Apple’ Tlc Programmer’s Guide
to the 35 ROM

WOY $¢ 9 01

apmo s w10 oy oddy

S Apple® Ilc Programmer’s Guide
to the 3.5 ROM

030-1196-A Reorder Apple Product #A2L4037

PREFACE

CHAPTER 1

CHAPTER 2

i

Contents

Read Me First

About This Manual v

Where to Look for More Information vi
Watch for These vi

Overview

Physical Changes 2

Machine Identification 2
Features Removed 3
Interrupt Handler Revision 3
Starting and Restarting 4
New Serial Port Commands 4
Monitor Enhancements 6
The Protocol Converter 6
The Protocol Converter Bus 7

Monitor Enhancements
The Mini-Assembler 10
Starting the Mini-Assembler 10
Using the Mini-Assembler 11
Mini-Assembler Instruction Formats 14
STEP and TRACE 15
Cautions 17
ASCII Input Mode 17

Contents

CHAPTER 3

Calls to the Protocol Converter
Locating the Protocol Converter 20
How to Issue a Call to the Protocol Converter 20
Cautions 22
Descriptions of the Protocol Converter Calls 22
Format of Call Descriptions 24
STATUS 25
Parameter Descriptions 25
Possible Errors 29
READ BLOCK 30
Parameter Descriptions 380
Possible Errors 31
WRITE BLOCK 32
Parameter Descriptions 32
Possible Errors 33
FORMAT 84
Parameter Descriptions 34
Possible Errors 34
CONTROL 35
Parameter Descriptions 85
Possible Errors 38
INIT 39
Parameter Descriptions 39
Possible Errors 39
OPEN 40
Parameter Descriptions 40
Possible Errors 40

Contents

jil

CLOSE 41

Parameter Descriptions 41

Possible Errors 41
READ 42

Parameter Descriptions 42

Possible Errors 43
WRITE 44

Parameter Descriptions 44

Possible Errors 45
An Example: Issuing a Protocol Converter Call 46
Summary of Commands and Parameters 50
Summary of Error Codes 51

APPENDIX A Firmware Listing 53

Index 249

v Contents

Prefacé

Read Me First

This reference manual is intended for experienced Apple® Ilc
assembly-language programmers and hardware designers. It is a
supplement to the Apple Ilc Reference Mamnual. If you're a beginning user,
you should learn about your Apple Ilc and some of the programs, languages,
and devices that you intend to use before you start reading this manual. A
list of some Apple manuals that will help you learn about the operation and
function of Apple II family computers is given at the end of this preface.

This manual assumes that you have access to Apple manuals describing the
programs, languages, and devices that you intend to use with your
Apple Ilc.

About This Manual

3.5 ROM

R L R T S T e R O ST)

The Programmer’s Guide that you are reading describes the differences
between the original Apple Ilc and the Apple Ilc with 82-kilobyte (32K)
ROM.

The name 8.5 ROM refers to the ROM that is described in this book as the
82K ROM.

Chapter 1 details the changes brought about by the ROM enhancement, It
also refers to other sources of information about Apple Ilc operation.

Chapter 2 describes Monitor enhancements, including the Mini-Assembler
and the STEP and TRACE routines.

Chapter 3 describes the use of the Protocol Converter and Protocol
Converter calls.

Appendix A is an assembly listing of the firmware for the 32K ROM.

About This Manual v

Where to Look for More Information

R B S T O T e D R TP R T O
The following manuals have information about the function and
programming of Apple II-family computers and some important peripherals.

These books are available from your Apple dealer:

o About Your Enhanced Apple Ile: Programmer’s Guide (030-1143-A)
o Apple llc Owner’s Manual (030-1030-A)

o Apple Pascal 1.2 Update Manual (030-0602)

o Apple Pascal 1.8 Update Manual (030-1206-A)
o Synertek Programming Manual (A2L0003)

These books are available at your local bookstore:

o Apple llc Reference Manual (Addison-Wesley 17727-7)
o ProDos Technical Reference Manual (Addison-Wesley 17728-5)

Watch for These

vi

Important

AWarning
Apple lle

P T D G R B T O D S SR U e BT e e L R SR i N A SO A S Y
Look for these throughout the manual:

By the Way: Text set off in this manner presents sidelights or
interesting pieces of information.

Text set off in this manner—with a tag in the margin—presents
important information.

Warnings like this indicate potential problems or disasters.

Text set off in this manner—with the name of an Apple computer or
peripheral device in the margin—applies specifically to that computer or
device.

