
IBM Parallel Environment for AIX

Operation and Use, Volume 2
Version 3 Release 2

SA22-7426-01

IBM

IBM Parallel Environment for AIX

Operation and Use, Volume 2
Version 3 Release 2

SA22-7426-01

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 231.

Second Edition (December 2001)

This edition applies to version 3, release 2 of IBM Parallel Environment for AIX (product number 5765-D93) and to all
subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you
may address your comments to the following address:

International Business Machines Corporation

Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie, NY 12601-5400

United States of America

FAX (United States & Canada): 1+845+432-9405

FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)

Internet e-mail: mhvrcfs@us.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this book

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . ix

Tables . xi

About this book . xiii
Who should read this book . xiii
How this book is organized . xiii
Conventions and terminology used in this book xiv

Abbreviated names . xiv
How to send your comments . xv
National language support . xv
What’s new in Parallel Environment 3.2? xvi

New PE Benchmarker tools xvi
Improved parallel checkpointing capabilities xvi
MPI enhancements . xvii
DPCL is now an open source offering xviii
Removal of pedb debugger support xviii
Removal of VT trace collection support xviii
Commands no longer supported xviii

Chapter 1. Using the pdbx debugger 1
pdbx subcommands . 1
Starting the pdbx debugger . 4

Normal mode . 4
Attach mode . 6
Attach screen . 7

Loading the partition with the load subcommand 9
Displaying tasks and their states 10
Grouping tasks . 11
Controlling program execution 17
Examining program data . 24
Other key features . 27
Other important notes on pdbx 31
Exiting pdbx . 32

Chapter 2. Profiling parallel programs with Xprofiler 33
Before you begin . 33

About Xprofiler . 33
Requirements and limitations. 33
Xprofiler versus gprof . 34
Compiling applications to be profiled 34

Starting Xprofiler . 35
Xprofiler command line options 35
Loading files from the Xprofiler GUI 38
Setting the file search sequence 46

Understanding the Xprofiler display 48
The Xprofiler main window 48

Using the Xprofiler graphical user interface 53
Using the dialog window buttons 53
Using the search engine . 54
Using the save dialog windows 54
Using the dialog window filters 54
Using the Radio/Toggle buttons and sliders 54

© Copyright IBM Corp. 2000, 2001 iii

||
||
||
||
||
||
||
||

Manipulating the function call tree 57
Zooming in on the function call tree 57
Other viewing options . 62
Filtering what you see . 64
Clustering libraries together 70
Locating specific objects in the function call tree 73

Getting performance data for your application 75
Getting basic data. 75
Getting detailed data via reports 79
Looking at source code . 88

Saving screen images of profiled data 92

Chapter 3. Analyzing program performance using the PE Benchmarker
toolset . 97

What is the PE Benchmarker? 97
Using the Performance Collection Tool. 100

Using the Performance Collection Tool’s Graphical User Interface. 100
Using the Performance Collection Tool’s Command-Line Interface 105

Creating, Converting, and Viewing Information Contained In, UTE Interval Files 126
Converting AIX Trace Files Into UTE Interval Trace Files 128
Generating Statistics Tables From UTE Interval Trace Files 128
Converting UTE Interval Files Into SLOG Files Required By Argonne

National Laboratory’s Jumpshot Tool 130
Using the Profile Visualization Tool 131

Using the Profile Visualization Tool’s Graphical User Interface 131
Using the Profile Visualization Tool’s Command Line Interface 136

Appendix A. Parallel environment tools commands 139
pct . 140
Subcommands of the pct command 141

comment subcommand (of the pct command) 141
connect subcommand (of the pct command) 141
destroy subcommand (of the pct command) 142
disconnect subcommand (of the pct command) 143
exit subcommand (of the pct command) 143
file subcommand (of the pct command) 144
find subcommand (of the pct command) 145
function subcommand (of the pct command) 145
group subcommand (of the pct command) 147
help subcommand (of the pct command) 148
list subcommand (of the pct command) 148
load subcommand (of the pct command) 149
point subcommand (of the pct command). 151
profile add subcommand (of the pct command) 152
profile remove subcommand (of the pct command) 154
profile set path subcommand (of the pct command) 154
profile show subcommand (of the pct command) 154
resume subcommand (of the pct command). 155
run subcommand (of the pct command) 156
select subcommand (of the pct command) 156
set subcommand (of the pct command) 156
show subcommand (of the pct command) 157
start subcommand (of the pct command) 158
stdin subcommand (of the pct command). 158
suspend subcommand (of the pct command) 159
trace add subcommand (of the pct command) 159

iv IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
||
||
||
||
||
||
||
||
|
||
||
||
||

