
File Type: $1B (27) Auxiliary Type: All 1 of 9

Apple II
File Type Notes

Developer Technical Support
File Type: $1B (27)
Auxiliary Type: All

Full Name: AppleWorks Spreadsheet File
Short Name: AppleWorks SS File

Revised by: Matt Deatherage & John Kinder, CLARIS Corporation September 1989
Written by: Bob Lissner February 1984

Files of this type and auxiliary type contain an AppleWorks® Spreadsheet file.
Changes since May 1989: Updated to include AppleWorks 2.1 and AppleWorks 3.0.

Files of type $1B and any auxiliary type contain an AppleWorks Spreadsheet file. AppleWorks
is published by CLARIS. CLARIS also has additional information on AppleWorks files SEG.PR
and SEG.ER. For information on AppleWorks, contact CLARIS at:

CLARIS Corporation
5201 Patrick Henry Drive
P.O. Box 58168
Santa Clara, CA 95052-8168

Technical Support
Telephone: (408) 727-9054
AppleLink: Claris.Tech

Customer Relations
Telephone: (408) 727-8227
AppleLink: Claris.CR

AppleWorks was created by Bob Lissner. AppleWorks 2.1 was done by Bob Lissner and John
Kinder of CLARIS. AppleWorks 3.0 was done by Rob Renstrom, Randy Brandt and Alan Bird of
Beagle Bros Software with John Kinder of CLARIS.

Definitions

The following definitions apply to AppleWorks files in addition to those defined for all Apple II
file types:

MRL Data base multiple record layout

Apple II File Type Notes

2 of 9 File Type: $1B (27) Auxiliary Type: All

SRL Data base single record layout
RAC Review/Add/Change screen
DB AppleWorks or /// E-Z Pieces Data Base
SS AppleWorks or /// E-Z Pieces Spreadsheet
WP AppleWorks or /// E-Z Pieces Word Processor
AW AppleWorks or /// E-Z Pieces

Auxiliary Type Definitions

The volume or subdirectory auxiliary type word for this file type is defined to control uppercase
and lowercase display of filenames. The highest bit of the least significant byte corresponds to
the first character of the filename, the next highest bit of the least significant byte corresponds to
the second character, etc., through the second bit of the most significant byte, which corresponds
to the fifteenth character of the filename.

AppleWorks performs the following steps when it saves a file to disk:

1. Zeros all 16 bits of the auxiliary type word.
2. Examines the filename for lowercase letters. If one is found, it changes the

corresponding bit in the auxiliary type word to 1 and changes the letter to
uppercase.

3. Examines the filename for spaces. If one is found, it changes the corresponding
bit in the auxiliary type word to 1 and changes the space to a period.

When files are read from disk, the filename and auxiliary type information from the directory file
entry are used to determine which characters should be lowercase and which periods should be
displayed as spaces. If you use the auxiliary type bytes for a different purpose, AppleWorks will
still display the filenames, but the wrong letters are likely lowercase.

File Version Changes

Certain features present in AppleWorks 3.0 files are not backward-compatible to 2.1 and earlier
versions. Such features are noted in the text. AppleWorks spreadsheet files which may not be
loaded by versions prior to 3.0 are identified by a non-zero byte at location +242, referred to as
location SSMinVers.

Those features added for AppleWorks 2.0, 2.1 and 3.0 not previously documented are indicated
with that version number in the margin.

Spreadsheet Files

Spreadsheet files start with a 300 byte header record that contains basic information about the
file, including column widths, printer options, window definitions, and standard values.

Developer Technical Support September 1989

File Type: $1B (27) Auxiliary Type: All 3 of 9

Header Record

The spreadsheet header record contains the following entries:

+000 to +003 Skip 4 bytes.
+004 to +130 Bytes The column width for each column.
+131 Byte Order of recalculation. ASCII R or C.
+132 Byte Frequency of recalculation. ASCII A or M.
+133 to +134 Word Last row referenced.
+135 Byte Last column referenced.
+136 Byte Number of windows: ASCII 1: just one window, S:

side by side windows, T: top and bottom windows.
+137 Byte Boolean: If there are two windows, are they

synchronized?
+138 to +161 The next 20 (approximately) variables are for the

current window. If there is only one window, it is the
current window. If there are two windows, the
current window is the window that had the cursor in
it.

+138 Byte Window standard format for label cells. 2: left
justified, 3: right justified, 4: centered.