Preface: Read Me First

Chapter 1 Overview

This chapter tells you about the operating differences between the original
Apple® IIc and the Apple IIc with 32K ROM.

The following topics are discussed in this chapter:

Physical changes in the Apple Ilc

o Machine identification

o Features removed

o Interrupt handler revision

Starting up from drives other than a Disk II
o New serial port commands

o Monitor enhancements, including the Mini-Assembler and the STEP and
TRACE routines

o The Protocol Converter
o The Protocol Converter Bus

]

m]

The Monitor enhancements and the Protocol Converter are described in
detail in the following chapters.

Physical Changes

AWarning

L2 lrbt i SRR e R R R e R e S e e T e N o e S)
The 32K ROM for the Apple IIc replaces the original 16K ROM. The 82K
ROM is organized into two 16K segments called the main and alternate
banks. To toggle between banks, read address $C028. A write to $C028
toggles the line twice, leaving it unchanged.

Installing the new ROM involves cutting one trace and jumping another on
the Apple Ilc main logic board. Once the Apple Ilc has been modified for the
new ROM, the old ROM cannot be used in it.

Improperly done modifications can damage your Apple Ilc. Modifications
performed by anyone other than an authorized Apple dealer void your
warranty.

Machine Identification

R B R R R A R AR AT
Your Apple II program can tell which member of the Apple II family it is
running on by checking the values in four locations of ROM (the
identification bytes). Table 1-1 lists the machines and their identification
bytes.

Chapter 1: Overview

Table 1-1. Apple Il Family Identification Bytes

Machine $FBB3 $FBIE $FBCO $FBBF
AppleII $38

Apple Il Plus $EA $AD

Apple III (emulation) $EA $8A

Apple Ile (original) $06 $EA

Apple Ile (enhanced) $06 $EO

Apple Ilc (original) $06 $00 $FF
Apple Ilc (32K ROM) $06 $00 $00

The only difference between the identification bytes for the original
Apple Ilc and the Apple Ilc with 32K ROM is at $FBBF. That location was
$FF in the original ROM and is $00 in the current revision of the 32K ROM.

If you're not sure whether a particular Apple Ilc has the 32K ROM installed,
follow the instructions in Chapter 2 for starting the Mini-Assembler. If you
are successful (the Monitor prompt character changes from * to 1), then the
32K ROM is present.

Features Removed

PR#7 (from BASIC) or (from the Monitor) no longer
causes the system to boot from the external Disk II drive because that ROM

space is now used for new features.

Interrupt Handler Revision

If the alternate bank of the ROM is being used, the interrupt handler
switches the ROM to the main bank before calling a user’s interrupt routine,
and restores the alternate bank before returning from the interrupt. The
bank of ROM to be returned to is indicated by the least significant bit of the
byte stored in address $0044 after a break: 0 for the main bank, and 1 for the
alternate bank of the ROM.

Programs written for the Apple II, II Plus, or Ile sometimes read $C02x
before a BRK instruction that attempts to jump to a monitor routine.
Reading $C02x toggles the cassette output signal in the Apple II, II Plus, and
[Te, but switches between the main and alternate banks of ROM in the
Apple Ilc with 32K ROM. When the interrupt handler detects that a program

W

Interrupt Handler Revision

has tried to jump to a monitor routine while in the alternate bank of the
ROM, it automatically switches to the main bank of ROM and attempts to
restart the program at the point before the break occurred. Note that this
feature does not work for programs that try to read monitor data after a
$C02x access because, in this case, no BRK instruction is executed.

Starting and Restarting

When the Apple Ilc with 32K ROM is powered up, it attempts to boot from
the built-in disk drive. If this fails, it attempts to boot from the first device

The Protocol Converter: see Chapter 3. attached to the Protocol Converter. If this fails too, the message CHECKk
DISK DRIVE is displayed and the system hangs.

The built-in Disk II can be booted with a PR#6 command from BASIC, a

(6] (P] from the Monitor, or JMP $ceas from a
machine-language program.

An external UniDisk™ 8.5 can be booted with a PR#5 command from

BASIC, a 5] from the Monitor, or JumP sc5@@ from a
machine-language program.

Important External UniDisk 3.5 startup works with ProDOS®-based and Pascal 1.3
programs, but not with earlier versions of Pascal or with DOS.

New Serial Port Commands

E

The serial ports and the use of serial port Several new commands that can be used with serial ports 1 and 2 have

commands are discussed in Chapters 7 been included in the 32K ROM. Each of these commands consists of two

and8 of the Appie llc Reference Manual. 1oy tho finct lotter identifies the command while the second letter
enables (E) or disables (D) the function. You may separate the command
and the letter with a space if you wish.

