
Apple IIGS
#94: Packing It In (and Out) 1 of 4

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#94: Packing It In (and Out)
Revised by: Dave Lyons May 1992
Written by: C.K. Haun <TR> September 1990

This Technical Note discusses a potential problem with the Miscellaneous Tools routine
UnPackBytes.
Changes since September 1990: Noted that the problem detecting the end of the unpack-to buffer
near the end of a bank is fixed in System 6.0.

PackBytes and UnPackBytes are handy data compression and expansion routines built into
the Apple IIGS System Software. Using them can dramatically reduce the amount of space your
application uses on disk or in memory, but you need to understand how these calls work to avoid
problems in your applications.

Buffer Size, Buffer Size, Buff, Buff, Buffer Size

There are some situations where the Miscellaneous Tools call UnPackBytes does not function as
expected and can cause your application to loop infinitely while you’re waiting for an unpacking
process to finish.

The following packed data and code (in APW assembly) demonstrates the problem. It shows a
small routine that unpacks data in two steps, simulating the situation in many applications where an
arbitrary amount of data is unpacked in a variable amount of unpacking actions, depending on the
results of the last unpack pass.

UnPackBuffer ds 160 ; area to unpack the data to
UnPackBufferPtr dc i4’UnPackBuffer’ ; pointer to unpacking buffer
UnPackBufferSize ds 2
temp ds 2

PackedData dc h’FFFFFFFF’
EndPackData anop
PackLength dc i2’EndPackData-PackedData’ ; how many bytes of packed data

* In packbytes format $FFFF means ‘64 repeats of the next byte ($FF) taken as 4 bytes’ as
* described on page 14-39 of Toolbox Reference, so
* this data should unpack into 512 $FF bytes

Apple II Technical Notes

Apple IIGS
2 of 4 #94: Packing It In (and Out)

* The following code loops infinitely

 lda #160 ; Unpack buffer size
 sta UnPackBufferSize
UnPackLoop pea 0 ; return space
 pushlong #PackedData ; pointer to packed data
 pea 2 ; size of the packed data, unpack two bytes
 ; at a time
 pushlong #UnPackBufferPtr ; pointer to pointer to unpacking buffer
 pushlong #UnPackBufferSize ; pointer to word with the size of the
 ; unpacking buffer
 _UnPackBytes
 pla ; returns 0 bytes unpacked
 sta temp
 lda PackLength
 sec
 sbc temp ; subtracting it from our known
 sta PackLength ; length of packed data
 bne UnPackLoop ; this is always be non-zero

The problem is in the data and the buffer size. UnPackBytes is being told to unpack two bytes
($FFFF), which generate 256 bytes of unpacked data, into a 160-byte buffer. Instead of reporting
an error with this condition, UnPackBytes instead just does nothing and passes back zero as the
returned number of bytes unpacked. If you are relying on the unpacked byte count returned to
control your unpacking loop, then you may encounter this problem.

UnPackBytes can be used to unpack in multiple steps, of course, but it cannot unpack a partial
record. It cannot unpack 160 bytes of the 256 bytes specified in this record because
UnPackBytes does not maintain any state information, so it must unpack full records or do
nothing. If the buffer had been 256 bytes, this call would have succeeded.

The Fix

Fortunately, it’s easy to avoid this situation if you know that it can exist. Simply, always supply
UnPackBytes with a buffer that is big enough for it to unpack at least two bytes (a flag or count
byte and a data byte). The largest value of a flag or count word possible is $FF, 64 repeats of the
next byte taken as four bytes, which generates 256 unpacked bytes. So always give
UnPackBytes a 256-byte long output buffer and you should never encounter this problem.

Check Your Current Applications

Please check your current applications to see if you could encounter this problem. One of the most
likely places for this error to occur is in applications that process Apple Preferred (file type $C0,
auxiliary type $0002) pictures. While most pictures currently available are screen-width or less
(160 bytes or less per scan line), the Apple Preferred format and QuickDraw II both support
pictures that are wider than the current Apple IIGS screen. If someone has created a picture with a
PixelsPerScanLine value of 1,280 with a ModeWord of $0080, it would generate a scan line
that was 320 bytes long. If a scan line in this hypothetical picture were all white, for example, the
first two bytes of the packed scan line would be $FFFF, and applications that assume a standard
maximum 160 bytes per scan line would not handle this correctly.

