upgrading the file system . 20
6.3 Deleting a file system . 20
6.4 Restoring Metadata Backups . 20

7 Mounting 21
7.1 Permission Checking . 22
7.2 Compression Algorithms . 22
7.3 Notes about Caching . 23
7.4 Failure Modes . 23
7.5 Automatic Mounting . 24

i

8 Advanced S3QL Features 25
8.1 Snapshotting and Copy-on-Write . 25
8.2 Getting Statistics . 26
8.3 Immutable Trees . 26
8.4 Fast Recursive Removal . 27
8.5 Runtime Configuration . 27

9 Unmounting 29

10 Checking for Errors 31
10.1 Checking and repairing internal file system errors . 31
10.2 Detecting and handling backend data corruption . 32

11 Storing Authentication Information 35

12 Contributed Programs 37
12.1 benchmark.py . 37
12.2 clone_fs.py . 37
12.3 pcp.py . 37
12.4 s3ql_backup.sh . 37
12.5 expire_backups.py . 38
12.6 remove_objects.py . 39

13 Tips & Tricks 41
13.1 SSH Backend . 41
13.2 Permanently mounted backup file system . 41
13.3 Improving copy performance . 41

14 Known Issues 43

15 Manpages 45
15.1 The mkfs.s3ql command . 45
15.2 The s3qladm command . 46
15.3 The mount.s3ql command . 48
15.4 The s3qlstat command . 50
15.5 The s3qlctrl command . 51
15.6 The s3qlcp command . 52
15.7 The s3qlrm command . 54
15.8 The s3qllock command . 55
15.9 The umount.s3ql command . 56
15.10 The fsck.s3ql command . 57
15.11 The s3ql_oauth_client command . 59
15.12 The s3ql_verify command . 60
15.13 The pcp command . 61
15.14 The expire_backups command . 62

16 Further Resources / Getting Help 65

17 Implementation Details 67
17.1 Metadata Storage . 67
17.2 Data Storage . 67
17.3 Data De-Duplication . 68
17.4 Caching . 68
17.5 Eventual Consistency Handling . 68
17.6 Encryption . 68

ii

CHAPTER

ONE

S3QL

S3QL is a file system that stores all its data online using storage services like Google Storage, Amazon S3, or Open-
Stack. S3QL effectively provides a hard disk of dynamic, infinite capacity that can be accessed from any computer
with internet access.

S3QL is a standard conforming, full featured UNIX file system that is conceptually indistinguishable from any local
file system. Furthermore, S3QL has additional features like compression, encryption, data de-duplication, immutable
trees and snapshotting which make it especially suitable for online backup and archival.

S3QL is designed to favor simplicity and elegance over performance and feature-creep. Care has been taken to make
the source code as readable and serviceable as possible. Solid error detection and error handling have been included
from the very first line, and S3QL comes with extensive automated test cases for all its components.

1.1 Features

• Transparency. Conceptually, S3QL is indistinguishable from a local file system. For example, it supports
hardlinks, symlinks, standard unix permissions, extended attributes and file sizes up to 2 TB.

• Dynamic Size. The size of an S3QL file system grows and shrinks dynamically as required.

• Compression. Before storage, all data may compressed with the LZMA, bzip2 or deflate (gzip) algorithm.

• Encryption. After compression (but before upload), all data can be AES encrypted with a 256 bit key. An
additional SHA256 HMAC checksum is used to protect the data against manipulation.

• Data De-duplication. If several files have identical contents, the redundant data will be stored only once. This
works across all files stored in the file system, and also if only some parts of the files are identical while other
parts differ.

• Immutable Trees. Directory trees can be made immutable, so that their contents can no longer be changed in
any way whatsoever. This can be used to ensure that backups can not be modified after they have been made.

• Copy-on-Write/Snapshotting. S3QL can replicate entire directory trees without using any additional storage
space. Only if one of the copies is modified, the part of the data that has been modified will take up additional
storage space. This can be used to create intelligent snapshots that preserve the state of a directory at different
points in time using a minimum amount of space.

• High Performance independent of network latency. All operations that do not write or read file contents
(like creating directories or moving, renaming, and changing permissions of files and directories) are very fast
because they are carried out without any network transactions.

S3QL achieves this by saving the entire file and directory structure in a database. This database is locally cached
and the remote copy updated asynchronously.

1

http://code.google.com/apis/storage/
http://aws.amazon.com/s3
http://openstack.org/projects/storage/
http://openstack.org/projects/storage/

S3QL Documentation, Release 2.26

• Support for low bandwidth connections. S3QL splits file contents into smaller blocks and caches blocks
locally. This minimizes both the number of network transactions required for reading and writing data, and the
amount of data that has to be transferred when only parts of a file are read or written.

1.2 Development Status

S3QL is considered stable and suitable for production use. Starting with version 2.17.1, S3QL uses semantic ver-
sioning. This means that backwards-incompatible versions (e.g., versions that require an upgrade of the file system
revision) will be reflected in an increase of the major version number.

1.3 Supported Platforms

S3QL is developed and tested under Linux. Users have also reported running S3QL successfully on OS-X, FreeBSD
and NetBSD. We try to maintain compatibility with these systems, but (due to lack of pre-release testers) we cannot
guarantee that every release will run on all non-Linux systems. Please report any bugs you find, and we will try to fix
them.

1.4 Contributing

The S3QL source code is available both on GitHub and BitBucket.

2 Chapter 1. S3QL

https://github.com/s3ql/main
https://bitbucket.org/nikratio/s3ql/

CHAPTER

TWO

INSTALLATION

S3QL depends on several other programs and libraries that have to be installed first. The best method to satisfy these
dependencies depends on your distribution.

The following instructions are for S3QL 2.26 and should be applicable to any system. The S3QL Wiki contains
additional help help for specific distributions and operating systems. Note, however, that S3QL wiki is editable by
anyone. The information there has thus not been vetted by the S3QL maintainers, and may be wrong, out-of-date, or
even dangerous. Generally, you should only follow steps from the Wiki that you fully understand yourself, and fall
back on the instructions below when in doubt.

2.1 Dependencies

The following is a list of the programs and libraries required for running S3QL. Generally, you should first check if
your distribution already provides a suitable packages and only install from source if that is not the case.

• Kernel: Linux 2.6.9 or newer or FreeBSD with FUSE4BSD. Starting with kernel 2.6.26 you will get significantly
better write performance, so under Linux you should actually use 2.6.26 or newer whenever possible.

• The psmisc utilities.

• SQLite version 3.7.0 or newer. SQLite has to be installed as a shared library with development headers.

• Python 3.3.0 or newer. Make sure to also install the development headers.

• The following Python modules:

– setuptools, version 1.0 or newer.

– pycrypto

– defusedxml

– requests (optional, required for OAuth2 authentication with Google Storage)

– systemd (optional, for enabling systemd support).

– apsw, version 3.7.0 or newer.

– llfuse, any version between 1.0 (inclusive) and 2.0 (exclusive)

– dugong, any version between 3.4 (inclusive) and 4.0 (exclusive)

– pytest, version 2.7 or newer (optional, to run unit tests)

To check if a specific module <module> is installed, execute python3 -c 'import <module>;
print(<module>.__version__)'. This will result in an ImportError if the module is not installed,
and will print the installed version if the module is installed.

3

https://bitbucket.org/nikratio/s3ql/wiki/Home
https://bitbucket.org/nikratio/s3ql/wiki/Installation
http://www.freshports.org/sysutils/fusefs-kmod/
http://psmisc.sf.net/
http://www.sqlite.org/
http://www.python.org/
https://pypi.python.org/pypi/setuptools
https://www.dlitz.net/software/pycrypto/
https://pypi.python.org/pypi/defusedxml/
https://pypi.python.org/pypi/requests/
https://github.com/systemd/python-systemd
https://github.com/rogerbinns/apsw
https://bitbucket.org/nikratio/python-llfuse/
https://bitbucket.org/nikratio/python-dugong/
http://pytest.org/

S3QL Documentation, Release 2.26

2.2 Installing S3QL

To build and install S3QL itself, proceed as follows:

1. Download S3QL from https://bitbucket.org/nikratio/s3ql/downloads

2. Unpack it into a folder of your choice

3. Run python3 setup.py build_ext --inplace to build S3QL.

4. Run python3 -m pytest tests/ to run a self-test. If this fails, ask for help on the mailing list or report
a bug in the issue tracker.

Now you have three options:

• You can run the S3QL commands from the bin/ directory.

• You can install S3QL system-wide for all users. To do that, you have to run sudo python3 setup.py
install.

• You can install S3QL into ~/.local by executing python3 setup.py install --user. In this case
you should make sure that ~/.local/bin is in your $PATH environment variable.

2.3 Development Version

If you have checked out the unstable development version from the Mercurial repository, a bit more effort is required.
You’ll also need:

• Version 0.24 or newer of the Cython compiler.

• Version 1.2b1 or newer of the Sphinx document processor.

With these additional dependencies installed, S3QL can be build and tested with

python3 setup.py build_cython
python3 setup.py build_ext --inplace
python3 -m pytest tests/

Note that when building from the Mercurial or Git repository, building and testing is done with several additional
checks. This may cause compilation and/or tests to fail even though there are no problems with functionality. For
example, any use of functions that are scheduled for deprecation in future Python version will cause tests to fail. If
you would rather just check for functionality, you can delete the MANIFEST.in file. In that case, the build system
will behave as it does for a regular release.

The HTML and PDF documentation can be generated with

python3 setup.py build_sphinx

and S3QL can be installed as usual with

python3 setup.py install [--user]

2.4 Running tests requiring remote servers

By default, tests requiring a connection to a remote storage backend are skipped. If you would like to run these tests
too (which is always a good idea), you have to create additional entries in your ~/.s3ql/authinfo2 file that tell
S3QL what server and credentials to use for these tests. These entries have the following form:

4 Chapter 2. Installation

https://bitbucket.org/nikratio/s3ql/downloads
http://groups.google.com/group/s3ql
https://bitbucket.org/nikratio/s3ql/issues
http://www.cython.org/
http://sphinx.pocoo.org/

S3QL Documentation, Release 2.26

[<BACKEND>-test]
backend-login: <user>
backend-password: <password>
test-fs: <storage-url>

Here <BACKEND> specifies the backend that you want to test (e.g. s3, s3c, gs, or swift), <user> and <password> are
the backend authentication credentials, and <storage-url> specifies the full storage URL that will be used for testing.
Any existing S3QL file system in this storage URL will be destroyed during testing.

For example, to run tests that need connection to a Google Storage server, you would add something like

[gs-test]
backend-login: GOOGIGWLONT238MD7HZ4
backend-password: rmEbstjscoeunt1249oes1298gauidbs3hl
test-fs: gs://joes-gs-bucket/s3ql_tests/

On the next run of runtest.py (or py.test when using the development version), the additional tests will be
run. If the tests are still skipped, you can get more information about why tests are being skipped by passing the -rs
argument to runtest.py/py.test.

2.4. Running tests requiring remote servers 5

S3QL Documentation, Release 2.26

6 Chapter 2. Installation

CHAPTER

THREE

STORAGE BACKENDS

S3QL supports different backends to store data at different service providers and using different protocols. A storage
url specifies a backend together with some backend-specific information and uniquely identifies an S3QL file system.
The form of the storage url depends on the backend and is described for every backend below.

Furthermore, every S3QL commands that accepts a storage url also accepts a --backend-options parameter than
can be used to pass backend-specific options to the backend module. The available options are documented with the
respective backends below.

All storage backends respect the http_proxy (for plain HTTP connections) and https_proxy (for SSL connec-
tions) environment variables.

Note: Storage backends are not necessarily compatible. Don’t expect that you can e.g. copy the data stored by the
local backend into Amazon S3 using some non-S3QL tool and then access it with S3QL’s S3 backend. If you want
to copy file systems from one backend to another, you need to use the clone_fs.py script (from the contrib
directory in the S3QL tarball).

3.1 Google Storage

Google Storage is an online storage service offered by Google. To use the Google Storage backend, you need to have
(or sign up for) a Google account, and then activate Google Storage for your account. The account is free, you will
pay only for the amount of storage and traffic that you actually use. There are two ways to access Google storage:

1. Use S3-like authentication. To do this, first set a default project. Then use the key management tool to retrieve
your Google Storage developer access key and Google Storage developer secret and use that as backend login
and backend password.

2. Use OAuth2 authentication. In this case you need to use oauth2 as the backend login, and a valid OAuth2
refresh token as the backend password. To obtain a refresh token, you can use the s3ql_oauth_client program.
It will instruct you to open a specific URL in your browser, enter a code and authenticate with your Google
account. Once this procedure is complete, s3ql_oauth_client will print out the refresh token. Note that you need
to do this procedure only once, the refresh token will remain valid until you explicitly revoke it.

To create a Google Storage bucket, you can use e.g. the Google Storage Manager. The storage URL for accessing the
bucket in S3QL is then

gs://<bucketname>/<prefix>

Here bucketname is the name of the bucket, and prefix can be an arbitrary prefix that will be prepended to all object
names used by S3QL. This allows you to store several S3QL file systems in the same Google Storage bucket.

