
Apple IIGS

#105: We Interrupt This CPU... 1 of 6

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#105: We Interrupt This CPU...

Written by: Matt Deatherage May 1992

This Technical Note supplements the discussion of how interrupts generally work (or don’t
work) on the Apple IIGS found in the Apple IIGS Firmware Reference. It also discusses how to
patch into the interrupt chain and when not to use software interrupts.

This Note is a Supplement

That’s right, a supplement. This is not the definitive, end-all discussion of interrupts on the
Apple IIGS. Most of the information you need to know is available, and has been for several
years, in the Apple IIGS Firmware Reference. If you’re going to write an interrupt routine, you
need to read Chapter 6 of the Firmware Reference.

No excuses. If you don’t have the book, buy it or borrow it. People who use your software don’t
want to hear a sad story about how you wanted to spend the money on a couple of CDs instead of
preventing their machine from crashing.

If you haven’t read Chapter 6 of the Firmware Reference, do so before continuing; the rest of
this Note will make much more sense if you’re familiar with the material covered in that chapter.

A Note About Timing

There are lots of times listed in this Note, concerning how fast certain kinds of interrupts must be
serviced before they’re lost. Please remember that all times listed are ideal times—actual times
are likely to be shorter. For example, a maximum response time of a millisecond means you
have one millisecond from the time the peripheral asserts the /IRQ line until the interrupt must
be serviced. If interrupts are disabled for the first 750 microseconds (µs) of that, then your
maximum response time is 250 µs. This is why we constantly remind programmers to keep
interrupts disabled for absolutely the shortest time possible. Also, all times reflecting serial or
AppleTalk interrupts already take into account the serial chip’s internal 3-byte buffer.

So What the Heck Are All Those Vectors?

Apple II Technical Notes

2 of 6 #105: We Interrupt This CPU...

At first, looking at all those various vectors seems pretty darned intimidating. However, the
structure becomes clearer when you think about interrupt priority.

Some microprocessors allow interrupt requests to have priorities—higher priority interrupts can
interrupt lower priority ones. The 65816 doesn’t have this capability, so the best the Apple IIGS

can do is check possible interrupt sources in highest-priority-first order. For example, AppleTalk
interrupts must always be processed extremely quickly—from the time an AppleTalk interrupt is
asserted, someone must read the data from the SCC within a maximum of 104.167 µs or data can
be lost. That’s not very much time at all, especially considering that the system may have
interrupts disabled, or may be running at 1 MHz speed when the interrupt fires.

Serial interrupts are next—at 19,200 baud, there’s a maximum of 1.094 milliseconds to read data
before it’s lost. (Multiplication shows that 38,400 baud has a maximum of 547 µs, and 57,600
baud has a maximum delay of 273.5 µs. Not much at all.)

You’d hope the Interrupt Manager in ROM would be smart enough to service AppleTalk
interrupts first and serial interrupts next, and in fact that’s what it does. In fact, it services them
so fast that not all the system information is saved before checking the hardware and dispatching
(if necessary) to the IRQ.APTALK or IRQ.SERIAL vectors. See Apple IIGS Technical Note
#24 for more information on which system state information isn’t saved before calling those
vectors.

The list of interrupt priorities is on page 180 of the Firmware Reference. What’s not clear from
any description of interrupt handling is that each internal interrupt source’s vector is only called
if the Interrupt Manager determines it is the source of the interrupt. For example, the
IRQ.DSKACC vector is not called unless the user pressed Command-Control-Esc to generate
the interrupt. This insures that external interrupt handlers for slot-based peripherals are
dispatched to as quickly as possible—if each vectored routine had to determine interrupt
ownership, every interrupt would have significantly more overhead.

There are two additions to the priority list in the Firmware Reference—the first is also an
exception to the “interrupt handlers don’t have to identify the interrupt” rule. On ROM 3
machines only, vector $E1021C (IRQ.MIDI) gets control immediately after determining the
interrupt isn’t an AppleTalk interrupt. MIDI data can come in so quickly that it needs higher
priority than serial interrupts. However, to improve performance, routines called through this
vector must return as fast as possible (faster would be better) to avoid delaying interrupts further
down the chain, like serial interrupts. Also note that this vector doesn’t exist on ROM 1.

The second addition is to the final priority, simply defined as “external slot.” The documentation
doesn’t clearly indicate how this works—it kind of implies this is just calling IRQ.OTHER. In
fact, if no IRQ.OTHER routine claims the interrupt, the system does some voodoo magic to
switch to emulation mode and jumps through the vector at $03FE, just like all previous Apple II
models. And just like in older systems, whatever code is pointed to by $03FE must end with an
RTI instruction. This behavior is preserved for compatibility, although it is the slowest interrupt
response available on the IIGS.

