
Apple IIGS

#57: The Memory Manager and Interrupts 1 of 2

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#57: The Memory Manager and Interrupts

Revised by: Dave “nocturnal” Lyons December 1991
Written by: Dave Lyons July 1989

This Technical Note discusses how you can use the Memory Manager from interrupt routines
and documents a flag byte that debugging utilities can use to temporarily prevent the Memory
Manager from moving or purging memory.
Changes since July 1989: Expanded and retitled Note to discuss safe use of the Memory
Manager at interrupt time.

The Memory Manager does not disable interrupts while it’s busy. Instead, it increments the
system BUSY flag when it’s in the middle of something important.

Can interrupt routines call the Memory Manager?

If you write code that executes at interrupt time, you must check the BUSY flag (the byte at
$E100FF) before making any Memory Manager calls. If the BUSY flag is zero, it’s safe to call
the Memory Manager. If the BUSY flag is nonzero, the Memory Manager may be in the middle
of a call, so it is not safe to call it.

What routines must check the BUSY flag?

Classic desk accessory main routines and shutdown routines do not need to check the BUSY flag.
If the Event Manager is active, the CDA gets control during GetNextEvent, not at interrupt
time. If the Event Manager is not active, the CDA gets control only when the BUSY flag reaches
zero.

GS/OS signal handlers do not need to check the BUSY flag, because the system dispatches
signals only when the BUSY flag is zero.

Run Queue tasks do not need to check the BUSY flag before calling the Memory Manager. The
system dispatches Run Queue tasks at SystemTask time—the BUSY flag may not be zero, but
no Memory Manager call will be in progress.

Heartbeat interrupt tasks and other interrupt handlers do need to check the BUSY flag before
calling the Memory Manager.

Apple II Technical Notes

Apple IIGS

2 of 2 #57: The Memory Manager and Interrupts

Interrupt-time use of moveable memory blocks

If an interrupt-time routine needs access to an unlocked, non-fixed memory block, you must
check the BUSY flag. It is not sufficient to lock the block, use it, and then unlock it (even if you
twiddle the handle’s access word directly). If the BUSY flag is non-zero, the Memory Manager
could be in the middle of compacting memory, which means your block could be “in transit”
from one address to another (some bytes copied, some not).

To use already-allocated memory at interrupt time, either keep the block locked or fixed, or
check that the BUSY flag is zero before using the memory at interrupt time.

What if BUSY is nonzero?

If the BUSY flag is nonzero, you may want to (depending on your application) exit the interrupt
routine and hope the BUSY flag is zero the next time, or call SchAddTask in the Scheduler to
make the system call your routine when the BUSY flag next returns to zero. Keep in mind,
though, that only four scheduled tasks can be pending at a time.

Interrupt-time flag byte

If the byte at location $E100CB is non-zero, the Memory Manager will not move any memory
blocks, and it will not purge any blocks while trying to allocate memory (PurgeHandle and
PurgeAll will still purge blocks).

Debugging utilities may temporarily increment this byte to allocate memory in situations when it
is not safe for existing memory blocks to be moved or purged.

This flag byte is for use only by debugging aids and System Software. It would be mind-
numbingly stupid for an application to use this flag instead of using HLock and HUnlock, since
the advantages of a Memory Manager architecture with relocatable blocks would be lost.

It is not useful to check the value of the $E100CB flag. It is always set during interrupt handling
whether any non-reentrant system component is busy or not.