The Google Storage backend accepts the following backend options:

7

http://code.google.com/apis/storage/
http://code.google.com/apis/storage/docs/signup.html
https://developers.google.com/storage/docs/migrating#defaultproj
https://code.google.com/apis/console/#:storage:legacy
https://sandbox.google.com/storage/

S3QL Documentation, Release 2.26

no-ssl
Disable encrypted (https) connections and use plain HTTP instead.

ssl-ca-path=<path>
Instead of using the system’s default certificate store, validate the server certificate against the specified CA
certificates. <path>may be either a file containing multiple certificates, or a directory containing one certificate
per file.

tcp-timeout
Specifies the timeout used for TCP connections. If no data can be exchanged with the remote server for longer
than this period, the TCP connection is closed and re-established (default: 20 seconds).

3.2 Amazon S3

Amazon S3 is the online storage service offered by Amazon Web Services (AWS). To use the S3 backend, you first
need to sign up for an AWS account. The account is free, you will pay only for the amount of storage and traffic
that you actually use. After that, you need to create a bucket that will hold the S3QL file system, e.g. using the AWS
Management Console. For best performance, it is recommend to create the bucket in the geographically closest storage
region, but not the US Standard region (see Important Rules to Avoid Losing Data for the reason).

The storage URL for accessing S3 buckets in S3QL has the form

s3://<region>/<bucket>/<prefix>

prefix can be an arbitrary prefix that will be prepended to all object names used by S3QL. This allows you to store
several S3QL file systems in the same S3 bucket. For example, the storage URL

s3://ap-south-1/foomart.net/data/s3ql_backup/

refers to the foomart.net bucket in the ap-south-1 region. All storage objects that S3QL stores in this bucket will be
prefixed with data/s3ql_backup/.

Note that the backend login and password for accessing S3 are not the user id and password that you use to log into the
Amazon Webpage, but the AWS access key id and AWS secret access key shown under My Account/Access Identifiers.

The Amazon S3 backend accepts the following backend options:

no-ssl
Disable encrypted (https) connections and use plain HTTP instead.

ssl-ca-path=<path>
Instead of using the system’s default certificate store, validate the server certificate against the specified CA
certificates. <path>may be either a file containing multiple certificates, or a directory containing one certificate
per file.

tcp-timeout
Specifies the timeout used for TCP connections. If no data can be exchanged with the remote server for longer
than this period, the TCP connection is closed and re-established (default: 20 seconds).

sse
Enable server side encryption. Both costs & benefits of S3 server side encryption are probably rather small, and
this option does not affect any client side encryption performed by S3QL itself.

ia
Use infrequent access storage class for new objects.

rrs
Enable reduced redundancy storage for newly created objects (overwrites the ia option).

8 Chapter 3. Storage Backends

http://aws.amazon.com/s3
http://aws.amazon.com/
https://console.aws.amazon.com/s3/home
https://console.aws.amazon.com/s3/home
https://aws-portal.amazon.com/gp/aws/developer/account/index.html?ie=UTF8&action=access-key

S3QL Documentation, Release 2.26

When enabling this option, it is strongly recommended to periodically run s3ql_verify, because objects that are
lost by the storage backend may cause subsequent data loss even later in time due to the data de-duplication
feature of S3QL (see Data Durability for details).

3.3 OpenStack/Swift

OpenStack is an open-source cloud server application suite. Swift is the cloud storage module of OpenStack.
Swift/OpenStack storage is offered by many different companies.

There are two different storage URL for the OpenStack backend that make use of different authentication APIs. For
legacy (v1) authentication, the storage URL is

swift://<hostname>[:<port>]/<container>[/<prefix>]

for Keystone (v2) authentication, the storage URL is

swiftks://<hostname>[:<port>]/<region>:<container>[/<prefix>]

Note that when using Keystone authentication, you can (and have to) specify the storage region of the container as
well.

In both cases, hostname name should be the name of the authentication server. The storage container must already
exist (most OpenStack providers offer either a web frontend or a command line tool for creating containers). prefix
can be an arbitrary prefix that will be prepended to all object names used by S3QL, which can be used to store multiple
S3QL file systems in the same container.

When using legacy authentication, the backend login and password correspond to the OpenStack username and API
Access Key. When using Keystone authentication, the backend password is your regular OpenStack password and the
backend login combines you OpenStack username and tenant name in the form <tenant>:<user>. If no tenant is
required, the OpenStack username alone may be used as backend login.

The OpenStack backend accepts the following backend options:

no-ssl
Use plain HTTP to connect to the authentication server. This option does not directly affect the connection to
the storage server. Whether HTTPS or plain HTTP is used to connect to the storage server is determined by the
authentication server.

ssl-ca-path=<path>
Instead of using the system’s default certificate store, validate the server certificate against the specified CA
certificates. <path>may be either a file containing multiple certificates, or a directory containing one certificate
per file.

tcp-timeout
Specifies the timeout used for TCP connections. If no data can be exchanged with the remote server for longer
than this period, the TCP connection is closed and re-established (default: 20 seconds).

disable-expect100
If this option is specified, S3QL does not use the Expect: continue header (cf. RFC2616, section 8.2.3)
when uploading data to the server. This can be used to work around broken storage servers that don’t fully
support HTTP 1.1, but may decrease performance as object data will be transmitted to the server more than once
in some circumstances.

no-feature-detection
If this option is specified, S3QL does not try to dynamically detect advanced features of the Swift backend. In
this case S3QL can only use the least common denominator of supported Swift versions and configurations.

3.3. OpenStack/Swift 9

http://www.openstack.org/
http://openstack.org/projects/storage/
http://tools.ietf.org/html/rfc2616#section-8.2.3

S3QL Documentation, Release 2.26

Note: The Swift API unfortunately lacks a number of features that S3QL normally makes use of. S3QL works
around these deficiencies as much as possible. However, this means that storing data using the Swift backend generally
requires more network round-trips and transfer volume than the other backends. Also, S3QL requires Swift storage
servers to provide immediate consistency for newly created objects.

3.4 Rackspace CloudFiles

Rackspace CloudFiles uses OpenStack internally, so it is possible to just use the OpenStack/Swift backend (see above)
with auth.api.rackspacecloud.com as the host name. For convenince, there is also a special rackspace
backend that uses a storage URL of the form

rackspace://<region>/<container>[/<prefix>]

The storage container must already exist in the selected region. prefix can be an arbitrary prefix that will be prepended
to all object names used by S3QL and can be used to store several S3QL file systems in the same container.

You can create a storage container for S3QL using the Cloud Control Panel (click on Files in the topmost menu bar).

The Rackspace backend accepts the same backend options as the OpenStack backend.

3.5 S3 compatible

The S3 compatible backend allows S3QL to access any storage service that uses the same protocol as Amazon S3.
The storage URL has the form

s3c://<hostname>:<port>/<bucketname>/<prefix>

Here bucketname is the name of an (existing) bucket, and prefix can be an arbitrary prefix that will be prepended to all
object names used by S3QL. This allows you to store several S3QL file systems in the same bucket.

The S3 compatible backend accepts the following backend options:

no-ssl
Disable encrypted (https) connections and use plain HTTP instead.

ssl-ca-path=<path>
Instead of using the system’s default certificate store, validate the server certificate against the specified CA
certificates. <path>may be either a file containing multiple certificates, or a directory containing one certificate
per file.

tcp-timeout
Specifies the timeout used for TCP connections. If no data can be exchanged with the remote server for longer
than this period, the TCP connection is closed and re-established (default: 20 seconds).

disable-expect100
If this option is specified, S3QL does not use the Expect: continue header (cf. RFC2616, section 8.2.3)
when uploading data to the server. This can be used to work around broken storage servers that don’t fully
support HTTP 1.1, but may decrease performance as object data will be transmitted to the server more than once
in some circumstances.

dumb-copy
If this option is specified, S3QL assumes that a COPY request to the storage server has succeeded as soon as the
server returns a 200 OK status. The S3 COPY API specifies that the storage server may still return an error in

10 Chapter 3. Storage Backends

http://www.rackspace.com/
http://www.openstack.org/
https://mycloud.rackspace.com/
http://tools.ietf.org/html/rfc2616#section-8.2.3
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html

S3QL Documentation, Release 2.26

the request body (see the copy proposal for the rationale), so this option should only be used if you are certain
that your storage server only returns 200 OK when the copy operation has been completely and successfully
carried out. Using this option may be neccessary if your storage server does not return a valid response body for
a succesfull copy operation.

3.6 Local

S3QL is also able to store its data on the local file system. This can be used to backup data on external media, or to
access external services that S3QL can not talk to directly (e.g., it is possible to store data over SSH by first mounting
the remote system using sshfs and then using the local backend to store the data in the sshfs mountpoint).

The storage URL for local storage is

local://<path>

Note that you have to write three consecutive slashes to specify an absolute path, e.g. local:///var/archive.
Also, relative paths will automatically be converted to absolute paths before the authentication file (see Storing Au-
thentication Information) is read, i.e. if you are in the /home/john directory and try to mount local://s3ql,
the corresponding section in the authentication file must match the storage url local:///home/john/s3ql.

The local backend does not accept any backend options.

3.6. Local 11

https://doc.s3.amazonaws.com/proposals/copy.html
http://fuse.sourceforge.net/sshfs.html

S3QL Documentation, Release 2.26

12 Chapter 3. Storage Backends

CHAPTER

FOUR

IMPORTANT RULES TO AVOID LOSING DATA

Most S3QL backends store data in distributed storage systems. These systems differ from a traditional, local hard disk
in several important ways. In order to avoid losing data, this section should be read very carefully.

4.1 Rules in a Nutshell

To avoid losing your data, obey the following rules:

1. Know what durability you can expect from your chosen storage provider. The durability describes how likely
it is that a stored object becomes damaged over time. Such data corruption can never be prevented completely,
techniques like geographic replication and RAID storage just reduce the likelihood of it to happen (i.e., increase
the durability).

2. When choosing a backend and storage provider, keep in mind that when using S3QL, the effective durability of
the file system data will be reduced because of S3QL’s data de-duplication feature.

3. Determine your storage service’s consistency window. The consistency window that is important for S3QL is
the smaller of the times for which:

• a newly created object may not yet be included in the list of stored objects

• an attempt to read a newly created object may fail with the storage service reporting that the object does
not exist

If one of the above times is zero, we say that as far as S3QL is concerned the storage service has immediate
consistency.

If your storage provider claims that neither of the above can ever happen, while at the same time promising high
durability, you should choose a respectable provider instead.

4. When mounting the same file system on different computers (or on the same computer but with different
--cachedir directories), the time that passes between the first and second of invocation of mount.s3ql
must be at least as long as your storage service’s consistency window. If your storage service offers immediate
consistency, you do not need to wait at all.

5. Before running fsck.s3ql or s3qladm, the file system must have been left untouched for the length of the
consistency window. If your storage service offers immediate consistency, you do not need to wait at all.

The rest of this section explains the above rules and the reasons for them in more detail. It also contains a list of the
consistency windows for a number of larger storage providers.

13

S3QL Documentation, Release 2.26

4.2 Consistency Window List

The following is a list of the consistency windows (as far as S3QL is concerned) for a number of storage providers.
This list doesn’t come with any guarantees and may be outdated. If your storage provider is not included, or if you
need more reliable information, check with your storage provider.

Storage Provider Consistency Window
Amazon S3 in the US standard region No guarantees
Amazon S3 in other regions Immediate
Google Storage Immediate

4.3 Data Consistency

In contrast to the typical hard disk, most storage providers do not guarantee immediate consistency of written data.
This means that:

• after an object has been stored, requests to read this object may still fail or return the prior contents for a little
while.

• after an object has been deleted, attempts to read it may still return the (old) data for some time, and it may still
remain in the list of stored objects for some time.

• after a new object has been created, it may still not be included when retrieving the list of stored objects for
some time.

Of course, none of this is acceptable for a file system, and S3QL generally handles any of the above situations internally
so that it always provides a fully consistent file system to the user. However, there are some situations where an S3QL
user nevertheless needs to be aware of the peculiarities of his chosen storage service.

Suppose that you mount the file system, store some new data, delete some old data and unmount it. If you then mount
the file system again right away on another computer, there is no guarantee that S3QL will see any of the changes
that the first S3QL process has made. At least in theory it is therefore possible that on the second mount, S3QL does
not see any of the changes that you have done and presents you an “old version” of the file system without them.
Even worse, if you notice the problem and unmount the file system, S3QL will upload the old status (which S3QL
necessarily has to consider as current) and thereby permanently override the newer version (even though this change
may not become immediately visible either). S3QL uses several techniques to reduce the likelihood of this to happen
(see Implementation Details for more information on this), but without support from the storage service, the possibility
cannot be eliminated completely.

The same problem of course also applies when checking the file system. If the storage service provides S3QL with
only partially updated data, S3QL has no way to find out if this a real consistency problem that needs to be fixed or
if it is only a temporary problem that will resolve itself automatically (because there are still changes that have not
become visible yet).

This is where the so called consistency window comes in. The consistency window is the maximum time (after writing
or deleting the object) for which any of the above “outdated responses” may be received. If the consistency window
is zero, i.e. all changes are immediately effective, the storage service is said to have immediate consistency. If the
window is infinite, i.e. there is no upper bound on the time it may take for changes to become effect, the storage service
is said to be eventually consistent. Note that often there are different consistency windows for the different operations.
For example, Google Storage offers immediate consistency when reading data, but only eventual consistency for the
list of stored objects.