||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

trace remove subcommand (of the pct command) 161
trace set subcommand (of the pct command) 162
trace show subcommand (of the pct command) 163
wait subcommand (of the pct command) 164

pdbx . 165
Subcommands of the pdbx command 169

alias subcommand (of the pdbx command) 169
assign subcommand (of the pdbx command) 170
attach subcommand (of the pdbx command) 170
attribute subcommand (of the pdbx command) 170
back subcommand (of the pdbx command) 171
call subcommand (of the pdbx command) 171
case subcommand (of the pdbx command) 172
catch subcommand (of the pdbx command) 172
condition subcommand (of the pdbx command) 172
cont subcommand (of the pdbx command) 173
dbx subcommand (of the pdbx command) 173
delete subcommand (of the pdbx command) 174
detach subcommand (of the pdbx command) 174
dhelp subcommand (of the pdbx command) 175
display memory subcommand (of the pdbx command) 175
down subcommand (of the pdbx command) 176
dump subcommand (of the pdbx command). 176
file subcommand (of the pdbx command). 176
func subcommand (of the pdbx command) 176
goto subcommand (of the pdbx command) 177
gotoi subcommand (of the pdbx command) 177
group subcommand (of the pdbx command). 177
halt subcommand (of the pdbx command) 179
help subcommand (of the pdbx command) 179
hook subcommand (of the pdbx command) 180
ignore subcommand (of the pdbx command) 180
list subcommand (of the pdbx command) 181
listi subcommand (of the pdbx command) 182
load subcommand (of the pdbx command) 182
map subcommand (of the pdbx command) 183
mutex subcommand (of the pdbx command) 183
next subcommand (of the pdbx command) 183
nexti subcommand (of the pdbx command) 184
on subcommand (of the pdbx command) 184
print subcommand (of the pdbx command) 186
quit subcommand (of the pdbx command) 186
registers subcommand (of the pdbx command) 187
return subcommand (of the pdbx command) 187
search subcommand (of the pdbx command) 187
set subcommand (of the pdbx command). 188
sh subcommand (of the pdbx command) 188
skip subcommand (of the pdbx command) 188
source subcommand (of the pdbx command) 188
status subcommand (of the pdbx command) 189
step subcommand (of the pdbx command) 189
stepi subcommand (of the pdbx command) 190
stop subcommand (of the pdbx command) 190
tasks subcommand (of the pdbx command) 191
thread subcommand (of the pdbx command) 192
trace subcommand (of the pdbx command) 193

Contents v

||
||
||
||

unalias subcommand (of the pdbx command) 195
unhook subcommand (of the pdbx command) 195
unset subcommand (of the pdbx command) 196
up subcommand (of the pdbx command) 196
use subcommand (of the pdbx command) 196
whatis subcommand (of the pdbx command) 196
where subcommand (of the pdbx command) 197
whereis subcommand (of the pdbx command) 197
which subcommand (of the pdbx command). 197

pvt . 198
Subcommands of the pvt command 199

exit subcommand (of the pvt command) 199
export subcommand (of the pvt command) 199
load subcommand (of the pvt command) 199
report subcommand (of the pvt command) 199
sum subcommand (of the pvt command) 200

slogmerge . 201
uteconvert . 203
utemerge . 205
utestats . 207
xprofiler . 209

Appendix B. Command line flags for normal or attach mode 213

Appendix C. Customizing Xprofiler resources 215
Xprofiler resource variables . 216

Controlling fonts . 216
Controlling the appearance of the Xprofiler main window 216
Controlling variables related to the File menu 217
Controlling variables related to the View menu 220
Controlling variables related to the Filter menu. 221

Appendix D. Profiling programs with the AIX prof and gprof commands 223

Appendix E. Understanding and Creating PCT Hardware Counter Groups 225
Understanding the Default Hardware Counter Groups 226
Creating Hardware Counter Groups 228

Notices . 231
Trademarks. 232
Acknowledgments . 233

Glossary . 235

Bibliography . 243
Information formats . 243
Finding documentation on the World Wide Web 243
Accessing PE documentation online 243
RS/6000 SP publications . 244

SP planning publications . 244
SP software publications . 244

AIX publications . 245
DCE publications . 245
Red books . 245
Non-IBM publications . 245

vi IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

||
||
||
||
||
||
||
||
||
||
||

||
||
||

||

||

Index . 247

Contents vii

viii IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Figures

1. pdbx Attach screen . 8
2. Xprofiler Main Window with No Executables Loaded 39
3. Load Files Dialog Window . 40
4. Binary Executable File Area . 41
5. gmon.out Profile Data File(s) Area . 42
6. Command Line Options Area . 43
7. Sample Xprofiler Main Window. 49
8. Example of Function Boxes and Arcs in Xprofiler Display 52
9. Example Showing Radio Buttons, Toggle Buttons, and Slider 56