+139 Byte Window standard format for value cells. 2: fixed, 3:
dollars, 4: commas, 5: percent, 6: appropriate

+140 Byte More of window standard format for value cells.
Number of decimal places to display. Values from 0
to 7.

+141 Byte Top screen line used by this window. This is the line
that the =====A=========B==== appears on.
Normally 1 unless there are top and bottom windows.

+142 Byte Leftmost screen column used by this window. This
is the column that the hundreds digit of the row
number appears in. Normally 0 unless there are side-
by-side windows.

+143 to +144 Word Top, or first, row appearing in titles area. This will
probably be 0 if there are no top titles.

+145 Byte Leftmost, or first, column appearing in left titles area.
This will probably be 0 if there are no left titles.

+146 to +147 Word Last row appearing in top titles area. This will
probably be zero if there are no top titles.

+148 Byte Last column appearing in left titles area. This will
probably be zero if there are no left titles.

+149 to +150 Word Top, or first, row appearing in the body of the
window. The body is defined as those rows that are
on the screen, but not in the titles area.

+151 Byte Leftmost, or first, column appearing in the body of
the window.

+152 Byte The screen line that the top body row goes on.
Normally 2, unless there are top titles or top and
bottom windows.

+153 Byte Leftmost screen column used for the leftmost body
column. Normally 4 unless there are side titles, or
side-by-side windows.

+154 to +155 Word Bottom, or last, row appearing in this window.
+156 Byte Rightmost, or last, column appearing in this window.

Apple II File Type Notes

4 of 9 File Type: $1B (27) Auxiliary Type: All

+157 Byte The screen line that the last body row goes on.
Normally $13 (19) unless there are top and bottom
windows.

+158 Byte The rightmost screen column used by this window.
Normally $4E (78) unless there are side-by-side
windows.

+159 Byte Number of horizontal screen locations used to display
the body columns. Normally $48 (72), because 8
columns of 9 characters each are the standard display.
This is affected by side-by-side windows, side titles,
and variable column widths.

+160 Byte Boolean: Rightmost column is not fully displayed.
This can only happen when the body portion of the
window is narrower than the width of a particular
column.

+161 Flag Byte Titles switch for this window. Bit 7: top titles, Bit 6:
side titles. These bits represent top titles, side titles,
both, and no titles.

+162 to +185 Window information for the second window. This is
meaningful only if there are two windows. This is
the information for the window that the cursor is not
currently in. See the descriptions for the current
window (+138 to +161).

+186 to +212 Not currently used.
+213 Byte Boolean: Cell protection is on or off.
+214 Not currently used.
+215 Byte Platen width value, in 10ths of an inch. For example,

a value of 80 inches entered by the user will show as
80 or $50.

+216 Byte Left margin value. All inches values are in 10ths of
an inch.

+217 Byte Right margin value.
+218 Byte Characters per inch.
+219 Byte Paper length value, in 10ths of an inch.
+220 Byte Top margin value.
+221 Byte Bottom margin value.
+222 Byte Lines per inch. 6 or 8.
+223 Byte Spacing: S(ingle, D(ouble, or T(riple. Expect these

three letters, even in European versions.
+224 to +237 Bytes If user has specified “Send special codes to printer,”

this is a 13-byte string containing those codes.
+238 Byte Boolean: Print a dash when an entry is blank.
+239 Byte Boolean: Print report header.
+240 Byte Boolean: Zoomed to show formulas.

2.1 +241 Byte Reserved; used internally.
3.0 +242 Byte SSMinVers. The minimum version of AppleWorks

needed to read this document. If this document
contains version 3.0-specific functions (such as
calculated labels or new functions), this byte will
contain the version number 30 ($1E). Otherwise, it
will be zero ($00).

+243 to +249 Reserved for future use.
+250 to +299 Available. Will never be used by AppleWorks. If

you are creating these files, you can use this area to
keep information that is important to your program.

Developer Technical Support September 1989

File Type: $1B (27) Auxiliary Type: All 5 of 9

Row Records

Row records contain a variable amount of information about each row that is non-blank. Each
row record contains enough information to completely build one row of the spreadsheet:

3.0 +000 to +001 Word Number of additional bytes to read from disk. $FFFF
means end of file. If SFMinVers is not zero, these
two bytes are invalid and should be skipped. The
first row record begins at +302 in an AW 3.0 SS file.