To prevent the problem of S3QL working with an outdated copy of the file system data, it is therefore sufficient to
simply wait for the consistency window to pass before mounting the file system again (or running a file system check).
The length of the consistency window changes from storage service to storage service, and if your service is not

14 Chapter 4. Important Rules to Avoid Losing Data

S3QL Documentation, Release 2.26

included in the list below, you should check the web page or ask the technical support of your storage provider. The
window that is important for S3QL is the smaller of the times for which

• a newly created object may not yet be included in the list of stored objects

• an attempt to read a newly created object may fail with the storage service reporting that the object does not
exist

Unfortunately, many storage providers are hesitant to guarantee anything but eventual consistency, i.e. the length of
the consistency window is potentially infinite. In that case you simply have to pick a length that you consider “safe
enough”. For example, even though Amazon is only guaranteeing eventual consistency, the ordinary consistency
window for data stored in S3 is just a few seconds, and only in exceptional circumstances (i.e., core network outages)
it may rise up to hours (source).

4.4 Data Durability

The durability of a storage service a measure of the average probability of a storage object to become corrupted over
time. The lower the chance of data loss, the higher the durability. Storage services like Amazon S3 claim to achieve a
durability of up to 99.999999999% over a year, i.e. if you store 100000000 objects for 100 years, you can expect that
at the end of that time one object will be corrupted or lost.

S3QL is designed to reduce redundancy and store data in the smallest possible form. Therefore, S3QL is generally not
able to compensate for any such losses, and when choosing a storage service you should carefully review if the offered
durability matches your requirements. When doing this, there are two factors that should be kept in mind.

Firstly, even though S3QL is not able to compensate for storage service failures, it is able to detect them: when trying
to access data that has been lost or corrupted by the storage service, an IO error will be returned and the mount point
will become inaccessible to ensure that the problem is noticed.

Secondly, the consequences of a data loss by the storage service can be significantly more severe than you may expect
because of S3QL’s data de-duplication feature: a data loss in the storage service at time x may cause data that is written
after time x to be lost as well. Consider the following scenario:

1. You store an important file in the S3QL file system.

2. The storage service loses the data blocks of this file. As long as you do not access the file or run fsck.s3ql,
S3QL is not aware that the data has been lost by the storage service.

3. You save an additional copy of the important file in a different location on the same S3QL file system.

4. S3QL detects that the contents of the new file are identical to the data blocks that have been stored earlier. Since
at this point S3QL is not aware that these blocks have been lost by the storage service, it does not save another
copy of the file contents in the storage service but relies on the (presumably) existing blocks instead.

5. Therefore, even though you saved another copy, you still do not have a backup of the important file (since both
copies refer to the same data blocks that have been lost by the storage service).

For some storage services, fsck.s3ql can mitigate this effect. When fsck.s3ql runs, it asks the storage service
for a list of all stored objects. If objects are missing, it can then mark the damaged files and prevent the problem
from spreading forwards in time. Figuratively speaking, this establishes a “checkpoint”: data loss that occurred before
running fsck.s3ql can not affect any file system operations that are performed after the check. Unfortunately, many
storage services only “discover” that objects are missing or broken when the object actually needs to be retrieved. In
this case, fsck.s3ql will not learn anything by just querying the list of objects.

This effect can be mitigated to some degree by using the s3ql_verify command in additon to fsck.s3ql.
s3ql_verify asks the storage service to look up every stored object and may therefore take much longer than
running fsck.s3ql, but can also offer a much stronger assurance that no data has been lost by the storage service.
To “recover” from damaged storage objects in the backend, the damaged objects found by s3ql_verify have to be
explicitly deleted (so that a successive fsck.s3ql is able detect them as missing, correct the file system metadata,

4.4. Data Durability 15

http://forums.aws.amazon.com/message.jspa?messageID=38471#38471

S3QL Documentation, Release 2.26

and move any affected files to lost+found). This procedure is currently not automated, so it is generally a good
idea to choose a storage service where the expected data durability is high enough so that the possibility of a lost object
(and thus the need to run any full checks) can be neglected over long periods of time.

16 Chapter 4. Important Rules to Avoid Losing Data

CHAPTER

FIVE

FILE SYSTEM CREATION

A S3QL file system is created with the mkfs.s3ql command. It has the following syntax:

mkfs.s3ql [options] <storage url>

This command accepts the following options:

--cachedir <path> Store cached data in this directory (default: ~/.s3ql)

--authfile <path> Read authentication credentials from this file (default:
~/.s3ql/authinfo2)

--debug-modules <modules> Activate debugging output from specified modules (use
commas to separate multiple modules). Debug messages will be
written to the target specified by the --log option.

--debug Activate debugging output from all S3QL modules. Debug messages
will be written to the target specified by the --log option.

--quiet be really quiet

--backend-options <options> Backend specific options (separate by commas). See back-
end documentation for available options.

--version just print program version and exit

-L <name> Filesystem label

--max-obj-size <size> Maximum size of storage objects in KiB. Files bigger than this
will be spread over multiple objects in the storage backend. Default:
10240 KiB.

--plain Create unencrypted file system.

--force Overwrite any existing data.

Unless you have specified the --plain option, mkfs.s3ql will ask you to enter an encryption password. This
password will not be read from an authentication file specified with the --authfile option to prevent accidental
creation of an encrypted file system.

Note that:

• All data that is stored under the given storage url is assumed to managed exclusively by S3QL. Trying to
manually save additional objects (or remove or manipulate existing objects) will lead to file system corruption,
and fsck.s3ql may delete objects that do not belong to the file system.

• With most storage backends, slashes in the storage url prefix do not have special meaning. For example, the
storage urls s3://mybucket/myprefix/ and s3://mybucket/myprefix are distinct. In the first
case, the prefix is myprefix/, while in the second it is myprefix.

17

S3QL Documentation, Release 2.26

• S3QL file systems can not be “stacked”, i.e. you cannot have one file
system stored at s3://bucketname/outerprefix and a second one at
s3://bucketname/outerprefix/innerprefix.

18 Chapter 5. File System Creation

CHAPTER

SIX

MANAGING FILE SYSTEMS

The s3qladm command performs various operations on unmounted S3QL file systems. The file system must not be
mounted when using s3qladm or things will go wrong badly.

The syntax is

s3qladm [options] <action> <storage-url>

where action may be either of passphrase, upgrade, clear or download-metadata.

The s3qladm accepts the following general options, no matter what specific action is being invoked:

--debug-modules <modules> Activate debugging output from specified modules (use
commas to separate multiple modules). Debug messages will be
written to the target specified by the --log option.

--debug Activate debugging output from all S3QL modules. Debug messages
will be written to the target specified by the --log option.

--quiet be really quiet

--log <target> Destination for log messages. Specify none for standard output or
syslog for the system logging daemon. Anything else will be in-
terpreted as a file name. Log files will be rotated when they reach 1
MiB, and at most 5 old log files will be kept. Default: None

--authfile <path> Read authentication credentials from this file (default:
~/.s3ql/authinfo2)

--backend-options <options> Backend specific options (separate by commas). See back-
end documentation for available options.

--cachedir <path> Store cached data in this directory (default: ~/.s3ql)

--version just print program version and exit

Hint: run s3qladm <action> --help to get help on the additional arguments that the different actions take.

6.1 Changing the Passphrase

To change the passphrase of a file system, use the passphrase subcommand:

s3qladm passphrase <storage url>

19

S3QL Documentation, Release 2.26

6.2 Upgrading the file system

If you have installed a new version of S3QL, it may sometimes be necessary to upgrade the file system metadata as
well. Note that in this case the file system can no longer be accessed with older versions of S3QL after the upgrade.

During the upgrade you have to make sure that the command is not interrupted, and that no one else tries to mount,
check or upgrade the file system at the same time.

To upgrade a file system from the previous to the current revision, execute

s3qladm upgrade <storage url>

6.3 Deleting a file system

A file system can be deleted with:

s3qladm clear <storage url>

This physically deletes all the data and file system structures.

6.4 Restoring Metadata Backups

If the most-recent copy of the file system metadata has been damaged irreparably, it is possible to restore one of the
automatically created backup copies.

The command

s3qladm download-metadata <storage url>

will give you a list of the available metadata backups and allow you to download them. This will create two new files
in the current directory, ending in .db and .params. To actually use the downloaded backup, you need to move
these files into the ~/.s3ql/ directory and run fsck.s3ql.

Warning: You should probably not use this functionality without having asked for help on the mailing list first
(see Further Resources / Getting Help).

20 Chapter 6. Managing File Systems

CHAPTER

SEVEN

MOUNTING

A S3QL file system is mounted with the mount.s3ql command. It has the following syntax:

mount.s3ql [options] <storage url> <mountpoint>

Note: S3QL is not a network file system like NFS or CIFS. It can only be mounted on one computer at a time.

This command accepts the following options:

--log <target> Destination for log messages. Specify none for standard output
or syslog for the system logging daemon. Anything else will
be interpreted as a file name. Log files will be rotated when they
reach 1 MiB, and at most 5 old log files will be kept. Default:
~/.s3ql/mount.log

--cachedir <path> Store cached data in this directory (default: ~/.s3ql)

--authfile <path> Read authentication credentials from this file (default:
~/.s3ql/authinfo2)

--debug-modules <modules> Activate debugging output from specified modules (use
commas to separate multiple modules). Debug messages will be
written to the target specified by the --log option.

--debug Activate debugging output from all S3QL modules. Debug messages
will be written to the target specified by the --log option.

--quiet be really quiet

--backend-options <options> Backend specific options (separate by commas). See back-
end documentation for available options.

--version just print program version and exit

--cachesize <size> Cache size in KiB (default: autodetect).

--max-cache-entries <num> Maximum number of entries in cache (default: autodetect).
Each cache entry requires one file descriptor, so if you increase this
number you have to make sure that your process file descriptor limit
(as set with ulimit -n) is high enough (at least the number of
cache entries + 100).

--allow-other Normally, only the user who called mount.s3ql can access the
mount point. This user then also has full access to it, independent of

21

http://en.wikipedia.org/wiki/Network_File_System_%28protocol%29
http://en.wikipedia.org/wiki/CIFS

S3QL Documentation, Release 2.26

individual file permissions. If the --allow-other option is spec-
ified, other users can access the mount point as well and individual
file permissions are taken into account for all users.

--allow-root Like --allow-other, but restrict access to the mounting user and
the root user.

--fg Do not daemonize, stay in foreground

--upstart Stay in foreground and raise SIGSTOP once mountpoint is up.

--compress <algorithm-lvl> Compression algorithm and compression level to use when
storing new data. algorithm may be any of lzma, bzip2, zlib, or
none. lvl may be any integer from 0 (fastest) to 9 (slowest). Default:
lzma-6

--metadata-upload-interval <seconds> Interval in seconds between complete metadata
uploads. Set to 0 to disable. Default: 24h.

--threads <no> Number of parallel upload threads to use (default: auto).

--nfs Enable some optimizations for exporting the file system over NFS.
(default: False)

7.1 Permission Checking

If the file system is mounted with neither the allow-root nor allow-other option, the mounting user has full
permissions on the S3QL file system (he is effectively root). If one (or both) of the options is used, standard unix
permission checks apply, i.e. only the real root user has full access and all other users (including the mounting user)
are subject to permission checks.

7.2 Compression Algorithms

S3QL supports three compression algorithms, LZMA, Bzip2 and zlib (with LZMA being the default). The compres-
sion algorithm can be specified freely whenever the file system is mounted, since it affects only the compression of
new data blocks.

Roughly speaking, LZMA is slower but achieves better compression ratios than Bzip2, while Bzip2 in turn is slower
but achieves better compression ratios than zlib.

For maximum file system performance, the best algorithm therefore depends on your network connection speed: the
compression algorithm should be fast enough to saturate your network connection.

To find the optimal algorithm and number of parallel compression threads for your system, S3QL ships with a program
called benchmark.py in the contrib directory. You should run this program on a file that has a size that is roughly
equal to the block size of your file system and has similar contents. It will then determine the compression speeds for
the different algorithms and the upload speeds for the specified backend and recommend the best algorithm that is fast
enough to saturate your network connection.

Obviously you should make sure that there is little other system load when you run benchmark.py (i.e., don’t
compile software or encode videos at the same time).

22 Chapter 7. Mounting

S3QL Documentation, Release 2.26

7.3 Notes about Caching

S3QL maintains a local cache of the file system data to speed up access. The cache is block based, so it is possible
that only parts of a file are in the cache.

7.3.1 Maximum Number of Cache Entries

The maximum size of the cache can be configured with the --cachesize option. In addition to that, the maximum
number of objects in the cache is limited by the --max-cache-entries option, so it is possible that the cache
does not grow up to the maximum cache size because the maximum number of cache elements has been reached. The
reason for this limit is that each cache entry requires one open file descriptor, and Linux distributions usually limit the
total number of file descriptors per process to about a thousand.

If you specify a value for --max-cache-entries, you should therefore make sure to also configure your system
to increase the maximum number of open file handles. This can be done temporarily with the ulimit -n command.
The method to permanently change this limit system-wide depends on your distribution.

7.3.2 Cache Flushing and Expiration

S3QL flushes changed blocks in the cache to the backend whenever a block has not been accessed for at least 10
seconds. Note that when a block is flushed, it still remains in the cache.

Cache expiration (i.e., removal of blocks from the cache) is only done when the maximum cache size is reached. S3QL
always expires the least recently used blocks first.