10. The Overview Window . 58
11. Cursor when movement of highlight box is under mouse control 58
12. Cursor when edge of highlight box is under mouse control 59
13. Cursor when corner of highlight box is under mouse control 59
14. Highlight Area Reduced in Size . 60
15. Magnified View of Xprofiler Display . 61
16. Left-to-Right Format. 63
17. Filter By Function Names Dialog window . 66
18. Filter By CPU Time Dialog window . 67
19. Filter By Call Counts Dialog window . 68
20. Xprofiler Window with Function Boxes Unclustered 71
21. Xprofiler Window with One Library Cluster Box Collapsed 72
22. Xprofiler Window with One Library Cluster Box Removed 73
23. Example of a Function Box Label . 75
24. Example of a call arc label . 76
25. Function Level Statistics Report window . 77
26. Flat Profile Report . 80
27. Call Graph Profile Report . 81
28. called/total, call/self, called/total field . 82
29. name/index/parents/children field . 83
30. Sample Function Index Report . 84
31. Sample Function Call Summary Report . 85
32. Sample Library Statistics Report . 86
33. Sample Source Code Window . 89
34. Sample Disassembler Code Window . 91
35. Screen Dump Options Dialog Window . 93
36. Overview of the PE Benchmarker Toolset . 99
37. Unified Trace Environment (UTE) Utilities . 127

© Copyright IBM Corp. 2000, 2001 ix

||
||

x IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Tables

1. Context Insensitive pdbx Subcommands. 2
2. Context Sensitive pdbx Subcommands . 3
3. Debugger Option Flags (pdbx) . 5
4. Task States . 14
5. Xprofiler Command Line Options . 35
6. Xprofiler GUI Command Line Options . 43
7. Command Line Flags for Normal or Attach Mode 213
8. Hardware counter groups for 630 CPUs . 226
9. Hardware Counter Groups for 604e CPUs . 227

© Copyright IBM Corp. 2000, 2001 xi

||
||

xii IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

About this book

This book describes the facilities and tools for the IBM® Parallel Environment (PE)
for AIX® program product and how to use them to debug and analyze parallel
programs. Specifically, it contains information on PE’s debuggers and profiling tools.

This book concentrates on the actual commands, graphical user interfaces, and use
of these tools as opposed to the writing of parallel programs. For this reason, you
should use this book in conjunction with IBM Parallel Environment for AIX: MPI
Programming Guide , (GC23-3894) and IBM Parallel Environment for AIX: MPL
Programming and Subroutine Reference (GC23-3893).

This book assumes that AIX 5L™ Version 5.1 (AIX 5L 5.1) or later, X-Windows, and
the PE software are already installed. It also assumes that you have been
authorized to run the Parallel Operating Environment (POE). The PE software is
designed to run on an IBM RS/6000 SP, an Eserver pSeries or RS/6000® network
cluster, or on a mixed system where additional pSeries or RS/6000 processors
supplement an SP™ system. For complete information on installing the PE software
and setting up users, see IBM Parallel Environment for AIX: Installation ,
(GC23-3892). Also, see the appropriate AIX 5L 5.1 or later documentation listed
under “AIX publications” on page 245. For information on POE and executing
parallel programs, see IBM Parallel Environment for AIX: Operation and Use,
Volume 1, Using the Parallel Operating Environment and IBM Parallel Environment
for AIX: Hitchhiker’s Guide.

For a list of related books and details about accessing online information, see
“Bibliography” on page 243.

Who should read this book
This book is designed primarily for end users and application developers. It is also
intended for those who run parallel programs, and some of the information and
tools covered should interest system administrators. Readers should have some
experience with graphical user interface concepts such as windows, pull-down
menus, and menu bars. They should also have knowledge of the AIX operating
system and the X-Window system. Where necessary, this book provides some
background information relating to these areas. More commonly, this book refers
you to the appropriate documentation.

How this book is organized
This book contains the following information:

v “Chapter 1. Using the pdbx debugger” on page 1 describes the Parallel
Environment’s command line debugger – pdbx . This tool uses a line-oriented
interface, allowing you to invoke a parallel program from an ASCII terminal.

v “Chapter 2. Profiling parallel programs with Xprofiler” on page 33 describes how
to profile your programs with the Parallel Environment’s Xprofiler.

v “Chapter 3. Analyzing program performance using the PE Benchmarker toolset”
on page 97 describes the various tools in the PE Benchmarker toolset. You can
use these tools for collecting and analyzing program event trace or hardware
performance data.

v “Appendix A. Parallel environment tools commands” on page 139 contains the
manual pages for the PE commands discussed throughout this book.