+002 to +003 Word Row number.
+004 Byte Beginning of actual information for the row. This

byte of each record will always be a control byte.
Other control bytes within each record define the
contents of the record. Control bytes may be:

$01-$7F This is a count of the number of
following bytes that are the
contents of a cell entry.

$81-$FE This (minus $80) is a count of the
number of columns to be skipped.
For example, $82 means skip two
columns.

$FF This indicates the end of the row.

Cell Entries

Cell entries contain all the information that is necessary to build one cell. There are several
types:

Value Constants

Value constants are cells that have a value that cannot change. This means that someone typed a
constant into the cell, 3.14159, for example.

+000 Flag Byte Bit 7 is always on.
Bit 6 on means that if the value is zero, display a blank instead
of a zero. This is for pre-formatted cells that still have no
value.
Bit 5 is always on.
Bit 4 on means that labels cannot be typed into this cell.
Bit 3 on means that values cannot be typed into this cell.
Bits 2,1, and 0 specify the formatting for this cell:

1 Use spreadsheet standard
2 Fixed
3 Dollars
4 Commas
5 Percent
6 Appropriate

+001 Flag Byte Bit 7 is always zero.
Bit 6 is always zero.
Bit 5 is always zero.

Apple II File Type Notes

6 of 9 File Type: $1B (27) Auxiliary Type: All

Bit 4 on indicates that this cell must be calculated the next
time this spreadsheet is calculated, even if none of the
referenced cells are changed. This bit makes sense on for cells
that have a calculated formula.
Bits 2, 1, and 0: Number of decimal places for fixed, dollars,
commas, or percent formats.

+002 to +009 8-byte SANE double format floating point number.

Value Labels

Note: The entire Value Labels cell record entry requires AppleWorks 3.0 or later.

Value labels are cells whose function has returned a label value. Formulas like @Lookup,
@Choose and @IF can all return labels as their results. Specific format:

+000 Flag Byte Bit 7 is always one.
Bit 6 on means not to display the cell. This was originally
intended for pre-formatted cells that still have no value. If a
value is placed in this cell, be sure to turn this bit off.
Bit 5 is always zero.
Bits 4, 3, 2, 1, and 0 are the same as regular label cells.

+001 Flag Byte Bit 7 is always one.
Bit 6 set indicates the last evaluation of this formula resulted
in @NA.
Bit 5 set indicates the last evaluation of this formula resulted
in @Error.
Bit 4 on indicates that this cell must be calculated the next
time this spreadsheet is calculated, even if none of the
referenced cells are changed.
Bit 3 is always one.
Bits 2 – 0 are ignored.

+002 to nnn String Pascal string containing characters to display.
+nnn+1 to xxx Bytes Various control bytes that are “tokens” representing the

formula that was typed by the user. They are defined below.

Value Formulas

Value formulas are cells that contain information that has to be evaluated. Formulas like
AA17+@sum(r19...r21) and @Error are examples. Specific format:

+000 Flag Byte Bit 7 is always on.
Bit 6 on means to not display the cell. This was originally
intended for pre-formatted cells that still have no value. If a
value is placed in this cell, be sure to turn off this bit.
Bit 5 is always off.
Bits 4, 3, 2, 1, and 0 are the same as value constants.

+001 Bit 7 is always on.
Bit 6 on indicates that the last evaluation of this formula
resulted in an @NA.
Bit 5 on indicates that the last evaluation of this formula
resulted in an @Error.
Bits 4, 2, 1, and 0 are the same as value constants.

+002 to +009 8-byte SANE double floating point number that is the most
recent evaluation of this cell.

Developer Technical Support September 1989

File Type: $1B (27) Auxiliary Type: All 7 of 9

+010 to nnn Various control bytes that are tokens representing the formula
that was entered by the user. They are:

Byte Means
3.0 $C0 @Deg
3.0 $C1 @Rad
3.0 $C2 @Pi
3.0 $C3 @True
3.0 $C4 @False
3.0 $C5 @Not
3.0 $C6 @IsBlank
3.0 $C7 @IsNA
3.0 $C8 @IsError
3.0 $C9 @Exp
3.0 $CA @Ln
3.0 $CB @Log
3.0 $CC @Cos
3.0 $CD @Sin
3.0 $CE @Tan
3.0 $CF @ACos
3.0 $D0 @ASin
3.0 $D1 @ATan2
3.0 $D2 @ATan
3.0 $D3 @Mod
3.0 $D4 @FV
3.0 $D5 @PV
3.0 $D6 @PMT
3.0 $D7 @Term
3.0 $D8 @Rate
2.0 $D9 @Round
2.0 $DA @Or
2.0 $DB @And