7.4 Failure Modes

Once an S3QL file system has been mounted, there is a multitude of problems that can occur when communicating
with the remote server. Generally, mount.s3ql always tries to keep the file system as accessible as possible under
the circumstances. That means that if network connectivity is lost, data can still be written as long as there is space
in the local cache. Attempts to read data not already present in the cache, however, will block until connection is
re-established. If any sort of data corruption is detected, the file system will switch to read-only mode. Attempting to
read files that are affected by the corruption will return an input/output error (errno set to EIO).

In case of other unexpected or fatal problems, mount.s3ql terminates, but does not unmount the file system. Any
attempt to access the mountpoint will result in a “Transport endpoint not connected” error (errno set to ESHUTDOWN).
This ensures that a mountpoint whose mount.s3ql process has terminated can not be confused with a mountpoint
containing an empty file system (which would be fatal if e.g. the mountpoint is automatically mirrored). When this
has happened, the mountpoint can be cleared by using the fusermount command (provided by FUSE) with the -u
parameter.

mount.s3ql will automatically try to re-establish the connection to the server if network connectivity is lost, and
retry sending a request when the connection is established but the remote server signals a temporary problem. These
attempts will be made at increasing intervals for a period up to 24 hours, with retry intervals starting at 20 ms and
increasing up to 5 minutes. After 24 hours, mount.s3ql will give up and terminate, leaving the mountpoint inac-
cessible as described above.

Generally, mount.s3ql will also emit log messages for any unusual conditions that it encounters. The destination
for these messages can be set with the --log parameter. It is highly recommended to periodically check these logs, for
example with a tool like logcheck. Many potential issues that mount.s3ql may encounter do not justify restricting
access to the file system, but should nevertheless be investigated if they occur. Checking the log messages is the only
way to find out about them.

7.3. Notes about Caching 23

http://sourceforge.net/projects/logcheck/

S3QL Documentation, Release 2.26

7.5 Automatic Mounting

If you want to mount and umount an S3QL file system automatically at system startup and shutdown, you should do
so with a dedicated S3QL init job (instead of using /etc/fstab. When using systemd, mount.s3ql can be run
as a service of type notify.

Note: In principle, it is also possible to automatically mount an S3QL file system with an appropriate entry in
/etc/fstab. However, this is not recommended for several reasons:

• file systems mounted in /etc/fstab will be unmounted with the umount command, so your system will not
wait until all data has been uploaded but shutdown (or restart) immediately (this is a FUSE limitation, see issue
#1).

• There is no way to tell the system that mounting S3QL requires a Python interpreter to be available, so it may
attempt to run mount.s3ql before it has mounted the volume containing the Python interpreter.

• There is no standard way to tell the system that internet connection has to be up before the S3QL file system can
be mounted.

24 Chapter 7. Mounting

https://bitbucket.org/nikratio/s3ql/issue/1/blocking-fusermount-and-umount
https://bitbucket.org/nikratio/s3ql/issue/1/blocking-fusermount-and-umount

CHAPTER

EIGHT

ADVANCED S3QL FEATURES

8.1 Snapshotting and Copy-on-Write

The command s3qlcp can be used to duplicate a directory tree without physically copying the file contents. This is
made possible by the data de-duplication feature of S3QL.

The syntax of s3qlcp is:

s3qlcp [options] <src> <target>

This will replicate the contents of the directory <src> in the directory <target>. <src> has to be an existing
directory and <target> must not exist. Moreover, both directories have to be within the same S3QL file system.

The replication will not take any additional space. Only if one of directories is modified later on, the modified data
will take additional storage space.

s3qlcp can only be called by the user that mounted the file system and (if the file system was mounted with
--allow-other or --allow-root) the root user.

Note that:

• After the replication, both source and target directory will still be completely ordinary directories. You can
regard <src> as a snapshot of <target> or vice versa. However, the most common usage of s3qlcp is
to regularly duplicate the same source directory, say documents, to different target directories. For a e.g.
monthly replication, the target directories would typically be named something like documents_January
for the replication in January, documents_February for the replication in February etc. In this case it is
clear that the target directories should be regarded as snapshots of the source directory.

• Exactly the same effect could be achieved by an ordinary copy program like cp -a. However, this procedure
would be orders of magnitude slower, because cp would have to read every file completely (so that S3QL had
to fetch all the data over the network from the backend) before writing them into the destination folder.

8.1.1 Snapshotting vs Hardlinking

Snapshot support in S3QL is inspired by the hardlinking feature that is offered by programs like rsync or storeBackup.
These programs can create a hardlink instead of copying a file if an identical file already exists in the backup. However,
using hardlinks has two large disadvantages:

• backups and restores always have to be made with a special program that takes care of the hardlinking. The
backup must not be touched by any other programs (they may make changes that inadvertently affect other
hardlinked files)

• special care needs to be taken to handle files which are already hardlinked (the restore program needs to know
that the hardlink was not just introduced by the backup program to safe space)

25

http://www.samba.org/rsync
http://savannah.nongnu.org/projects/storebackup

S3QL Documentation, Release 2.26

S3QL snapshots do not have these problems, and they can be used with any backup program.

8.2 Getting Statistics

You can get more information about a mounted S3QL file system with the s3qlstat command. It has the following
syntax:

s3qlstat [options] <mountpoint>

This will print out something like this

Directory entries: 1488068
Inodes: 1482991
Data blocks: 87948
Total data size: 400 GiB
After de-duplication: 51 GiB (12.98% of total)
After compression: 43 GiB (10.85% of total, 83.60% of de-duplicated)
Database size: 172 MiB (uncompressed)
(some values do not take into account not-yet-uploaded dirty blocks in cache)

Probably the most interesting numbers are the total size of your data, the total size after duplication, and the final size
after de-duplication and compression.

s3qlstat can only be called by the user that mounted the file system and (if the file system was mounted with
--allow-other or --allow-root) the root user.

For a full list of available options, run s3qlstat --help.

8.3 Immutable Trees

The command s3qllock can be used to make a directory tree immutable. Immutable trees can no longer be changed
in any way whatsoever. You can not add new files or directories and you can not change or delete existing files and
directories. The only way to get rid of an immutable tree is to use the s3qlrm command (see below).

For example, to make the directory tree beneath the directory 2010-04-21 immutable, execute

s3qllock 2010-04-21

Immutability is a feature designed for backups. Traditionally, backups have been made on external tape drives. Once
a backup was made, the tape drive was removed and locked somewhere in a shelf. This has the great advantage that
the contents of the backup are now permanently fixed. Nothing (short of physical destruction) can change or delete
files in the backup.

In contrast, when backing up into an online storage system like S3QL, all backups are available every time the file
system is mounted. Nothing prevents a file in an old backup from being changed again later on. In the worst case, this
may make your entire backup system worthless. Imagine that your system gets infected by a nasty virus that simply
deletes all files it can find – if the virus is active while the backup file system is mounted, the virus will destroy all
your old backups as well!

Even if the possibility of a malicious virus or trojan horse is excluded, being able to change a backup after it has
been made is generally not a good idea. A common S3QL use case is to keep the file system mounted at all times
and periodically create backups with rsync -a. This allows every user to recover her files from a backup without
having to call the system administrator. However, this also allows every user to accidentally change or delete files in
one of the old backups.

26 Chapter 8. Advanced S3QL Features

S3QL Documentation, Release 2.26

Making a backup immutable protects you against all these problems. Unless you happen to run into a virus that was
specifically programmed to attack S3QL file systems, backups can be neither deleted nor changed after they have been
made immutable.

8.4 Fast Recursive Removal

The s3qlrm command can be used to recursively delete files and directories on an S3QL file system. Although
s3qlrm is faster than using e.g. rm -r, the main reason for its existence is that it allows you to delete immutable
trees as well. The syntax is rather simple:

s3qlrm <directory>

Be warned that there is no additional confirmation. The directory will be removed entirely and immediately.

8.5 Runtime Configuration

The s3qlctrl can be used to control a mounted S3QL file system. Its syntax is

s3qlctrl [options] <action> <mountpoint> ...

<mountpoint> must be the location of a mounted S3QL file system. For a list of valid options, run s3qlctrl
--help. <action> may be either of:

flushcache Flush file system cache. The command blocks until the cache has been flushed.

dropcache Flush, and then drop file system cache. The command blocks until the cache has
been flushed and dropped.

log Change log level.

cachesize Change file system cache size.

upload-meta Trigger a metadata upload.

8.4. Fast Recursive Removal 27

S3QL Documentation, Release 2.26

28 Chapter 8. Advanced S3QL Features

CHAPTER

NINE

UNMOUNTING

To unmount an S3QL file system, use the command:

umount.s3ql [options] <mountpoint>

This will block until all data has been written to the backend.

Only the user who mounted the file system with mount.s3ql is able to unmount it again. If you are root and want
to unmount an S3QL file system mounted by an ordinary user, you have to use the fusermount -u or umount
command instead. Note that these commands do not block until all data has been uploaded, so if you use them instead
of umount.s3ql then you should manually wait for the mount.s3ql process to terminate before shutting down
the system.

The umount.s3ql command accepts the following options:

--debug-modules <modules> Activate debugging output from specified modules (use
commas to separate multiple modules). Debug messages will be
written to the target specified by the --log option.

--debug Activate debugging output from all S3QL modules. Debug messages
will be written to the target specified by the --log option.

--quiet be really quiet

--version just print program version and exit

--lazy, -z Lazy umount. Detaches the file system immediately, even if there are
still open files. The data will be uploaded in the background once all
open files have been closed.

If, for some reason, the umount.sql command does not work, the file system can also be unmounted with
fusermount -u -z. Note that this command will return immediately and the file system may continue to up-
load data in the background for a while longer.

29

S3QL Documentation, Release 2.26

30 Chapter 9. Unmounting

CHAPTER

TEN

CHECKING FOR ERRORS

It is recommended to periodically run the fsck.s3ql and s3ql_verify commands (in this order) to ensure that
the file system is consistent, and that there has been no data corruption or data loss in the storage backend.

fsck.s3ql is intended to detect and correct problems with the internal file system structure, caused by e.g. a file
system crash or a bug in S3QL. It assumes that the storage backend can be fully trusted, i.e. if the backend reports that
a specific storage object exists, fsck.s3ql takes that as proof that the data is present and intact.

In contrast to that, the s3ql_verify command is intended to check the consistency of the storage backend. It
assumes that the internal file system data is correct, and verifies that all data can actually be retrieved from the backend.
Running s3ql_verify may therefore take much longer than running fsck.s3ql.

10.1 Checking and repairing internal file system errors

fsck.s3ql checks that the internal file system structure is consistent and attempts to correct any problems it finds.
If an S3QL file system has not been unmounted correcly for any reason, you need to run fsck.s3ql before you can
mount the file system again.

The fsck.s3ql command has the following syntax:

fsck.s3ql [options] <storage url>

This command accepts the following options:

--log <target> Destination for log messages. Specify none for standard output
or syslog for the system logging daemon. Anything else will
be interpreted as a file name. Log files will be rotated when they
reach 1 MiB, and at most 5 old log files will be kept. Default:
~/.s3ql/fsck.log

--cachedir <path> Store cached data in this directory (default: ~/.s3ql)

--authfile <path> Read authentication credentials from this file (default:
~/.s3ql/authinfo2)

--debug-modules <modules> Activate debugging output from specified modules (use
commas to separate multiple modules). Debug messages will be
written to the target specified by the --log option.

--debug Activate debugging output from all S3QL modules. Debug messages
will be written to the target specified by the --log option.

--quiet be really quiet

--backend-options <options> Backend specific options (separate by commas). See back-
end documentation for available options.

31

S3QL Documentation, Release 2.26

--version just print program version and exit

--batch If user input is required, exit without prompting.

--force Force checking even if file system is marked clean.

--force-remote Force use of remote metadata even when this would likely result in
data loss.

10.2 Detecting and handling backend data corruption

The s3ql_verify command verifies all data in the file system. In contrast to fsck.s3ql, s3ql_verify
does not trust the object listing returned by the backend, but actually attempts to retrieve every object. By default,
s3ql_verify will attempt to retrieve just the metadata for every object (for e.g. the S3-compatible or Google
Storage backends this corresponds to a HEAD request for each object), which is generally sufficient to determine if the
object still exists. When specifying the --data option, s3ql_verify will instead read every object entirely. To
determine how much data will be transmitted in total when using --data, look at the After compression row in the
s3qlstat output.

s3ql_verify is not able to correct any data corruption that it finds. Instead, a list of the corrupted and/or missing
objects is written to a file and the decision about the proper course of action is left to the user. If you have administrative
access to the backend server, you may want to investigate the cause of the corruption or check if the missing/corrupted
objects can be restored from backups. If you believe that the missing/corrupted objects are indeed lost irrevocably, you
can use the remove_objects.py script (from the contrib directory of the S3QL distribution) to explicitly delete the
objects from the storage backend. After that, you should run fsck.s3ql. Since the (now explicitly deleted) objects
should now no longer be included in the object index reported by the backend, fsck.s3ql will identify the objects
as missing, update the internal file system structures accordingly, and move the affected files into the lost+found
directory.

The s3ql_verify command has the following syntax:

s3ql_verify [options] <storage url>

This command accepts the following options:

--debug-modules <modules> Activate debugging output from specified modules (use
commas to separate multiple modules). Debug messages will be
written to the target specified by the --log option.

--debug Activate debugging output from all S3QL modules. Debug messages
will be written to the target specified by the --log option.