Developer Technical Support May 1992

Apple IIGS
#94: Packing It In (and Out) 3 of 4

But That’s Not All…

In System Software earlier than 6.0, UnPackBytes has some other buffering problems of which
you need to be aware. The size and location of the input buffer (the buffer containing your packed
data) can also cause problems.

You can ignore this section if your application requires System 6.0.

Note: These problems only occur if you are doing multipass unpacks. If you always
unpack a packed data range in one pass (with one call to UnPackBytes for the
whole data set) then you are not affected by these problems, and the restrictions
described herein do not apply.

Multipass Restrictions

When performing a multipass unpack (as described on pp. 14-43..44 of the Apple IIGS Toolbox
Reference, Volume 1) the packed data needs to follow two rules.

Rule 1: Your packed data buffer cannot cross a bank boundary.
Rule 2: Your packed data buffer needs to be at least 65 bytes longer than the actual size

of the data.

These rules are required by a bug in UnPackBytes. When UnPackBytes begins to unpack a
record, it checks the record data to see if there are enough bytes in the current source buffer to
unpack the number of bytes requested in the record header (described on pg. 14-39 of the Apple
IIGS Toolbox Reference, Volume 1). If there are not enough bytes left for the current record (i.e.,
the header says to process 63 bytes, and there are only 30 left in the buffer), UnPackBytes
returns to the caller. The caller then adjusts the source buffer for the next pass based on the amount
of actual bytes unpacked, so the bytes left over from the last pass get processed the next time.

The problem occurs when the partial record is close to the end of a bank. When UnPackBytes
checks to see if there is enough data left in the buffer, the check is flawed when the real end of the
buffer is near the end of a bank, and a complete copy of the partial record would extend into the
next bank. UnPackBytes erroneously thinks that the record is complete, and happily unpacks the
remaining actual packed data, plus random information from the next bank. It continues to unpack
nonsense data until it fills the unpacking buffer and the number of bytes unpacked returned by the
UnPackBytes call is greater than the bufferSize parameter passed as input.

To prevent this bug from occurring, you need to make sure that the buffer for the packed data is at
least one record length away from the end of a memory bank. Since the largest packed data record
is one flag byte and 64 data bytes, adding 65 bytes to the end of your buffer does the trick. This
ensures that your packed data is 65 bytes away from the end.

Following is an example of a safe way to prepare your packed data buffer for multipass unpacking,
in APW assembly:

Apple II Technical Notes

Apple IIGS
4 of 4 #94: Packing It In (and Out)

* Some data space
myCallBlock dc i2’2’ ; two parameters
fileRefNum ds 2 ; file reference number
EOFreturned ds 4 ; file length returned by this call
myIDNumber ds 2 ; your application memory manager ID number
* assume that a packed data file is open, and it’s a plain packed screen image, not over 32K
 jsl $E100A8 ; ask GS/OS for the length of the data
 dc i2‘$2019’ ; Get_EOF call
 dc i4‘myCallBlock’

* Now we need a handle to read it into
 pha
 pha ; return space
 pea 0 ; size, high word
 lda EOFreturned ; the actual size of the packed data
 sta actualPackDataSize
 clc
 adc #65 ; ask for a handle 65 bytes longer than the data
 pha
 lda myIDnumber ; Memory Manager ID for your application
 pha
 pea $8010 ; attrLocked and attrNoCross
 pea 0
 pea 0 ; anywhere
 _NewHandle ; get the handle

Now you have a handle 65 bytes longer than your data that does not cross a bank boundary. You
are ready to read in the data and perform a multipass unpack.

PackBytes Buffers Count Too

PackBytes can also cause you problems if you do not plan for the worst-case situation. Unlike
the other toolbox compression routine ACECompress, PackBytes is not guaranteed to shrink
the source data. In fact, your data size may actually grow after a PackBytes call.

If you pass a data stream of 64 bytes, all with different values, to PackBytes, PackBytes puts
65 bytes in your output buffer—the 64 original data bytes and the flag byte of $3F, indicating “64
bytes follow, all different.” Unless you preprocess or analyze your data before packing to avoid
this situation, make sure your output buffer is large enough to hold the worst case situation, one
additional byte generated for every 64 bytes passed to PackBytes for compression.

Further Reference
• Apple IIGS Toolbox Reference, Volumes 1-3
• File Type Note for File Type $C0, Auxiliary Type $0002, Apple Preferred Format