4 Chapter 1: Overview

For example, to cause a line feed character to be output after every carriage
return, use the command LE (or L E). To disable this function, use the

command LD (or L D).

CD/E
(Column overflow)

FD/E
(Find keyboard)

LD/E
(Line feed after carriage return)

MD/E
{(Mask line feeds)

XD/E
(XON/XOFF protocol)

New Serial Port Commands

When enabled, this command
causes a carriage return character
to be sent automatically any time
the column count exceeds the
printer line width, Default =
enabled.

When enabled, this command
causes your Apple Ilc to accept
signals coming from its keyboard as
well as those coming over the serial
port. You can use this command to
disable the keyboard before
recetving data or sending data to the
printer, to prevent accidental
keystrokes from disrupting the data
flow. Be sure your program
re-enables the keyboard when the
data transfer is complete. This
feature is available only in BASIC.
Default = enabled.

When enabled, this command
causes a line feed character to be
output automatically after each
carriage return character. LD and
LE have the same effects as
commands L (enable line feed) and
K (disable line feed), which still
work. Default = disabled.

When enabled, all incoming line
feed characters are removed from
the data stream. Default = enabled.

When enabled, XON/XOFF protocol
is used: the Apple Ilc looks for any
XOFF character (ASCII character
DC3, decimal 19), and responds by
halting transmission until an XON
character (ASCII character DCI,
decimal 17) is received, Default =
disabled.

Monitor Enhancements

_
The Apple Ilc with 32K ROM includes the Mini-Assembler, which lets you
enter machine-language programs directly from the keyboard; and the
STEP and TRACE Monitor routines, which facilitate debugging of
machine-language programs. The Mini-Assembler and the STEP and
TRAGE routines are discussed in detail in Chapter 2.

Important Monitor commands can’t be executed directly from the Mini-Assembler
‘ on an Apple Ilc with 32K ROM.

The Protocol Converter

—
The Protocol Converter is a set of routines used to support 1/0 devices, such
as the UniDisk 3.5, that connect to the external disk port. The routines
begin at address $C500 in ROM. ProDOS and Pascal 1.3 recognize the
Protocol Converter as a block device. The Protocol Converter and calls to
the Protocol Converter are described in detail in Chapter 3.

Chapter 1: Overview

The Protocol Converter Bus

~ R R T R S P e S R s i e TR e e S R R S TS
The Protocol Converter Bus (CBus) consists of hardware and software
components that permit and control communications between the Apple Ilc
and intelligent 1/0 devices (such as UniDisk 3.5’s) connected to its external
disk port.

The software part of the CBus includes the Protocol Converter and the CBus
communication protocol.

The hardware component of the CBus is a daisy chain made up of the

following:

o The Apple Il disk port, using the disk controller unit (IWM), see
Chapter 11 in the Apple Ilc Reference Manual.

o One or more intelligent I/0 devices (bus residents).

o One Disk Ilc (optional). If included, the Disk Ilc must be the terminal
member of the daisy chain, and remains dormant when a bus resident is
addressed.

The maximum number of bus residents is limited by the Apple Ilc’s power
supply and IWM drive capacity. The software can support up to 127 bus
residents.

The Protocol Converter Bus 7

Chapter 2

Monitor Enhancements

This chapter is about enhancements made to the Monitor, including the
addition of the Mini-Assembler (which allows machine-language programs
to be entered directly from the keyboard), and debugging routines for
assembly-language programs. The following topics are discussed in this
chapter:

o Procedures for using the Mini-Assembler
o The Mini-Assembler commands
o The STEP and TRACE debugging routines

The Mini-Assembler

10

“

Important

Without an assembler, you have to write your machine-language program,
take the hexadecimal values for the opcodes and operands, and store them
in memory using the monitor commands described in Chapter 10 of the
Apple Ilc Reference Manual.

The Mini-Assembler lets you enter machine-language programs directly
from the keyboard of your Apple. You can type ASCII characters in
Mini-Assembler programs, exactly as you type them in the Monitor.

The Mini-Assembler doesn’t accept labels; you must use actual
hexadecimal values and addresses.

Starting the Mini-Assembler
e P G A e T e S T O B e
To start the Mini-Assembler, first call the Monitor by typing cALL-151 and

pressing (RETURN). Then from the Monitor, type 1 and press (RETURN). The
Monitor prompt character then changes from * to 1.

When you finish using the Mini-Assembler, press from a blank
line to return to the Monitor.