--quiet be really quiet

--version just print program version and exit

--cachedir <path> Store cached data in this directory (default: ~/.s3ql)

--authfile <path> Read authentication credentials from this file (default:
~/.s3ql/authinfo2)

--backend-options <options> Backend specific options (separate by commas). See back-
end documentation for available options.

--missing-file <name> File to store keys of missing objects.

--corrupted-file <name> File to store keys of corrupted objects.

--data Read every object completely, instead of checking just the metadata.

--parallel PARALLEL Number of connections to use in parallel.

32 Chapter 10. Checking for Errors

S3QL Documentation, Release 2.26

--start-with <n> Skip over first <n> objects and with verifying object <n>+1.

10.2. Detecting and handling backend data corruption 33

S3QL Documentation, Release 2.26

34 Chapter 10. Checking for Errors

CHAPTER

ELEVEN

STORING AUTHENTICATION INFORMATION

Normally, S3QL reads username and password for the backend as well as an encryption passphrase for the file system
from the terminal. Most commands also accept an --authfile parameter that can be used to read this information
from a file instead.

The authentication file consists of sections, led by a [section] header and followed by name: value entries.
The section headers themselves are not used by S3QL but have to be unique within the file.

In each section, the following entries can be defined:

storage-url Specifies the storage url to which this section applies. If a storage url starts with the value of
this entry, the section is considered applicable.

backend-login Specifies the username to use for authentication with the backend.

backend-password Specifies the password to use for authentication with the backend.

fs-passphrase Specifies the passphrase to use to decrypt the file system (if it is encrypted).

When reading the authentication file, S3QL considers every applicable section in order and uses the last value that it
found for each entry. For example, consider the following authentication file:

[s3]
storage-url: s3://
backend-login: joe
backend-password: notquitesecret

[fs1]
storage-url: s3://joes-first-bucket
fs-passphrase: neitheristhis

[fs2]
storage-url: s3://joes-second-bucket
fs-passphrase: swordfish

[fs3]
storage-url: s3://joes-second-bucket/with-prefix
backend-login: bill
backend-password: bi23ll
fs-passphrase: ll23bi

With this authentication file, S3QL would try to log in as “joe” whenever the s3 backend is used, except when accessing
a storage url that begins with “s3://joes-second-bucket/with-prefix”. In that case, the last section becomes active and
S3QL would use the “bill” credentials. Furthermore, file system encryption passphrases will be used for storage urls
that start with “s3://joes-first-bucket” or “s3://joes-second-bucket”.

The authentication file is parsed by the Python ConfigParser module.

35

http://docs.python.org/library/configparser.html

S3QL Documentation, Release 2.26

36 Chapter 11. Storing Authentication Information

CHAPTER

TWELVE

CONTRIBUTED PROGRAMS

S3QL comes with a few contributed programs that are not part of the core distribution (and are therefore not installed
automatically by default), but which may nevertheless be useful. These programs are in the contrib directory of the
source distribution or in /usr/share/doc/s3ql/contrib if you installed S3QL from a package.

12.1 benchmark.py

This program measures S3QL write performance, uplink bandwidth and compression speed to determine the limiting
factor. It also gives recommendation for compression algorithm and number of upload threads to achieve maximum
performance.

12.2 clone_fs.py

This program physically clones an S3QL file system from one backend into another, without recompressing or reen-
crypting. It can be used to migrate S3 buckets to a different storage region or storage class (standard or reduced
redundancy).

12.3 pcp.py

pcp.py is a wrapper program that starts several rsync processes to copy directory trees in parallel. This is important
because transferring files in parallel significantly enhances performance when copying data from an S3QL file system
(see Improving copy performance for details).

To recursively copy the directory /mnt/home-backup into /home/joe using 8 parallel processes and preserving
permissions, you would execute

pcp.py -a --processes=8 /mnt/home-backup/ /home/joe

12.4 s3ql_backup.sh

This is an example script that demonstrates how to set up a simple but powerful backup solution using S3QL and
rsync.

The s3ql_backup.sh script automates the following steps:

1. Mount the file system

37

http://samba.org/rsync

S3QL Documentation, Release 2.26

2. Replicate the previous backup with s3qlcp

3. Update the new copy with the data from the backup source using rsync

4. Make the new backup immutable with s3qllock

5. Delete old backups that are no longer needed

6. Unmount the file system

The backups are stored in directories of the form YYYY-MM-DD_HH:mm:SS and the expire_backups.py command is
used to delete old backups.

12.5 expire_backups.py

expire_backups.py is a program to intelligently remove old backups that are no longer needed.

To define what backups you want to keep for how long, you define a number of age ranges. expire_backups
ensures that you will have at least one backup in each age range at all times. It will keep exactly as many backups as
are required for that and delete any backups that become redundant.

Age ranges are specified by giving a list of range boundaries in terms of backup cycles. Every time you create a new
backup, the existing backups age by one cycle.

Example: when expire_backups is called with the age range definition 1 3 7 14 31, it will guarantee that
you always have the following backups available:

1. A backup that is 0 to 1 cycles old (i.e, the most recent backup)

2. A backup that is 1 to 3 cycles old

3. A backup that is 3 to 7 cycles old

4. A backup that is 7 to 14 cycles old

5. A backup that is 14 to 31 cycles old

Note: If you do backups in fixed intervals, then one cycle will be equivalent to the backup interval. The advantage of
specifying the age ranges in terms of backup cycles rather than days or weeks is that it allows you to gracefully handle
irregular backup intervals. Imagine that for some reason you do not turn on your computer for one month. Now all
your backups are at least a month old, and if you had specified the above backup strategy in terms of absolute ages,
they would all be deleted! Specifying age ranges in terms of backup cycles avoids these sort of problems.

expire_backups usage is simple. It requires backups to be stored in directories of the form
year-month-day_hour:minute:seconds (YYYY-MM-DD_HH:mm:ss) and works on all backups in the cur-
rent directory. So for the above backup strategy, the correct invocation would be:

expire_backups.py 1 3 7 14 31

When storing your backups on an S3QL file system, you probably want to specify the --use-s3qlrm option as
well. This tells expire_backups to use the s3qlrm command to delete directories.

expire_backups uses a “state file” to keep track which backups are how many cycles old (since this can-
not be inferred from the dates contained in the directory names). The standard name for this state file is
.expire_backups.dat. If this file gets damaged or deleted, expire_backups no longer knows the ages
of the backups and refuses to work. In this case you can use the --reconstruct-state option to try to recon-
struct the state from the backup dates. However, the accuracy of this reconstruction depends strongly on how rigorous
you have been with making backups (it is only completely correct if the time between subsequent backups has always
been exactly the same), so it’s generally a good idea not to tamper with the state file.

38 Chapter 12. Contributed Programs

S3QL Documentation, Release 2.26

For a full list of available options, run expire_backups.py --help.

12.6 remove_objects.py

remove_objects.py is a program to remove a list of objects from a storage backend. Since it acts on the backend-
level, the backend need not contain an S3QL file system.

12.6. remove_objects.py 39

S3QL Documentation, Release 2.26

40 Chapter 12. Contributed Programs

CHAPTER

THIRTEEN

TIPS & TRICKS

13.1 SSH Backend

By combining S3QL’s local backend with sshfs, it is possible to store an S3QL file system on arbitrary SSH servers:
first mount the remote target directory into the local filesystem,

sshfs user@my.server.com:/mnt/s3ql /mnt/sshfs

and then give the mountpoint to S3QL as a local destination:

mount.s3ql local:///mnt/sshfs/myfsdata /mnt/s3ql

13.2 Permanently mounted backup file system

If you use S3QL as a backup file system, it can be useful to mount the file system permanently (rather than just
mounting it for a backup and unmounting it afterwards). Especially if your file system becomes large, this saves you
long mount- and unmount times if you only want to restore a single file.

If you decide to do so, you should make sure to

• Use s3qllock to ensure that backups are immutable after they have been made.

• Call s3qlctrl upload-meta right after a every backup to make sure that the newest metadata is stored safely (if
you do backups often enough, this may also allow you to set the --metadata-upload-interval option
of mount.s3ql to zero).

13.3 Improving copy performance

Note: The following applies only when copying data from an S3QL file system, not when copying data to an S3QL
file system.

If you want to copy a lot of smaller files from an S3QL file system (e.g. for a system restore) you will probably notice
that the performance is rather bad.

The reason for this is intrinsic to the way S3QL works. Whenever you read a file, S3QL first has to retrieve this file
over the network from the backend. This takes a minimum amount of time (the network latency), no matter how big
or small the file is. So when you copy lots of small files, 99% of the time is actually spend waiting for network data.

41

http://fuse.sourceforge.net/sshfs.html

S3QL Documentation, Release 2.26

Theoretically, this problem is easy to solve: you just have to copy several files at the same time. In practice, however,
almost all unix utilities (cp, rsync, tar and friends) insist on copying data one file at a time. This makes a lot of
sense when copying data on the local hard disk, but in case of S3QL this is really unfortunate.

The best workaround that has been found so far is to copy files by starting several rsync processes at once and use
exclusion rules to make sure that they work on different sets of files.

For example, the following script will start 3 rsync instances. The first instance handles all filenames starting with a-f,
the second the filenames from g-l and the third covers the rest. The + */ rule ensures that every instance looks into
all directories.

#!/bin/bash

RSYNC_ARGS="-aHv /mnt/s3ql/ /home/restore/"

rsync -f "+ */" -f "-! [a-f]*" $RSYNC_ARGS &
rsync -f "+ */" -f "-! [g-l]*" $RSYNC_ARGS &
rsync -f "+ */" -f "- [a-l]*" $RSYNC_ARGS &

wait

The optimum number of parallel processes depends on your network connection and the size of the files that you
want to transfer. However, starting about 10 processes seems to be a good compromise that increases performance
dramatically in almost all situations.

S3QL comes with a script named pcp.py in the contrib directory that can be used to transfer files in parallel
without having to write an explicit script first. See the description of pcp.py for details.

42 Chapter 13. Tips & Tricks

CHAPTER

FOURTEEN

KNOWN ISSUES

• S3QL de-duplicates data blocks based solely only on SHA256 checksums, without doing a byte-by-byte com-
parison of the blocks. Since it is possible for two data blocks to have the same checksum despite having different
contents, this can lead to problems. If two such blocks are stored in an S3QL file system, the data in one block
will be lost and replaced by the data in the other block. However, the chances of this occuring for any two blocks
are about 1 in 10^77 (2^256). For a file system that holds a total of 10^34 blocks, the chances of a collision
increase to about 1 in 10^9. Storing more than 10^34 blocks (or about 10^25 TB with an (extremely small)
block size of 4 kB) is therefore not recommended. Being exceptionally unlucky may also be a disadvantage.

• S3QL does not support Access Control Lists (ACLs). This is due to a bug in the FUSE library and will therefore
hopefully be fixed at some point. See issue #16 for more details.

• As of Linux kernel 3.5 S3QL file systems do not implement the “write protect” bit on directories. In other
words, even if a directory has the write protect bit set, the owner of the directory can delete any files and (empty)
subdirectories inside it. This is a bug in the FUSE kernel module (cf. https://github.com/libfuse/libfuse/issues/
23) and needs to be fixed in the kernel. Unfortunately it does not look as if this is going to be fixed anytime soon
(as of 2016/2/28).

• S3QL is rather slow when an application tries to write data in unreasonably small chunks. If a 1 MiB file is
copied in chunks of 1 KB, this will take more than 10 times as long as when it’s copied with the (recommended)
chunk size of 128 KiB.

This is a limitation of the FUSE library (which does not yet support write caching) which will hopefully be
addressed in some future FUSE version.

Most applications, including e.g. GNU cp and rsync, use reasonably large buffers and are therefore not
affected by this problem and perform very efficient on S3QL file systems.

However, if you encounter unexpectedly slow performance with a specific program, this might be due to the
program using very small write buffers. Although this is not really a bug in the program, it might be worth to
ask the program’s authors for help.

• S3QL always updates file and directory access times as if the relatime mount option has been specified: the
access time (“atime”) is only updated if it is currently earlier than either the status change time (“ctime”) or
modification time (“mtime”).

• S3QL directories always have an st_nlink value of 1. This may confuse programs that rely on directories
having st_nlink values of (2 + number of sub directories).

Note that this is not a bug in S3QL. Including sub directories in the st_nlink value is a Unix convention, but
by no means a requirement. If an application blindly relies on this convention being followed, then this is a bug
in the application.

A prominent example are early versions of GNU find, which required the --noleaf option to work correctly
on S3QL file systems. This bug has already been fixed in recent find versions.

43

https://bitbucket.org/nikratio/s3ql/issue/16/support-access-control-lists-acls
https://github.com/libfuse/libfuse/issues/23
https://github.com/libfuse/libfuse/issues/23

S3QL Documentation, Release 2.26

• The umount and fusermount -u commands will not block until all data has been uploaded to the backend.
(this is a FUSE limitation that will hopefully be removed in the future, see issue #1). If you use either command
to unmount an S3QL file system, you have to take care to explicitly wait for the mount.s3ql process to
terminate before you shut down or restart the system. Therefore it is generally not a good idea to mount an
S3QL file system in /etc/fstab (you should use a dedicated init script instead).

• S3QL relies on the backends not to run out of space. This is a given for big storage providers like Amazon S3
or Google Storage, but you may stumble upon this if you use your own server or smaller providers.

If there is no space left in the backend, attempts to write more data into the S3QL file system will fail and the
file system will be in an inconsistent state and require a file system check (and you should make sure to make
space available in the backend before running the check).