$DC @Sum
$DD @Avg
$DE @Choose
$DF @Count
$E0 @Error (followed by 3 bytes of zero)

3.0 $E1 @IRR
$E2 @If
$E3 @Int
$E4 @Lookup
$E5 @Max
$E6 @Min
$E7 @NA (followed by three bytes of zero)
$E8 @NPV
$E9 @Sqrt
$EA @Abs
$EB Not currently used
$EC Not equal (<>)
$ED greater than or equal to (>=)
$EE less than or equal to (<=)
$EF equals (=)
$F0 greater than (>)
$F1 less than (<)
$F2 comma (,)
$F3 exponentiation sign (^)

Apple II File Type Notes

8 of 9 File Type: $1B (27) Auxiliary Type: All

$F4 right parenthesis (“)”)
$F5 minus (-)
$F6 plus (+)
$F7 divide (/)
$F8 multiply (*)
$F9 left parenthesis (“(”)
$FA unary minus (-) i.e., -A3
$FB (unary plus (+) i.e., +A3)
$FC ellipses (…)
$FD Next 8 bytes are SANE double number
$FE Next 3 bytes are row, column reference

3.0 $FF Next n bytes are a Pascal string

Three of the codes require special information. Code $FD indicates that the next 8 bytes are a
SANE numerics package double precision floating point number. All constants within formulas
are carried in this manner.

Code $FE indicates that the next three bytes point at a cell:

+000 Byte $FE
+001 Byte Column reference. Add this byte to the column number of the

current cell to get the column number of the pointed at cell.
This value is sometimes negative, but Add always works.

+002 to +003 Word Row reference. Add this word to the row number of the
current cell to get the row number of the pointed at cell. This
value is sometimes negative, but Add always works.

Code $FF indicates that the next bytes are a String, where the byte immediately following the
$FF contains the length.

Developer Technical Support September 1989

File Type: $1B (27) Auxiliary Type: All 9 of 9

Propagated Label Cells

Propagated label cells are labels that place one particular ASCII character in each position of a
window. Handy for visual effects like underlining.

+000 Flag Byte Bit 7 is always zero.
Bit 6 is meaningless.
Bit 5 is always on.
Bit 4 and bit 3 are protection, just like value cells.
Bits 2, 1, and 0 are meaningless. Put a 1 here.

+001 Byte This is the actual character that is to be put in each position in
the cell.

Regular Label Cells

Regular label cells contain alphanumeric information, such as headings, names, and other
descriptive information.

+000 Flag Byte Bits 7, 6, and 5 are always zero.
Bits 4 and 3 are same as value cells.
Bits 2, 1, and 0 determine cell formatting:
01 Use spreadsheet standard formatting
02 Left justify
03 Right justify
04 Center

+001 to +nnn Bytes ASCII characters that actually display. The actual length was
defined earlier in the word that contained the actual number of
bytes to read from disk.

File Tags

All AppleWorks files normally end with two bytes of $FF; tags are anything after that.
Although File Tags were primarily designed by Beagle Bros, they can be used by any
application that needs to create or modify an AppleWorks 3.0 file.

Because versions of AppleWorks before 3.0 stop at the double $FF, they simply ignore
tags.

The File Tag structure is as follows:

+000 Byte Tag ID. Should be $FF.
+001 Byte 2nd ID byte. These values will be defined and

arbitrated by Beagle Bros Software. Beagle may be
reached at:

Beagle Bros Inc
6215 Ferris Square, #100
San Diego, CA 92121

Apple II File Type Notes

10 of 9 File Type: $1B (27) Auxiliary Type: All

+002 to +003 Word Data length. If this is the last tag on the file, the low
byte (+002) will be a count of the tags in this file, and
the high byte (+003) will be $FF.

+004 to nnn Bytes Actual tag data, immediately followed by the next
four-byte tag ID. These bytes do not exist for the last
tag.

There is a maximum of 64 tags per file. Each tag may be no larger than 2K.

AppleWorks is a registered trademark of Apple Computer, Inc. licensed to Claris
Corporation.