To enter code into memory, type the address, a colon, and the instruction.
For example, after entering the Mini-Assembler, type

1300:STA C0P30

Chapter 2: Monitor Enhancements

You can enter a series of instructions by typing a space, then the
instruction, followed by (RETURN:

1300:STA CO30
! LDA #AD
O INX

Each succeeding instruction is placed in the next consecutive memory
location. As you type in instructions, each is replaced by the starting
address of the instruction, the hexadecimal value(s) of the instruction,
followed by mnemonics describing the instruction. For example, the
sequence of instructions given above produces the following on your display

screen:

p306- 8D 30 C@ STA $C030
p303- A9 A0 LDA #$A0
#3065~ E8 INX

When you're ready to execute your program, press to leave the
Mini-Assembler and return to the Monitor.

Important | Monitor commands can’t be executed directly from the Mini-Assembler
on an Apple Ilc with 32K ROM.

Using the Mini-Assembler
i A i R NG R S P SR

The Mini-Assembler saves one address, that of the program counter. Before
you start to type a program, you must set the program counter to point to
the location where you want the Mini-Assembler to store your program. Do
this by typing the address followed by a colon.

After the colon, type the mnemonic for the first instruction in your program,

Formats for operands are listed in followed by a space and the operand of the instruction. Now press
Table 2-1. (RETURN). The Mini-Assembler converts the line you typed into

hexadecimal, stores it in memory beginning at the location of the program
counter, and then disassembles it again and displays the disassembled line.
It then displays a prompt character on the next line.

Now the Mini-Assembler is ready to accept the second instruction in your
program. To tell it that you want the next instruction to follow the first,
don’t type an address or a colon: just type a space and the next instruction’s
mnemonic and operand, then press (RETURN]. The Mini-Assembler
assembles that line and waits for another.

The Mini-Assembler 11

If the line you type has an error in it, the Mini-Assembler causes the

Apple Ilc to beep and display a caret (*) under or near the offending
character in the input line. Most common errors are the result of
typographical mistakes: misspelled mnemonics, missing parentheses, and
so forth. The Mini-Assembler also rejects the input line if you forget the
space before or after a mnemonic or include an extraneous character in a
hexadecimal value or address. If the destination address of a branch
instruction is out of the range of the branch (more than 127 locations distant
from the address of the instruction), the Mini-Assembler flags this as an
error.

Dollar Signs: In this book, dollar signs ($) in addresses signify that the
addresses are in hexadecimal notation. The dollar signs are ignored by
the Mini-Assembler and may be omitted when typing programs.

1300:LDX #82

0300 - A2 B2 LDX +$92
! LDA $0,X

6382- B5 026 LDA $68,X
! STA $18,X

p304 95 180 STA $10,X
! DEX

8386- CcA DEX

! STA $Co38

p307- 8D 38 C#@ STA $CP30
! BPL $382

030A- 18 Fe6 BPL $0382
! BRK

#36C- 1) BRK

To leave the Mini-Assembler and return to the Monitor, press ata
blank line.

Chapter 2: Monitor Enhancements

Your assembly-language program is now stored in memory. You can display

it with the LIST command:
3981

8308- A2 P2
#3082~ BS5 08
#3064- 95 19
8366~ CA

#387- 8D 38 C@
p38A- 18 F6

p38C- 80
#38D- 08
P30E- 06
p306F- @89
p318- 68
#311- 08
p312- 880
#313- 488
p314- 09
9315~ 08
p316~- @0
p317- 08
8318~ @89
#319- 89

*

The Mini-Assembler

LDX
LbA
STA
DEX
STA
BPL
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK

#3092
$00,X
$10,X

$CP30
$08382

14

Mini-Assembler Instruction Formats

s L e T 2 D Al ey e S

The Apple Ilc Mini-Assembler recognizes 66 mnemonics and 15 addressing
formats. The mnemonics are standard, as used in the Synertek
Programming Manual, but the addressing formats are somewhat
different; see Table 2-1.

Table 2-1. Mini-Assembler Address Formats

Addressing Mode Format
Accumulator *
Implied *
Immediate #${value}
Absolute ${address}
Zero page ${address}
Indexed zero page ${address} X
$Iaddress1,Y
Indexed absolute ${address} X
$j‘address1,Y
Relative ${address}
Indexed indirect (${address},X)
Indirect indexed (${address}),Y
Absolute indirect (${address})

* These instructions have no operands.

An address consists of one or more hexadecimal digits. The Mini-Assembler
interprets addresses the same way the Monitor does: if an address has fewer
than four digits, the Mini-Assembler adds leading zeros: if the address has
more than four digits, then it uses only the last four.