Unfortunately, there is no way to handle insufficient space in the backend without leaving the file system incon-
sistent. Since S3QL first writes data into the cache, it can no longer return an error when it later turns out that
the cache can not be committed to the backend.

• When using python-dugong versions 3.3 or earlier, S3QL supports only CONNECT-style proxying, which may
cause issues with some proxy servers when using plain HTTP. Upgrading to python-dugong 3.4 or newer re-
moves this limitation.

44 Chapter 14. Known Issues

https://bitbucket.org/nikratio/s3ql/issue/1/blocking-fusermount-and-umount

CHAPTER

FIFTEEN

MANPAGES

The man pages are installed with S3QL on your system and can be viewed with the man command. For reference,
they are also included here in the User’s Guide.

15.1 The mkfs.s3ql command

15.1.1 Synopsis

mkfs.s3ql [options] <storage url>

15.1.2 Description

The mkfs.s3ql command creates a new file system in the location specified by storage url. The storage url depends
on the backend that is used. The S3QL User’s Guide should be consulted for a description of the available backends.

Unless you have specified the --plain option, mkfs.s3ql will ask you to enter an encryption password. This
password will not be read from an authentication file specified with the --authfile option to prevent accidental
creation of an encrypted file system.

15.1.3 Options

The mkfs.s3ql command accepts the following options.

--cachedir <path> Store cached data in this directory (default: ~/.s3ql)

--authfile <path> Read authentication credentials from this file (default:
~/.s3ql/authinfo2)

--debug-modules <modules> Activate debugging output from specified modules (use
commas to separate multiple modules). Debug messages will be
written to the target specified by the --log option.

--debug Activate debugging output from all S3QL modules. Debug messages
will be written to the target specified by the --log option.

--quiet be really quiet

--backend-options <options> Backend specific options (separate by commas). See back-
end documentation for available options.

--version just print program version and exit

45

S3QL Documentation, Release 2.26

-L <name> Filesystem label

--max-obj-size <size> Maximum size of storage objects in KiB. Files bigger than this
will be spread over multiple objects in the storage backend. Default:
10240 KiB.

--plain Create unencrypted file system.

--force Overwrite any existing data.

15.1.4 Exit Codes

mkfs.s3ql may terminate with the following exit codes:

0 Everything went well.

1 An unexpected error occured. This may indicate a bug in the program.

2 Invalid command line argument.

3 Invalid backend option.

11 No such backend.

12 Authentication file has insecure permissions.

13 Unable to parse proxy settings.

14 Invalid credentials (Authentication failed).

15 No permission to access backend (Authorization denied).

16 Invalid storage URL, specified location does not exist in backend.

19 Unable to connect to backend, can’t resolve hostname.

45 Unable to access cache directory.

15.1.5 See Also

The S3QL homepage is at https://bitbucket.org/nikratio/s3ql/.

The full S3QL documentation should also be installed somewhere on your system, common locations are
/usr/share/doc/s3ql or /usr/local/doc/s3ql.

15.2 The s3qladm command

15.2.1 Synopsis

s3qladm [options] <action> <storage url>

where action may be either of passphrase, upgrade, delete or download-metadata.

46 Chapter 15. Manpages

https://bitbucket.org/nikratio/s3ql/

S3QL Documentation, Release 2.26

15.2.2 Description

The s3qladm command performs various operations on unmounted S3QL file systems. The file system must not be
mounted when using s3qladm or things will go wrong badly.

The storage url depends on the backend that is used. The S3QL User’s Guide should be consulted for a description of
the available backends.

15.2.3 Options

The s3qladm command accepts the following options.

--debug-modules <modules> Activate debugging output from specified modules (use
commas to separate multiple modules). Debug messages will be
written to the target specified by the --log option.

--debug Activate debugging output from all S3QL modules. Debug messages
will be written to the target specified by the --log option.

--quiet be really quiet

--log <target> Destination for log messages. Specify none for standard output or
syslog for the system logging daemon. Anything else will be in-
terpreted as a file name. Log files will be rotated when they reach 1
MiB, and at most 5 old log files will be kept. Default: None

--authfile <path> Read authentication credentials from this file (default:
~/.s3ql/authinfo2)

--backend-options <options> Backend specific options (separate by commas). See back-
end documentation for available options.

--cachedir <path> Store cached data in this directory (default: ~/.s3ql)

--version just print program version and exit

Hint: run s3qladm <action> --help to get help on the additional arguments that the different actions take.

15.2.4 Actions

The following actions may be specified:

passphrase Changes the encryption passphrase of the file system.

upgrade Upgrade the file system to the newest revision.

delete Delete the file system with all the stored data.

download-metadata Interactively download backups of the file system metadata.

15.2.5 Exit Codes

s3qladm may terminate with the following exit codes:

0 Everything went well.

1 An unexpected error occured. This may indicate a bug in the program.

2 Invalid command line argument.

15.2. The s3qladm command 47

S3QL Documentation, Release 2.26

3 Invalid backend option.

10 Could not open log file for writing.

11 No such backend.

12 Authentication file has insecure permissions.

13 Unable to parse proxy settings.

14 Invalid credentials (Authentication failed).

15 No permission to access backend (Authorization denied).

16 Invalid storage URL, specified location does not exist in backend.

17 Wrong file system passphrase.

18 No S3QL file system found at given storage URL.

19 Unable to connect to backend, can’t resolve hostname.

45 Unable to access cache directory.

15.2.6 See Also

The S3QL homepage is at https://bitbucket.org/nikratio/s3ql/.

The full S3QL documentation should also be installed somewhere on your system, common locations are
/usr/share/doc/s3ql or /usr/local/doc/s3ql.

15.3 The mount.s3ql command

15.3.1 Synopsis

mount.s3ql [options] <storage url> <mount point>

15.3.2 Description

The mount.s3ql command mounts the S3QL file system stored in storage url in the directory mount point. The
storage url depends on the backend that is used. The S3QL User’s Guide should be consulted for a description of the
available backends.

15.3.3 Options

The mount.s3ql command accepts the following options.

--log <target> Destination for log messages. Specify none for standard output
or syslog for the system logging daemon. Anything else will
be interpreted as a file name. Log files will be rotated when they
reach 1 MiB, and at most 5 old log files will be kept. Default:
~/.s3ql/mount.log

--cachedir <path> Store cached data in this directory (default: ~/.s3ql)

48 Chapter 15. Manpages

https://bitbucket.org/nikratio/s3ql/

S3QL Documentation, Release 2.26

--authfile <path> Read authentication credentials from this file (default:
~/.s3ql/authinfo2)

--debug-modules <modules> Activate debugging output from specified modules (use
commas to separate multiple modules). Debug messages will be
written to the target specified by the --log option.

--debug Activate debugging output from all S3QL modules. Debug messages
will be written to the target specified by the --log option.

--quiet be really quiet

--backend-options <options> Backend specific options (separate by commas). See back-
end documentation for available options.

--version just print program version and exit

--cachesize <size> Cache size in KiB (default: autodetect).

--max-cache-entries <num> Maximum number of entries in cache (default: autodetect).
Each cache entry requires one file descriptor, so if you increase this
number you have to make sure that your process file descriptor limit
(as set with ulimit -n) is high enough (at least the number of
cache entries + 100).

--allow-other Normally, only the user who called mount.s3ql can access the
mount point. This user then also has full access to it, independent of
individual file permissions. If the --allow-other option is spec-
ified, other users can access the mount point as well and individual
file permissions are taken into account for all users.

--allow-root Like --allow-other, but restrict access to the mounting user and
the root user.

--fg Do not daemonize, stay in foreground

--upstart Stay in foreground and raise SIGSTOP once mountpoint is up.

--compress <algorithm-lvl> Compression algorithm and compression level to use when
storing new data. algorithm may be any of lzma, bzip2, zlib, or
none. lvl may be any integer from 0 (fastest) to 9 (slowest). Default:
lzma-6

--metadata-upload-interval <seconds> Interval in seconds between complete metadata
uploads. Set to 0 to disable. Default: 24h.

--threads <no> Number of parallel upload threads to use (default: auto).

--nfs Enable some optimizations for exporting the file system over NFS.
(default: False)

15.3.4 Exit Codes

mount.s3ql may terminate with the following exit codes:

0 Everything went well.

1 An unexpected error occured. This may indicate a bug in the program.

2 Invalid command line argument.

3 Invalid backend option.

15.3. The mount.s3ql command 49

S3QL Documentation, Release 2.26

10 Could not open log file for writing.

11 No such backend.

12 Authentication file has insecure permissions.

13 Unable to parse proxy settings.

14 Invalid credentials (Authentication failed).

15 No permission to access backend (Authorization denied).

16 Invalid storage URL, specified location does not exist in backend.

17 Wrong file system passphrase.

18 No S3QL file system found at given storage URL.

19 Unable to connect to backend, can’t resolve hostname.

30 File system was not unmounted cleanly.

31 File system appears to be mounted elsewhere.

32 Unsupported file system revision (too old).

33 Unsupported file system revision (too new).

34 Insufficient free nodes, need to run fsck.s3ql.

35 Attempted to mount read-only, this is not supported.

36 Mountpoint does not exist.

37 Not enough available file descriptors.

39 Unable to bind file system to mountpoint.

45 Unable to access cache directory.

15.3.5 See Also

The S3QL homepage is at https://bitbucket.org/nikratio/s3ql/.

The full S3QL documentation should also be installed somewhere on your system, common locations are
/usr/share/doc/s3ql or /usr/local/doc/s3ql.

15.4 The s3qlstat command

15.4.1 Synopsis

s3qlstat [options] <mountpoint>

15.4.2 Description

The s3qlstat command prints statistics about the S3QL file system mounted at mountpoint.

s3qlstat can only be called by the user that mounted the file system and (if the file system was mounted with
--allow-other or --allow-root) the root user.

50 Chapter 15. Manpages

https://bitbucket.org/nikratio/s3ql/

S3QL Documentation, Release 2.26

15.4.3 Options

The s3qlstat command accepts the following options:

--debug-modules <modules> Activate debugging output from specified modules (use
commas to separate multiple modules). Debug messages will be
written to the target specified by the --log option.

--debug Activate debugging output from all S3QL modules. Debug messages
will be written to the target specified by the --log option.

--quiet be really quiet

--version just print program version and exit

--raw Do not pretty-print numbers

15.4.4 Exit Codes

s3qlstat may terminate with the following exit codes:

0 Everything went well.

1 An unexpected error occured. This may indicate a bug in the program.

2 Invalid command line argument.

15.4.5 See Also

The S3QL homepage is at https://bitbucket.org/nikratio/s3ql/.

The full S3QL documentation should also be installed somewhere on your system, common locations are
/usr/share/doc/s3ql or /usr/local/doc/s3ql.

15.5 The s3qlctrl command

15.5.1 Synopsis

s3qlctrl [options] <action> <mountpoint> ...

where action may be either of flushcache, upload-meta, cachesize or log-metadata.

15.5.2 Description

The s3qlctrl command performs various actions on the S3QL file system mounted in mountpoint.

s3qlctrl can only be called by the user that mounted the file system and (if the file system was mounted with
--allow-other or --allow-root) the root user.

The following actions may be specified:

flushcache Uploads all changed file data to the backend.

upload-meta Upload metadata to the backend. All file system operations will block while a snapshot of the metadata
is prepared for upload.

15.5. The s3qlctrl command 51

https://bitbucket.org/nikratio/s3ql/

S3QL Documentation, Release 2.26

cachesize Changes the cache size of the file system. This action requires an additional argument that specifies the
new cache size in KiB, so the complete command line is:

s3qlctrl [options] cachesize <mountpoint> <new-cache-size>

log Change the amount of information that is logged into ~/.s3ql/mount.log file. The complete syntax is:

s3qlctrl [options] log <mountpoint> <level> [<module> [<module> ...]]

here level is the desired new log level and may be either of debug, info or warn. One or more module may
only be specified with the debug level and allow to restrict the debug output to just the listed modules.

15.5.3 Options

The s3qlctrl command also accepts the following options, no matter what specific action is being invoked:

--debug-modules <modules> Activate debugging output from specified modules (use
commas to separate multiple modules). Debug messages will be
written to the target specified by the --log option.

--debug Activate debugging output from all S3QL modules. Debug messages
will be written to the target specified by the --log option.

--quiet be really quiet

--version just print program version and exit

Hint: run s3qlctrl <action> --help to get help on the additional arguments that the different actions take.

15.5.4 Exit Codes

s3qlctrl may terminate with the following exit codes:

0 Everything went well.

1 An unexpected error occured. This may indicate a bug in the program.

2 Invalid command line argument.

15.5.5 See Also

The S3QL homepage is at https://bitbucket.org/nikratio/s3ql/.

The full S3QL documentation should also be installed somewhere on your system, common locations are
/usr/share/doc/s3ql or /usr/local/doc/s3ql.

15.6 The s3qlcp command

15.6.1 Synopsis

s3qlcp [options] <source-dir> <dest-dir>

52 Chapter 15. Manpages

https://bitbucket.org/nikratio/s3ql/

S3QL Documentation, Release 2.26

15.6.2 Description

The s3qlcp command duplicates the directory tree source-dir into dest-dir without physically copying the
file contents. Both source and destination must lie inside the same S3QL file system.

The replication will not take any additional space. Only if one of directories is modified later on, the modified data
will take additional storage space.

s3qlcp can only be called by the user that mounted the file system and (if the file system was mounted with
--allow-other or --allow-root) the root user.