© Copyright IBM Corp. 2000, 2001 xiii

|
|
|
|

v “Appendix B. Command line flags for normal or attach mode” on page 213 shows
the command line flags for pdbx debugging in normal or attach mode.

v “Appendix C. Customizing Xprofiler resources” on page 215 describes how to
customize X-Windows resources for PE tools.

v “Appendix D. Profiling programs with the AIX prof and gprof commands” on
page 223 describes how to use the AIX profilers prof and gprof to profile parallel
programs.

v “Appendix E. Understanding and Creating PCT Hardware Counter Groups” on
page 225 describes the pre-defined hardware counter groups we have defined
for the Performance Collection Tool (part of the PE Benchmarker toolset). This
appendix also describes how you can create your own hardware counter groups.

Conventions and terminology used in this book
This book uses the following typographic conventions:

Convention Usage

bold Bold words or characters represent system elements that you must use literally, such
as: command names, file names, flag names, path names, PE component names
(pdbx , for example), and subroutines.

italic Italicized words or characters represent variable values that you must supply.

Italics are also used for book titles and for general emphasis in text.

constant width Examples and information that the system displays appear in constant-width
typeface.

Abbreviated names
Some of the abbreviated names used in this book follow.

Short Name Full Name

AIX Advanced Interactive Executive

CSS communication subsystem

DPCL dynamic probe class library

dsh distributed shell

GUI graphical user interface

HDF Hierarchical Data Format

IP Internet Protocol

MPI Message Passing Interface

MPL Message Passing Library

PE IBM Parallel Environment for AIX

PE MPI IBM’s implementation of the MPI standard for PE

PE MPI-IO IBM’s implementation of MPI I/O for PE

PM array program marker array

POE parallel operating environment

pSeries IBM Eserver pSeries

PSSP IBM Parallel System Support Programs for AIX

RISC reduced instruction set computer

xiv IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|
|
|

||

||

Short Name Full Name

rsh remote shell

RS/6000 IBM RS/6000

SDR System Data Repository

SP IBM RS/6000 SP

STDERR standard error

STDIN standard input

STDOUT standard output

US user space

How to send your comments
Your feedback is important in helping to provide the most accurate and high-quality
information. If you have any comments about this book or any other PE
documentation:

v Send your comments by e-mail to: mhvrcfs@us.ibm.com

Be sure to include the name of the book, the part number of the book, the
version of PE, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

v Fill out one of the forms at the back of this book and return it by mail, by fax, or
by giving it to an IBM representative.

National language support
For National Language Support (NLS), all PE components and tools display
messages located in externalized message catalogs. English versions of the
message catalogs are shipped with PE, but your site may be using its own
translated message catalogs. The AIX environment variable NLSPATH is used by
the various PE components to find the appropriate message catalog. NLSPATH
specifies a list of directories to search for message catalogs. The directories are
searched, in the order listed, to locate the message catalog. In resolving the path to
the message catalog, NLSPATH is affected by the values of the environment
variables LC_MESSAGES and LANG . If you get an error saying that a message
catalog is not found, and want the default message catalog:

ENTER
export NLSPATH=/usr/lib/nls/msg/%L/%N

export LANG=C

The PE message catalogs are in English and are located in these directories:
/usr/lib/nls/msg/C
/usr/lib/nls/msg/En_US
/usr/lib/nls/msg/en_US

If your site is using its own translations of the message catalogs, consult your
system administrator for the appropriate value of NLSPATH or LANG . For additional
information on NLS and message catalogs, see IBM Parallel Environment for AIX:
Messages, GA22-7419 and IBM AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

About this book xv

What’s new in Parallel Environment 3.2?
This release of the Parallel Environment contains a number of functional
enhancements, including:

v new PE Benchmarker tools

v improved parallel checkpointing capabilities

v support for 64-bit applications

v MPI enhancements

In addition, PE 3.2 includes these changes:

v PE now supports, and requires, AIX 5L 5.1.

v PE Version 2, Release 2 is no longer supported.

v The Dynamic Probe Class Library (DPCL) is no longer a part of PE, though it is
still shipped with PE. Instead, DPCL is now an open source offering that supports
PE.

v The pedb debugger has been removed.

v The VT parallel tracing facility has been removed.

The following sections describe these functional enhancements and changes in
more detail.