There is no syntactical distinction between the absolute and zero page
addressing modes. If you give an instruction to the Mini-Assembler that can
be used in both absolute and zero page mode, the Mini-Assembler assembles
that instruction in absolute mode if the operand for that instruction is
greater than $FF, and it assembles it in zero page mode if the operand is less
than $100.

Chapter 2: Monitor Enhancements

Instructions in accumulator mode and implied addressing mode need no
operands.

Branch instructions, which use the relative addressing mode, require the
target address of the branch. The Mini-Assembler automatically calculates
the relative distance to use in the instruction. If the target address is more
than 127 locations distant from the instruction, the Mini-Assembler sounds
a bell (beep), displays a caret () under the target address, and does not
assemble the line.

If you give the Mini-Assembler the mnemonic for an instruction and an
operand, and the addressing mode of the operand cannot be used with the
instruction you entered, then the Mini-Assembler will not accept the line.

STEP and TRACE

STEP and TRACE are Monitor facilities for debugging assembly-language
programs. The STEP command decodes, displays, and executes one
instruction at a time, and the TRACE command steps continuously through
a program, stopping when a BRK instruction is executed or [&]is pressed.
You can press [&] to slow down the trace to one step per second.

Each STEP command causes the Monitor to execute the instruction in
memory pointed to by the Program Counter. The instruction is displayed in
its disassembled form, then executed. The contents of the 65C02’s internal
registers are displayed after the instruction is executed. After execution, the
Program Counter is incremented to point to the next instruction in the
program.

Here is an example of the STEP command, using the following program:

$0300: LDX #@2
$0302: LDA $60,X
$0304: STA $10,X
$0306: DEX
$0307: STA $CP30
$030A: BPL $#302
$836C: BRK

To step through this program, first call the Monitor by typing caLL-151
and pressing (RETURN)), and then from the Monitor, type 3885 (to start the
STEP routine at address $0300). Type (S to advance each additional step

STEP and TRACE 15

16

through the program. The Monitor keeps the Program Counter and the last
opened address separate from one another, so you can examine or change
the contents of memory while you are stepping through your program.

Here’s what happens when you step through the program above, examining
the contents of location $0012 after the third step. Note that in this
example, what you type appears just after the * prompt, and the
information on the next two lines—that begin without the * prompt—is
what the computer displays on the screen in response.

*3008

p300- A2 92 LDX #82
M=CA A=A X=02 Y=D8 P=3@¢ S=F8
*S

6302~ BS 08 LDA $88,X
M=CA A=8C X=02 Y=D8 P=38 S=F8
*S

P304~ 95 18 STA $18,X
M=CA A=8C X=8§2 Y=D8 P=38 S=F8
*12

pg12- BC
*S

#306- CA DEX
M=CA A=fC X=§1 Y=D8 P=38 S=F8
*S

8307~ 8D 38 C@# STA $CP38@
M=CA A=8C X=§1 Y=D8 P=38 S=F8

*S

B36A- 18 F6 BPL $8382
M=CA A=BC X=§1 Y=D8 P=38 S=F8
*S

8302~ BS #8 LDA $80,X
M=CA A=PB X=§1 Y=D8 P=30 S=F8
*S

8304 - 95 19 STA $10,X
M=CA A=@B X=81 Y=D8 P=38 S=F8

*

Chapter 2: Monitor Enhancements

The TRACE command is a continuous version of the STEP command; it will
stop stepping through the program only when you press (], or when it
encounters a BRK instruction in the program. Press [&] to slow the trace to
one step per second.

Cautions
[Zarirnnntnra i)

Keep the following cautions in mind when using the STEP and TRACE
Monitor commands:

o If the program ends with an RTS instruction, the TRACE routine will
continue to run indefinitely until stopped with (&].

o You can't step or trace through routines that use the same zero page
locations as the Monitor.

ASCII Input Mode

This mode lets you enter ASCII characters as well as their hexadecimal
ASCII equivalents. This means that 'A is the same as C1 and 'B is the same
as C2 to the Monitor. The ASCII value for any character following an
apostrophe is used by the Monitor. For example, to enter the string “Hooray
for sushi!” at $300 in memory, type

#3¢0:‘H ‘o0 ‘o ‘r ‘a ‘y ' ‘f ‘0o ‘'r ’ ’s ‘u ’s 'h i ‘!

Note that each character to be placed in memory is delimited by a leading’
and a trailing space. The only exception to this rule is that the last
character in the line is followed by a RETURN character instead of a space.

ASCII Input Mode 17