Note that:

• After the replication, both source and target directory will still be completely ordinary directories. You can
regard <src> as a snapshot of <target> or vice versa. However, the most common usage of s3qlcp is
to regularly duplicate the same source directory, say documents, to different target directories. For a e.g.
monthly replication, the target directories would typically be named something like documents_January
for the replication in January, documents_February for the replication in February etc. In this case it is
clear that the target directories should be regarded as snapshots of the source directory.

• Exactly the same effect could be achieved by an ordinary copy program like cp -a. However, this procedure
would be orders of magnitude slower, because cp would have to read every file completely (so that S3QL had
to fetch all the data over the network from the backend) before writing them into the destination folder.

Snapshotting vs Hardlinking

Snapshot support in S3QL is inspired by the hardlinking feature that is offered by programs like rsync or storeBackup.
These programs can create a hardlink instead of copying a file if an identical file already exists in the backup. However,
using hardlinks has two large disadvantages:

• backups and restores always have to be made with a special program that takes care of the hardlinking. The
backup must not be touched by any other programs (they may make changes that inadvertently affect other
hardlinked files)

• special care needs to be taken to handle files which are already hardlinked (the restore program needs to know
that the hardlink was not just introduced by the backup program to safe space)

S3QL snapshots do not have these problems, and they can be used with any backup program.

15.6.3 Options

The s3qlcp command accepts the following options:

--debug-modules <modules> Activate debugging output from specified modules (use
commas to separate multiple modules). Debug messages will be
written to the target specified by the --log option.

--debug Activate debugging output from all S3QL modules. Debug messages
will be written to the target specified by the --log option.

--quiet be really quiet

--version just print program version and exit

15.6.4 Exit Codes

s3qlcp may terminate with the following exit codes:

15.6. The s3qlcp command 53

http://www.samba.org/rsync
http://savannah.nongnu.org/projects/storebackup

S3QL Documentation, Release 2.26

0 Everything went well.

1 An unexpected error occured. This may indicate a bug in the program.

2 Invalid command line argument.

15.6.5 See Also

The S3QL homepage is at https://bitbucket.org/nikratio/s3ql/.

The full S3QL documentation should also be installed somewhere on your system, common locations are
/usr/share/doc/s3ql or /usr/local/doc/s3ql.

15.7 The s3qlrm command

15.7.1 Synopsis

s3qlrm [options] <directory>

15.7.2 Description

The s3qlrm command recursively deletes files and directories on an S3QL file system. Although s3qlrm is faster
than using e.g. rm -r‘, the main reason for its existence is that it allows you to delete immutable trees (which can
be created with s3qllock) as well.

Be warned that there is no additional confirmation. The directory will be removed entirely and immediately.

s3qlrm can only be called by the user that mounted the file system and (if the file system was mounted with
--allow-other or --allow-root) the root user.

15.7.3 Options

The s3qlrm command accepts the following options:

--debug-modules <modules> Activate debugging output from specified modules (use
commas to separate multiple modules). Debug messages will be
written to the target specified by the --log option.

--debug Activate debugging output from all S3QL modules. Debug messages
will be written to the target specified by the --log option.

--quiet be really quiet

--version just print program version and exit

15.7.4 Exit Codes

s3qlrm may terminate with the following exit codes:

0 Everything went well.

1 An unexpected error occured. This may indicate a bug in the program.

2 Invalid command line argument.

54 Chapter 15. Manpages

https://bitbucket.org/nikratio/s3ql/

S3QL Documentation, Release 2.26

15.7.5 See Also

The S3QL homepage is at https://bitbucket.org/nikratio/s3ql/.

The full S3QL documentation should also be installed somewhere on your system, common locations are
/usr/share/doc/s3ql or /usr/local/doc/s3ql.

15.8 The s3qllock command

15.8.1 Synopsis

s3qllock [options] <directory>

15.8.2 Description

The s3qllock command makes a directory tree in an S3QL file system immutable. Immutable trees can no longer
be changed in any way whatsoever. You can not add new files or directories and you can not change or delete existing
files and directories. The only way to get rid of an immutable tree is to use the s3qlrm command.

s3qllock can only be called by the user that mounted the file system and (if the file system was mounted with
--allow-other or --allow-root) the root user.

15.8.3 Rationale

Immutability is a feature designed for backups. Traditionally, backups have been made on external tape drives. Once
a backup was made, the tape drive was removed and locked somewhere in a shelf. This has the great advantage that
the contents of the backup are now permanently fixed. Nothing (short of physical destruction) can change or delete
files in the backup.

In contrast, when backing up into an online storage system like S3QL, all backups are available every time the file
system is mounted. Nothing prevents a file in an old backup from being changed again later on. In the worst case, this
may make your entire backup system worthless. Imagine that your system gets infected by a nasty virus that simply
deletes all files it can find – if the virus is active while the backup file system is mounted, the virus will destroy all
your old backups as well!

Even if the possibility of a malicious virus or trojan horse is excluded, being able to change a backup after it has
been made is generally not a good idea. A common S3QL use case is to keep the file system mounted at all times
and periodically create backups with rsync -a. This allows every user to recover her files from a backup without
having to call the system administrator. However, this also allows every user to accidentally change or delete files in
one of the old backups.

Making a backup immutable protects you against all these problems. Unless you happen to run into a virus that was
specifically programmed to attack S3QL file systems, backups can be neither deleted nor changed after they have been
made immutable.

15.8.4 Options

The s3qllock command accepts the following options:

--debug-modules <modules> Activate debugging output from specified modules (use
commas to separate multiple modules). Debug messages will be
written to the target specified by the --log option.

15.8. The s3qllock command 55

https://bitbucket.org/nikratio/s3ql/

S3QL Documentation, Release 2.26

--debug Activate debugging output from all S3QL modules. Debug messages
will be written to the target specified by the --log option.

--quiet be really quiet

--version just print program version and exit

15.8.5 Exit Codes

s3qllock may terminate with the following exit codes:

0 Everything went well.

1 An unexpected error occured. This may indicate a bug in the program.

2 Invalid command line argument.

15.8.6 See Also

The S3QL homepage is at https://bitbucket.org/nikratio/s3ql/.

The full S3QL documentation should also be installed somewhere on your system, common locations are
/usr/share/doc/s3ql or /usr/local/doc/s3ql.

15.9 The umount.s3ql command

15.9.1 Synopsis

umount.s3ql [options] <mount point>

15.9.2 Description

The umount.s3ql command unmounts the S3QL file system mounted in the directory mount point and blocks until
all data has been uploaded to the storage backend.

Only the user who mounted the file system with mount.s3ql is able to unmount it with umount.s3ql. If you are
root and want to unmount an S3QL file system mounted by an ordinary user, you have to use the fusermount -u
or umount command instead. Note that these commands do not block until all data has been uploaded, so if you use
them instead of umount.s3ql then you should manually wait for the mount.s3ql process to terminate before
shutting down the system.

15.9.3 Options

The umount.s3ql command accepts the following options.

--debug-modules <modules> Activate debugging output from specified modules (use
commas to separate multiple modules). Debug messages will be
written to the target specified by the --log option.

--debug Activate debugging output from all S3QL modules. Debug messages
will be written to the target specified by the --log option.

--quiet be really quiet

56 Chapter 15. Manpages

https://bitbucket.org/nikratio/s3ql/

S3QL Documentation, Release 2.26

--version just print program version and exit

--lazy, -z Lazy umount. Detaches the file system immediately, even if there are
still open files. The data will be uploaded in the background once all
open files have been closed.

15.9.4 Exit Codes

umount.s3ql may terminate with the following exit codes:

0 Everything went well.

1 An unexpected error occured. This may indicate a bug in the program.

2 Invalid command line argument.

15.9.5 See Also

The S3QL homepage is at https://bitbucket.org/nikratio/s3ql/.

The full S3QL documentation should also be installed somewhere on your system, common locations are
/usr/share/doc/s3ql or /usr/local/doc/s3ql.

15.10 The fsck.s3ql command

15.10.1 Synopsis

fsck.s3ql [options] <storage url>

15.10.2 Description

The fsck.s3ql command checks the file system in the location specified by storage url for errors and attempts to
repair any problems. The storage url depends on the backend that is used. The S3QL User’s Guide should be consulted
for a description of the available backends.

15.10.3 Options

The fsck.s3ql command accepts the following options.

--log <target> Destination for log messages. Specify none for standard output
or syslog for the system logging daemon. Anything else will
be interpreted as a file name. Log files will be rotated when they
reach 1 MiB, and at most 5 old log files will be kept. Default:
~/.s3ql/fsck.log

--cachedir <path> Store cached data in this directory (default: ~/.s3ql)

--authfile <path> Read authentication credentials from this file (default:
~/.s3ql/authinfo2)

15.10. The fsck.s3ql command 57

https://bitbucket.org/nikratio/s3ql/

S3QL Documentation, Release 2.26

--debug-modules <modules> Activate debugging output from specified modules (use
commas to separate multiple modules). Debug messages will be
written to the target specified by the --log option.

--debug Activate debugging output from all S3QL modules. Debug messages
will be written to the target specified by the --log option.

--quiet be really quiet

--backend-options <options> Backend specific options (separate by commas). See back-
end documentation for available options.

--version just print program version and exit

--batch If user input is required, exit without prompting.

--force Force checking even if file system is marked clean.

--force-remote Force use of remote metadata even when this would likely result in
data loss.

15.10.4 Exit Codes

If fsck.s3ql found any file system errors (no matter if they were corrected or not), the exit code will be 128 plus
one of the codes listed below. If no errors were found, the following exit codes are used as-is:

0 Everything went well.

1 An unexpected error occured. This may indicate a bug in the program.

2 Invalid command line argument.

3 Invalid backend option.

10 Could not open log file for writing.

11 No such backend.

12 Authentication file has insecure permissions.

13 Unable to parse proxy settings.

14 Invalid credentials (Authentication failed).

15 No permission to access backend (Authorization denied).

16 Invalid storage URL, specified location does not exist in backend.

17 Wrong file system passphrase.

18 No S3QL file system found at given storage URL.

19 Unable to connect to backend, can’t resolve hostname.

32 Unsupported file system revision (too old).

33 Unsupported file system revision (too new).

40 Cannot check mounted file system.

41 User input required, but running in batch mode.

42 File system check aborted by user.

43 Local metadata is corrupted.

44 Uncorrectable errors found.

58 Chapter 15. Manpages

S3QL Documentation, Release 2.26

45 Unable to access cache directory.

128 This error code will be added to one of the codes above if any file system errors have been found (no
matter if they were corrected or not).

15.10.5 See Also

The S3QL homepage is at https://bitbucket.org/nikratio/s3ql/.

The full S3QL documentation should also be installed somewhere on your system, common locations are
/usr/share/doc/s3ql or /usr/local/doc/s3ql.

15.11 The s3ql_oauth_client command

15.11.1 Synopsis

s3ql_oauth_client [options]

15.11.2 Description

The s3ql_oauth_client command may be used to obtain OAuth2 authentication tokens for use with Google
Storage. It requests “user code” from Google which has to be pasted into the browser to complete the authentication
process interactively. Once authentication in the browser has been completed, s3ql_oauth_client displays the
OAuth2 refresh token.

When combined with the special username oauth2, the refresh token can be used as a backend passphrase when
using the Google Storage S3QL backend.

15.11.3 Options

The s3ql_oauth_client command accepts the following options:

--debug-modules <modules> Activate debugging output from specified modules (use
commas to separate multiple modules). Debug messages will be
written to the target specified by the --log option.

--debug Activate debugging output from all S3QL modules. Debug messages
will be written to the target specified by the --log option.

--quiet be really quiet

--version just print program version and exit

15.11.4 Exit Codes

s3ql_oauth_client may terminate with the following exit codes:

0 Everything went well.

1 An unexpected error occured. This may indicate a bug in the program.

2 Invalid command line argument.

15.11. The s3ql_oauth_client command 59

https://bitbucket.org/nikratio/s3ql/

S3QL Documentation, Release 2.26

15.11.5 See Also

The S3QL homepage is at https://bitbucket.org/nikratio/s3ql/.

The full S3QL documentation should also be installed somewhere on your system, common locations are
/usr/share/doc/s3ql or /usr/local/doc/s3ql.

15.12 The s3ql_verify command

15.12.1 Synopsis

s3ql_verify [options] <storage url>

15.12.2 Description

The s3ql_verify command verifies all data in the file system. In contrast to fsck.s3ql, s3ql_verify does
not trust the object listing returned by the backend, but actually attempts to retrieve every object. It therefore takes a
lot longer.

The format of <storage url> depends on the backend that is used. The S3QL User’s Guide should be consulted
for a description of the available backends.

15.12.3 Options

The s3ql_verify command accepts the following options.

--debug-modules <modules> Activate debugging output from specified modules (use
commas to separate multiple modules). Debug messages will be
written to the target specified by the --log option.

--debug Activate debugging output from all S3QL modules. Debug messages
will be written to the target specified by the --log option.

--quiet be really quiet

--version just print program version and exit

--cachedir <path> Store cached data in this directory (default: ~/.s3ql)

--authfile <path> Read authentication credentials from this file (default:
~/.s3ql/authinfo2)

--backend-options <options> Backend specific options (separate by commas). See back-
end documentation for available options.

--missing-file <name> File to store keys of missing objects.

--corrupted-file <name> File to store keys of corrupted objects.