Developer Technical Support May 1992

Apple IIGS

#105: We Interrupt This CPU... 3 of 6

Getting Control In Time

Passing control to external handlers isn’t always quick enough for some people. If you’re
writing a telecommunications program, for example, you have no more than 1.094 ms from the
time a character is received to get it out of the SCC or you’ll lose data at 19,200 baud.

The Interrupt Manager is a very tight piece of code—if it were running in RAM and the system
was temporarily slowed down to 1 MHz, there would only be room for about two more
instructions before AppleTalk would lose data. Since AppleTalk has to be serviced within 104.2
µs (as discussed previously), and since IRQ.SERIAL is called as quickly as possible after
IRQ.APTALK (the only delay is if you’re on ROM 3 and a non-trivial MIDI interrupt handler is
installed), patching in at IRQ.SERIAL poses no problems for most high-speed communications,
even up to 57,600 baud. In other words, it’s not necessary to patch any vector other than
IRQ.SERIAL to achieve the results you want.

Apple II Technical Notes

4 of 6 #105: We Interrupt This CPU...

The problem comes when you have external communications hardware—making it through the
internal interrupt chain is too slow if your external communications hardware has the same kinds
of limitation the SCC does (namely, a 3-byte internal buffer). External vectors are only called
after all the internal sources verify it’s not their interrupt, and by that time your card may have
lost data.

Patching the Main Interrupt Vector

In these cases, where there is no possible way to service an interrupt in time through the Interrupt
Manager’s normal priority chain, and in these cases only, it’s acceptable to patch out the main
interrupt vector at $E10010 (preferably using GetVector and SetVector with reference
number $0004). But even then, there are rules to follow.

1. You should duplicate the functionality of the main interrupt vector exactly until
the point where you must gain control or lose data. For example, if your card
requires that you service interrupts within a millisecond or lose data, AppleTalk
interrupts still have higher priority over your interrupts because AppleTalk
interrupts must be serviced within 104 µs. In this example case, your code
should duplicate the functionality of the Interrupt Manager up through and
including the call to IRQ.APTALK, and then (and only then) call your interrupt
handler, where you handle the interrupt if it’s yours and pass control to the rest of
the interrupt chain if it’s not.

2. You should only service your interrupts before AppleTalk if your interrupts
require servicing in less than 104 µs. If they don’t, give AppleTalk first shot. If
they do, you must clearly inform the user, both in documentation and on the
screen, that if they proceed with this function network services may be
interrupted, and that they may have to restart the system to restore them. Users
must also have the option to back out and cancel at this point. No, this isn’t a
pleasant message to deliver, but it’s much nicer than to completely disconnect
AppleTalk and lock up the system if it was booted from a server.

3. You should only patch out the main interrupt vector when absolutely necessary.
For example, if you’re communicating with hardware that runs at multiple speeds
and only the highest speed generates interrupts that require patching the main
vector, you should not be patching the main vector when not using that highest
speed. For telecommunication programs, this means different interrupt handling
routines depending on baud rates. To do this any other way lessens the reliability
of other high-speed interrupt-driven peripherals in the system.

And remember, it’s only acceptable to patch the main interrupt vector when there is no other way
to service interrupts fast enough. At all other times, even in the same program, service your
interrupts in other ways.

Vectors vs. Binding vs. Allocating

Developer Technical Support May 1992

Apple IIGS

#105: We Interrupt This CPU... 5 of 6

There are three main ways to get into the IIGS interrupt-handling chain—by patching vectors
directly, by using the ProDOS 8 or ProDOS 16 call ALLOC_INTERRUPT, and by using the
GS/OS call BindInt. Each behaves differently and has advantages and disadvantages. We’ll
go from the highest level to the lowest in discussing them.

Apple II Technical Notes

6 of 6 #105: We Interrupt This CPU...

BindInt—easy to use, but not as easy to control

BindInt’s vector reference numbers (VRNs) are designed to correspond to vectors in the
IIGS Interrupt Manager’s chain. Comparing the list of numbers on page 265 of GS/OS Reference
to the list of vectors starting on page 266 of the Apple IIGS Firmware Reference will make this
more obvious.

When you call BindInt, GS/OS replaces the address in the appropriate interrupt vector with an
address inside GS/OS. The routine it points to calls all the routines bound to that vector,
including the one that was originally installed (usually the ROM’s built-in SEC/RTL address).
That is, if IRQ.VBL pointed to the Miscellaneous Tools’ Heartbeat Task code before a program
made four separate BindInt calls to VRN $000C, then after those calls completed, IRQ.VBL
would point to code inside GS/OS that called all four bound routines and the Miscellaneous
Tools’ Heartbeat Task code.

This is why each bound routine is told (through the microprocessor’s carry flag) if one of the
other routines has already claimed the interrupt and why preserving that status is important.
BindInt is a convenient way to get code time during various kinds of interrupts, but you
should note that you can’t control in what order bound handlers are called.

