
Apple IIGS
#51:  How to Avoid Running Out of Memory 1 of 3

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#51: How to Avoid Running Out of Memory
Revised by: Dave Lyons May 1992
Written by: Eric Soldan January 1989

This Technical Note discusses handling nearly-out-of-memory situations when working with the
IIGS tools.
Changes since September 1990:  Added discussion of an Out-of-memory routine problem fixed
in System 6.0.

Introduction

Running out of memory is a concern for most every application.  Working with the Toolbox makes
monitoring this situation a little more difficult since your application is not the only one allocating
memory.

Low-level toolbox functions (for example, QuickDraw II calls) require that a 16K block of memory
be allocatable, while high-level routines (for example, the Window Manager) require that a 32K
block of memory be allocatable.  Apple does not guarantee that toolbox functions behave
reasonably if there is less memory available, and the tools are not stress-tested with less than the
minimum required memory available.

Since the toolbox assumes reasonable memory-allocation requests succeed, just waiting for an out-
of-memory error is not adequate memory management.  To make your application work reliably in
low-memory situations, you need a method of ensuring that the toolbox gets memory when it needs
it.  This Note describes two approaches.

How Much Memory Can Be Allocated

There’s no way to tell how much memory can be allocated without actually trying to allocate it.

MaxBlock tells you the size of the largest single free block, but this doesn’t take into account
purgeable blocks, compaction, and out-of-memory routines (see Apple IIGS Toolbox Reference,
volume 3).  FreeMem and RealFreeMem cannot tell you how badly fragmented the memory is,
and they do not take into account out-of-memory routines.

A Suggested Method

A method of checking for a nearly-out-of-memory condition is to have your own purgeable handle
just for this task.  If the handle has not been purged, then you have plenty of memory for the
toolbox, and in the worst case, the toolbox purges your handle if it needs the RAM.



Apple II Technical Notes

Apple IIGS
2 of 3 #51:  How to Avoid Running Out of Memory

The less often your purgeable handle gets purged, the better performance you get in nearly-out-of-
memory situations.  Therefore, you should arrange for other purgeable memory, not necessarily
belonging to your application, to be purged before your handle.  For example, you want dormant
applications to be purged, rather than having your handle get repeatedly purged and reallocated.  So
the purge level of this handle should be one.

The check to see if a handle has been purged is very fast.  If it has been purged, you have to try to
reallocate it.  Reallocating a handle is not a fast process, so the fewer times the handle is purged, the
faster the check is and the better your performance.  Unless you are in a nearly-out-of-memory
situation, the handle should not be purged at all, and you should have virtually no overhead for this
process.

This technique can be implemented as follows:

appStart
;
; Somewhere at start, create a purgeable handle of size N,
; called "loMemHndl", purge level 1.
;
                 rts

******************
;
; Here's an example of checking for nearly-out-of-memory:
;
                 jsr    preCheckLoMem
                 bcc    goForIt
                 bcs    HandleError        ;Handle errors appropriately.
goForIt          (_ToolboxCall[s])         ;Make as many as needed.
;
; Here you can make your toolbox calls.  Since you prechecked
; for nearly-out-of-memory conditions, you should have no memory
; errors at this point.
;
; You could also check after calls, as shown here:
;
                 (_ToolboxCall)
                 jsr    checkLoMem         ;Call this to see if low.
                 bcc    noError
                 bcs    HandleError        ;Take care of errors.

noError          jsr    lifeIsGood
                 .
                 .
                 .
                 rts



Developer Technical Support March 1992

Apple IIGS
#51:  How to Avoid Running Out of Memory 3 of 3

******************
;
; Here are some sample routines to check for the nearly-out-of-
; memory condition.
;
checkLoMem       bcs    retErr
preCheckLoMem    lda    [loMemHndl]
                 ldy    #2
                 ora    [loMemHndl],y
                 beq    gotPurged
                 lda    #0
                 clc
                 rts
gotPurged        (Try reallocating it into loMemHndl, purge level 1.)
                 (If you can't, you will get a $0201 error.  You may wish to
                  return the $201 error, or you may wish to change it into
                  your own error code.)
;
retErr           rts                       ;This is a single exit point
                                           ;whether errors were present
                                           ;or not.

You can determine the size of this purgeable handle, but like determining what size stack is adequate
for an application, there is no single “right” answer.  There are different considerations for size of
the purgeable handle for each application, and these may change during the development process.
Use your best judgement, keeping in mind that high-level toolbox routines require a 32K block.

An Alternative

For better control over when your handle is purged or disposed, you can write an out-of-memory
routine as described in the Memory Manager chapter of Apple IIGS Toolbox Reference, volume 3.
Out-of-memory routines have the opportunity to free up memory before or after the Memory
Manager attempts to purge purgeable handles, and this manual contains a sample of such a routine.

Note: If your Out-of-memory routine frees up memory on the second pass, there is a
problem with the Memory Manager in System Software 5.0 through 5.0.4 that may
affect you.  If your routine frees enough bytes on the second pass, but the Memory
Manager still cannot complete the request it is working on, it can hang for a couple
of minutes and then crash.  This is fixed in System 6.0.

Further Reference:
• Apple IIGS Toolbox Reference, Volumes 1-3