--data Read every object completely, instead of checking just the metadata.

--parallel PARALLEL Number of connections to use in parallel.

--start-with <n> Skip over first <n> objects and with verifying object <n>+1.

60 Chapter 15. Manpages

https://bitbucket.org/nikratio/s3ql/

S3QL Documentation, Release 2.26

15.12.4 Exit Codes

s3ql_verify may terminate with the following exit codes:

0 Everything went well.

1 An unexpected error occured. This may indicate a bug in the program.

2 Invalid command line argument.

3 Invalid backend option.

10 Could not open log file for writing.

11 No such backend.

12 Authentication file has insecure permissions.

13 Unable to parse proxy settings.

14 Invalid credentials (Authentication failed).

15 No permission to access backend (Authorization denied).

16 Invalid storage URL, specified location does not exist in backend.

17 Wrong file system passphrase.

18 No S3QL file system found at given storage URL.

19 Unable to connect to backend, can’t resolve hostname.

32 Unsupported file system revision (too old).

33 Unsupported file system revision (too new).

45 Unable to access cache directory.

46 The file system data was verified, and some objects were found to be missing or corrupted.

15.12.5 See Also

The S3QL homepage is at https://bitbucket.org/nikratio/s3ql/.

The full S3QL documentation should also be installed somewhere on your system, common locations are
/usr/share/doc/s3ql or /usr/local/doc/s3ql.

15.13 The pcp command

15.13.1 Synopsis

pcp [options] <source> [<source> ...] <destination>

15.13.2 Description

The pcp command is a is a wrapper that starts several sync processes to copy directory trees in parallel. This is
allows much better copying performance on file system that have relatively high latency when retrieving individual
files like S3QL.

15.13. The pcp command 61

https://bitbucket.org/nikratio/s3ql/

S3QL Documentation, Release 2.26

Note: Using this program only improves performance when copying from an S3QL file system. When copying to an
S3QL file system, using pcp is more likely to decrease performance.

15.13.3 Options

The pcp command accepts the following options:

--quiet be really quiet

--debug-modules <modules> Activate debugging output from specified modules (use
commas to separate multiple modules). Debug messages will be
written to the target specified by the --log option.

--debug Activate debugging output from all S3QL modules. Debug messages
will be written to the target specified by the --log option.

--version just print program version and exit

-a Pass -aHAX option to rsync.

--processes <no> Number of rsync processes to use (default: 10).

15.13.4 Exit Codes

pcp may terminate with the following exit codes:

0 Everything went well.

1 An unexpected error occured. This may indicate a bug in the program.

2 Invalid command line argument.

15.13.5 See Also

pcp is shipped as part of S3QL, https://bitbucket.org/nikratio/s3ql/.

15.14 The expire_backups command

15.14.1 Synopsis

expire_backups [options] <age> [<age> ...]

15.14.2 Description

The expire_backups command intelligently remove old backups that are no longer needed.

To define what backups you want to keep for how long, you define a number of age ranges. expire_backups
ensures that you will have at least one backup in each age range at all times. It will keep exactly as many backups as
are required for that and delete any backups that become redundant.

Age ranges are specified by giving a list of range boundaries in terms of backup cycles. Every time you create a new
backup, the existing backups age by one cycle.

62 Chapter 15. Manpages

https://bitbucket.org/nikratio/s3ql/

S3QL Documentation, Release 2.26

Example: when expire_backups is called with the age range definition 1 3 7 14 31, it will guarantee that
you always have the following backups available:

1. A backup that is 0 to 1 cycles old (i.e, the most recent backup)

2. A backup that is 1 to 3 cycles old

3. A backup that is 3 to 7 cycles old

4. A backup that is 7 to 14 cycles old

5. A backup that is 14 to 31 cycles old

Note: If you do backups in fixed intervals, then one cycle will be equivalent to the backup interval. The advantage of
specifying the age ranges in terms of backup cycles rather than days or weeks is that it allows you to gracefully handle
irregular backup intervals. Imagine that for some reason you do not turn on your computer for one month. Now all
your backups are at least a month old, and if you had specified the above backup strategy in terms of absolute ages,
they would all be deleted! Specifying age ranges in terms of backup cycles avoids these sort of problems.

expire_backups usage is simple. It requires backups to be stored in directories of the form
year-month-day_hour:minute:seconds (YYYY-MM-DD_HH:mm:ss) and works on all backups in the cur-
rent directory. So for the above backup strategy, the correct invocation would be:

expire_backups.py 1 3 7 14 31

When storing your backups on an S3QL file system, you probably want to specify the --use-s3qlrm option as
well. This tells expire_backups to use the s3qlrm command to delete directories.

expire_backups uses a “state file” to keep track which backups are how many cycles old (since this can-
not be inferred from the dates contained in the directory names). The standard name for this state file is
.expire_backups.dat. If this file gets damaged or deleted, expire_backups no longer knows the ages
of the backups and refuses to work. In this case you can use the --reconstruct-state option to try to recon-
struct the state from the backup dates. However, the accuracy of this reconstruction depends strongly on how rigorous
you have been with making backups (it is only completely correct if the time between subsequent backups has always
been exactly the same), so it’s generally a good idea not to tamper with the state file.

15.14.3 Options

The expire_backups command accepts the following options:

--quiet be really quiet

--debug-modules <modules> Activate debugging output from specified modules (use
commas to separate multiple modules). Debug messages will be
written to the target specified by the --log option.

--debug Activate debugging output from all S3QL modules. Debug messages
will be written to the target specified by the --log option.

--version just print program version and exit

--state <file> File to save state information in (default: ”.expire_backups.dat”)

-n Dry run. Just show which backups would be deleted.

--reconstruct-state Try to reconstruct a missing state file from backup dates.

--use-s3qlrm Use s3qlrm command to delete backups.

15.14. The expire_backups command 63

S3QL Documentation, Release 2.26

15.14.4 Exit Codes

expire_backups may terminate with the following exit codes:

0 Everything went well.

1 An unexpected error occured. This may indicate a bug in the program.

2 Invalid command line argument.

15.14.5 See Also

expire_backups is shipped as part of S3QL, https://bitbucket.org/nikratio/s3ql/.

64 Chapter 15. Manpages

https://bitbucket.org/nikratio/s3ql/

CHAPTER

SIXTEEN

FURTHER RESOURCES / GETTING HELP

If you have questions or problems with S3QL that you weren’t able to resolve with this manual, you might want to
consider the following other resources:

• The S3QL Wiki

• The S3QL FAQ

• The S3QL Mailing List. You can subscribe by sending a mail to s3ql+subscribe@googlegroups.com.

Please report any bugs you may encounter in the Issue Tracker.

65

https://bitbucket.org/nikratio/s3ql/wiki
https://bitbucket.org/nikratio/s3ql/wiki/FAQ
http://groups.google.com/group/s3ql
mailto:s3ql+subscribe@googlegroups.com
https://bitbucket.org/nikratio/s3ql/issues

S3QL Documentation, Release 2.26

66 Chapter 16. Further Resources / Getting Help

CHAPTER

SEVENTEEN

IMPLEMENTATION DETAILS

This section provides some background information on how S3QL works internally. Reading this section is not
necessary to use S3QL.

17.1 Metadata Storage

Like most unix filesystems, S3QL has a concept of inodes.

The contents of directory inodes (aka the names and inodes of the files and sub directories contained in a directory)
are stored directly in an SQLite database. This database is stored in a special storage object that is downloaded when
the file system is mounted and uploaded periodically in the background and when the file system is unmounted. This
has two implications:

1. The entire file system tree can be read from the database. Fetching/storing storage objects from/in the storage
backend is only required to access the contents of files (or, more precisely, inodes). This makes most file system
operations very fast because no data has to be send over the network.

2. An S3QL filesystem can only be mounted on one computer at a time, using a single mount.s3ql process.
Otherwise changes made in one mountpoint will invariably be overwritten when the second mount point is
unmounted.

Sockets, FIFOs and character devices do not need any additional storage, all information about them is contained in
the database.

17.2 Data Storage

The contents of file inodes are split into individual blocks. The maximum size of a block is specified when the file
system is created and cannot be changed afterwards. Every block is stored as an individual object in the backend, and
the mapping from inodes to blocks and from blocks to objects is stored in the database.

While the file system is mounted, blocks are cached locally.

Blocks can also be compressed and encrypted before they are stored in the storage backend. This happens during
upload, i.e. the cached data is unencrypted and uncompressed.

If some files have blocks with identical contents, the blocks will be stored in the same backend object (i.e., the data is
only stored once).

67

http://www.sqlite.org/

S3QL Documentation, Release 2.26

17.3 Data De-Duplication

Instead of uploading every block, S3QL first computes a checksum (a SHA256 hash) to check if an identical blocks
has already been stored in an backend object. If that is the case, the new block will be linked to the existing object
instead of being uploaded.

This procedure is invisible for the user and the contents of the block can still be changed. If several blocks share a
backend object and one of the blocks is changed, the changed block is automatically stored in a new object (so that the
contents of the other block remain unchanged).

17.4 Caching

When an application tries to read or write from a file, S3QL determines the block that contains the required part of the
file and retrieves it from the backend or creates it if it does not yet exist. The block is then held in the cache directory.
It is committed to S3 when it has not been accessed for more than a few seconds. Blocks are removed from the cache
only when the maximum cache size is reached.

When the file system is unmounted, all modified blocks are written to the backend and the cache is cleaned.

17.5 Eventual Consistency Handling

S3QL has to take into account that with some storage providers, changes in objects do not propagate immediately. For
example, when an Amazon S3 object is uploaded and immediately downloaded again, the downloaded data might not
yet reflect the changes done in the upload (see also http://developer.amazonwebservices.com/connect/message.jspa?
messageID=38538)

For the data blocks this is not a problem because a data blocks always get a new object ID when they are updated.

For the metadata however, S3QL has to make sure that it always downloads the most recent copy of the database when
mounting the file system.

To that end, metadata versions are numbered, and the most recent version number is stored as part of the object id
of a very small “marker” object. When S3QL has downloaded the metadata it checks the version number against the
marker object and, if the two do not agree, waits for the most recent metadata to become available. Once the current
metadata is available, the version number is increased and the marker object updated.

17.6 Encryption

When the file system is created, mkfs.s3ql generates a 256 bit master key by reading from /dev/random. The
master key is encrypted with the passphrase that is entered by the user, and then stored with the rest of the file system
data. Since the passphrase is only used to access the master key (which is used to encrypt the actual file system data),
the passphrase can easily be changed.

Data is encrypted with a new session key for each object and each upload. The session key is generated by appending
a nonce to the master key and then calculating the SHA256 hash. The nonce is generated by concatenating the object
id and the current UTC time as a 32 bit float. The precision of the time is given by the Python time() function and
usually at least 1 millisecond. The SHA256 implementation is included in the Python standard library.

Once the session key has been calculated, a SHA256 HMAC is calculated over the data that is to be uploaded. After-
wards, the data is compressed (unless --compress none was passed to mount.s3ql) and the HMAC inserted at
the beginning. Both HMAC and compressed data are then encrypted using 256 bit AES in CTR mode using PyCrypto.

68 Chapter 17. Implementation Details

http://developer.amazonwebservices.com/connect/message.jspa?messageID=38538
http://developer.amazonwebservices.com/connect/message.jspa?messageID=38538
http://docs.python.org/library/time.html#time.time
http://www.pycrypto.org/

S3QL Documentation, Release 2.26

Finally, the nonce is inserted in front of the encrypted data and HMAC, and the packet is send to the backend as a new
S3 object.

17.6. Encryption 69

	S3QL
	Features
	Development Status
	Supported Platforms
	Contributing

	Installation
	Dependencies
	Installing S3QL
	Development Version
	Running tests requiring remote servers

	Storage Backends
	Google Storage
	Amazon S3
	OpenStack/Swift
	Rackspace CloudFiles
	S3 compatible
	Local

	Important Rules to Avoid Losing Data
	Rules in a Nutshell
	Consistency Window List
	Data Consistency
	Data Durability

	File System Creation
	Managing File Systems
	Changing the Passphrase
	Upgrading the file system
	Deleting a file system
	Restoring Metadata Backups

	Mounting
	Permission Checking
	Compression Algorithms
	Notes about Caching
	Failure Modes
	Automatic Mounting

	Advanced S3QL Features
	Snapshotting and Copy-on-Write
	Getting Statistics
	Immutable Trees
	Fast Recursive Removal
	Runtime Configuration

	Unmounting
	Checking for Errors
	Checking and repairing internal file system errors
	Detecting and handling backend data corruption

	Storing Authentication Information
	Contributed Programs
	benchmark.py
	clone_fs.py
	pcp.py
	s3ql_backup.sh
	expire_backups.py
	remove_objects.py

	Tips & Tricks
	SSH Backend
	Permanently mounted backup file system
	Improving copy performance

	Known Issues
	Manpages
	The mkfs.s3ql command
	The s3qladm command
	The mount.s3ql command
	The s3qlstat command
	The s3qlctrl command
	The s3qlcp command
	The s3qlrm command
	The s3qllock command
	The umount.s3ql command
	The fsck.s3ql command
	The s3ql_oauth_client command
	The s3ql_verify command
	The pcp command
	The expire_backups command

	Further Resources / Getting Help
	Implementation Details
	Metadata Storage
	Data Storage
	Data De-Duplication
	Caching
	Eventual Consistency Handling
	Encryption

