
Apple IIGS

#37: Free-Form Synthesizer Tips 1 of 3

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#37: Free-Form Synthesizer Tips

Revised by: Jim Mensch November 1988
Written by: Jim Mensch May 1988

This Technical Note is intended to help a person who is unfamiliar with the Apple IIGS Sound
Tool Set use the Free-Form Synthesizer effectively.

The primary function of the Free-Form Synthesizer is to allow an application program to start
one or more complex digitized or computed waveforms playing on the Apple IIGS without
further intervention from the application. The waveform is a series of bytes, each representing
the amplitude of your outgoing sound at a particular moment in time (defined by the sampling
frequency you set). After a call to FFStartSound, the Sound Tool Set takes care of all chores
involved in loading the DOC RAM, setting up registers, and actually playing your sound. Once
playing, your sound will continue until either the Sound Tool Set encounters a NIL pointer in the
waveform list, or until you call FFStopSound.

FFStartSound Parameters

FFStartSound has only two parameters: the first a Word containing channel, generator, and
mode information, and the second a Pointer to a parameter block.

12345678 0101112131415 9

DOC channel number ($0-$1)
top 3 bits should be set to 0

Generator number ($0-$E)

Reserved must be set to 0

Free-Form Synthesizer=$01
Note Synthesizer=$02

Reserved =$03-$07
Application defined = $08-$0F

Figure 1 – Channel-Generator-Mode Word

The Channel-Generator-Mode Word is broken down into 4 nibbles. The low-order nibble
specifies the particular synthesizer you are using. (Because this Note is only about the Free-

Apple II Technical Notes

2 of 3 Developer Technical Support

Form Synthesizer, we will be using only a 1 in this nibble.) The adjacent nibble must be set to 0
for now. The next nibble specifies which generator to use. The IIGS has 15 generators from
which to choose, and as the application designer, it is up to you to decide which one to use. It
might be appropriate, however, to call FFGeneratorStatus first to ensure that the generator
currently is available. (It could be in use already by a desk accessory or previously started
sound.) The high-order nibble specifies which channel to use. The IIGS supports two separate
sound channels for output. If you are using a stereo adapter, you could start up many sounds and
route them to either channel 0 or channel 1 to get a full stereo effect. (The channel is ignored if
you are not using a special piece of multi-channel hardware.)

The parameter block contains parameters describing the sound and how it should be played.
Here is a sample Pascal definition of that parameter block:

FFParmBlock = record
waveStart:Ptr;
waveSize:Integer;
freqOffset:Integer;
DOCBuffer:Integer; { High order byte significant }
bufferSize:Integer; { Low order byte significant }
nextWave:^FFParmBlock;
volSetting:Integer;

 end;

The first parameter is a 4-byte address telling the Free-Form Synthesizer where in memory it can
locate your sample data. The next parameter is a word specifying the number of 256-byte pages
of sound you wish to play. The waveform data should be a series of bytes, each representing one
sample. Wave tables must be exact multiples of 256 bytes.

Note: A zero value in the waveform can cause a sound to stop, so be sure to check your
data to ensure that this does not happen.

The frequency offset parameter specifies the sampling frequency that the Free-Form Synthesizer
should use during playback. This number can be computed by the following formula:

freqOffset = ((32*Sample rate in Hertz)/1645)

The frequency offset parameter is the most often misunderstood parameter, so I will explain a
little about sampling rates. The sampling rate is how many samples (bytes) per second to play.
If you have a digitized wave that represents 2 seconds of sound, and it takes up 44K of memory,
then it was sampled at 22 kHz (which, by the way, is good for full sound reproduction). The
sampling rate must be at least twice that of the maximum fundamental frequency you want to
sample. However, for good sound reproduction, you may want to sample at least eight times the
fundamental frequency in order to capture the higher harmonics of musical instruments and the
human voice.

The DOC starting address and buffer size tell the Free-Form Synthesizer which portion of the
64K sound RAM to use as a buffer during playback. The wave is taken from your waveform in
chunks and placed in sound RAM for playback. Each time the buffer nears empty, it will need to
be reloaded with more sound. The size of the buffer specified determines how often the Free-
Form Synthesizer must interrupt the 65816 to reload the buffer. The buffer size must be a power

November 1988

Apple IIGS

#37: Free-Form Synthesizer Tips 3 of 3

of two because of the way the sound General Logic Unit (GLU) specifies addresses. (The value
for this parameter must also be a power of two.) A good length to use would be at least 1/10
second of sound. For example, if you were using a sampling rate of 16 kHz (16,000 samples per
second), you would want a buffer at least 2,048 bytes long, or about 8 pages. It does not hurt to
round this number up. You manage the DOC RAM, so you should decide what memory to use.
It is usually a good idea to have multiple buffers if you have a chain of waves. (I like leaving
page zero free, as the Note Synthesizer uses the data in the first 256 bytes, and accidentally
placing a zero in that page could cause it to fail.)

The next wave pointer is a 4-byte pointer to the next parameter block. With this parameter you
can string together many waveforms for more continuous sound, or you can make your sounds
infinitely recursive by pointing back to the original wave form.

The volume setting is a word which represents the relative playback volume. It can range from 0
to 255.

Other Tips

When you shut down the Sound Tool Set, it will stop all pending sounds, so be sure to leave
ample time between starting and ending a sound. If you have a series of wave forms strung
together, you can change their parameters on the fly. Changes take effect as soon as the
waveform is started. (You could use this to find the correct sampling frequency of a wave, by
having the next wave pointer point back to the start of your parameter block. This would cause
the sound to play indefinitely. You then could change the freqOffset value, and the sound
would change each time it is restarted.)

Here is a sample code segment (in APW Assembler format) that creates a 1-kHz wave in
memory sampled at 16 kHz and plays it:

FFSound DATA

theSound ds $2000 ; FFSound wave...
MyFFRecord dc A4'theSound' ; address of wave

dc i'$20' ; size of wave in pages..
Rate dc i'311' ; 16-kHz sample rate

dc i'1' ; DOC starting address
dc i'$0800' ; DOC buffer size
dc a4'0' ; no next wave

Vol1 dc i'$007F' ; kinda medium..

; 1-kHz triangle wave sampled at 16 kHz one full segment
oneAngle dc i1'$40,$50,$60,$70,$80,$90,$A0,$B0'

dc i1'$C0,$B0,$A0,$90,$80,$70,$60,$50'
End

TestFF Start
Using FFSound

MakeWave ANop
ldx #$0000

MW0010 txa ; get index
and #$000F ; use just low nibble as index
tay ; into triangle wave table
lda oneAngle,y ;

Apple II Technical Notes

4 of 3 Developer Technical Support

sta theSound,X ; and store it into sound buf
inx
inx
cpx #$2000 ; we Done?
blt MW0010 ; nope better finish
PushWord #$0001
PushLong #MyFFRecord
_FFStartSound
rts
end

Further Reference
• Apple IIGS Toolbox Reference, Volume 2