ALLOC_INTERRUPT—old style interrupt management

ALLOC_INTERRUPT and the ProDOS 8 equivalent, ALLOC_INT take the address of the
routine you pass and keep it in an internal table. When an interrupt occurs, each address in the
table is called in turn until one of the interrupt handlers claims it. In older days, failure by any of
the installed interrupt handlers to claim the interrupt would bring the system to a crashing
halt—nowadays unclaimed interrupts are ignored by both ProDOS 8 and GS/OS.

What the manuals don’t tell you is that any routine installed in this way is called after the system
has jumped through address $03FE in bank zero—in other words, at the last possible chance.
For any kind of timing-sensitive interrupts, these routines are not sufficient.

The table that stores these routines is of a fixed size—ProDOS 8’s table holds four routines, and
GS/OS’s holds 16. If you try to install more handlers than that, you’ll get an error from the
operating system.

Patching Vectors—high level of control, high risk

The lowest level at which you can get control is by directly patching the Interrupt Manager’s
vectors as documented in the Firmware Reference. Although this lets you get control as soon as
the Interrupt Manager determines which vector to call, it also carries some compatibility risks.

Any BindInt calls with VRNs that reference a vector you patch make GS/OS take your
routine’s address and store it internally. This is a problem for anyone who daisy-chained into the
same interrupt vector after you did—there’s no good way to disconnect yourself without
disconnecting everyone who patched in after you. This is Bad.

Developer Technical Support May 1992

Apple IIGS

#105: We Interrupt This CPU... 7 of 6

If you patch vectors directly, you have to check the vector when you’re ready to remove your
routine. If the vector doesn’t still point to your address, someone else has patched into the vector
after you and you can’t remove yourself. In these cases, you have to leave a “code stub” that
takes no action other than passing control along to the address that was installed when you
patched in, and you have to leave that code stub at the same address as your interrupt handler.
(Since you don’t know who has patched the vector after you, you have no way to communicate
with those programs and tell them you’re going away.)

This means your interrupt handler can’t be in your main program. If it is, when GS/OS calls
UserShutDown to remove your program from memory, you’ll orphan one or more pointers to
your interrupt handler (which doesn’t exist anymore). You must allocate memory and load your
interrupt handler with a different user ID than your main program so your code stub can survive
when your program quits. Also note that this means repeated launchings of your program could
leave lots and lots of code stubs in memory—so if you can find a way other than patching
vectors directly, you’re encouraged to use it.

Software Interrupts—BRK and COP

Sometimes developers forget that BRK and COP instructions are in fact software
interrupts—when the IIGS’s 65816 encounters one of these instructions, it goes through the same
Interrupt Manager procedures that all interrupts go through.

Among other things, this means that encountering one of these instructions inside an interrupt
routine will overwrite all the system’s saved information (such as registers or system state
variables) with new ones, meaning you’ll never be able to return from the first interrupt. This
isn’t too much of a problem with BRK (except when debugging interrupt routines), but a recent
fad popularity for COP makes this worth mentioning.

Some developers are trying to use COP instructions for all kinds of general-purpose mechanisms,
but the system is not designed to handle this. Using a COP instruction to pass control to a shell
or a library routine in production-level code is not acceptable for several reasons. First, any COP
instruction inside an interrupt handler will bring the system to its knees. Second, there is no
arbitration for the COP vector so multiple users of it will collide. Third, although a COP
instruction takes only two bytes, it takes many hundreds more cycles to execute than a JSL
instruction, slowing the system down for no reason.

COP instructions are perfectly acceptable in non-production level (debugging) code, but
developers should not use them as a way for different program modules to communicate. Such
use is not supported and is strongly discouraged by Apple.

Before we RTI—A Summary

This Note covers many issues concerning interrupts, so here’s a summary. This isn’t all the
explanation—refer to individual topics for discussions and reasons.

Apple II Technical Notes

8 of 6 #105: We Interrupt This CPU...

• Never disable interrupts for longer than necessary—you make life really difficult
on routines that rely on high-speed interrupt capability.

• Interrupt routines should patch in as late as possible in the interrupt process
without losing data. If your interrupt source doesn’t need servicing as fast as
AppleTalk does, don’t patch in before AppleTalk.

• Patching the main interrupt vector at $E10010 is only acceptable if there’s no
possible way to service external interrupts quickly enough (internal interrupt
sources, like serial ports, should always use other vectors), and even then the
vector most only be patched while necessary; if a slower interrupt source is used
in the same program, unpatch the vector.

• Different methods of installing interrupt handlers give you different levels of
control. BindInt is the overall best method, although you can’t control in what
order bound routines are called.

• COP instructions are unacceptable in non-debugging code; they should never take
the place of JSL instructions or other methods of inter-process communication.

Further Reference
• Apple IIGS Firmware Reference
• Apple IIGS Toolbox Reference, Volume 3
• GS/OS Reference
• ProDOS 8 Technical Reference Manual
• Apple IIGS Technical Note #24, Apple IIGS Toolbox Reference updates