New PE Benchmarker tools
This release of PE contains a new suite of applications and utilities that you can
use to analyze the performance of programs. This suite of tools is called PE
Benchmarker and contains:

v the Performance Collection Tool, which enables you to collect either MPI and
user event data, or else hardware and operating system profiles for one or more
application processes. This tool is built on dynamic instrumentation technology
(the Dynamic Probe Class Library, or DPCL) which enables you to make the
decision of what data to collect at run time. Probes are placed in the running
executable to collect just the information you requested. This ability typically
results in a more acceptable intrusion cost than you would have with more
traditional styles of instrumentation.

v a set of Unified Trace Environment (UTE) utilities for converting one or more AIX
trace files (as output by the Performance Collection Tool) into UTE interval files.
Additional UTE utilities enable you to:

– generate statistics tables from UTE interval files.

– convert UTE interval files into a single SLOG file. You can analyze an SLOG
file using Jumpshot (a public domain tool developed by Argonne National
Laboratory).

v the Profile Visualization Tool, for viewing hardware and operating system profiles
collected by the Performance Collection Tool.

Improved parallel checkpointing capabilities
This release of PE includes more flexible parallel checkpoint/restart capabilities. In
previous releases, only POE/MPI applications submitted under LoadLeveler® in
batch mode could be checkpointed, and there were significant limitations. What’s
more, a checkpoint sequence could be initiated only by all tasks in the parallel MPI
program. In this release, PE’s checkpointing capabilities have been extended to
allow:

xvi IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|

|
|

|

|

|

|

|

|

|

|
|
|

|

|

|
|

|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|

|
|
|

|
|

|

|
|
|
|
|
|

v a user to initiate a checkpoint sequence explicitly by issuing the new command
poeckpt . Another new command, poerestart , enables a user to restart a POE
job using a checkpoint file.

v a single task in a parallel MPI or LAPI job to initiate a checkpoint sequence. It is
no longer necessary for all tasks in the job to call checkpointing functions.

v a system administrator or LoadLeveler to initiate a checkpoint sequence.

Also, many significant limitations of the checkpointing capabilities have been
removed, and the checkpointing compiler scripts (mpcc_chkpt , for example) are no
longer used.

MPI enhancements
With this release, PE MPI provides all of the functions in the MPI standard, except
for the functionality defined in the ″Process Creation and Management″ chapter of
MPI-2.

Additional command for starting MPI jobs
While you can continue to use the poe command to start MPI jobs, this release of
PE provides support for the mpiexec command described in the MPI-2 standard.
This command is not meant to replace the poe command; instead it is provided as
a portable way to start MPI programs, and should prove helpful for applications that
target multiple implementations of MPI.

Support for 64–bit applications
Certain architectures that PE supports, such as POWER3 SMP High Node,
POWER3 SMP Thin Node, and POWER3 Wide Node, can run applications using a
64-bit address space. Accordingly, the tools that are provided with PE, as well as
the MPI threads library, have been enhanced to support 64-bit applications on 64-bit
processors.

MPI-IO performance enhancements
To improve the performance of IBM’s implementation of MPI-IO, a variety of
optimizations have been made to this release of PE. For example, two new POE
environment variable/command-line flag pairs and one new file hint have been
added. The two new POE environment variable/command-line flag pairs are the:

v MP_IO_BUFFER_SIZE environment variable (-io_buffer_size flag), which
enables you to set the default size of buffers used by I/O agents.

v MP_IO_ERRLOG environment variable (-io_errlog flag), which enables you to
log errors that occurred at the file system level throughout the MPI-IO application
run.

The new file hint, IBM_sparse_access , enables you to specify whether the file
access requests from participating tasks are sparse or dense.

Extended collective communication
This release provides the MPI_IN_PLACE and intercommunicator semantic that
MPI-2 has added to a number of MPI 1.1 collective communication subroutines.
The new subroutines, MPI_ALLTOALLW and MPI_EXSCAN, are also provided. The
nonblocking collective subroutines, which have a prefix of MPE_I, are not
enhanced.

C++ and FORTRAN90 support
This release provides the C++ bindings described by MPI-2. C++ programmers can
now use PE MPI more naturally, as they no longer need to use the C bindings.

FORTRAN programs can now use the mpi module in place of mpif.h .

About this book xvii

|
|
|

|
|

|

|
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|

|

The nonblocking collective subroutines, which have a prefix of MPE_I, are not
enhanced for C++.

MPI-2 external interfaces support
With this release, PE now provides full support of MPI-2 external interfaces in the
MPI threads library. This support enables you to layer additional functionality on top
of MPI with an interface that is similar to MPI’s.

Miscellaneous MPI-2 enhancements
Some of the functions included in the ″Miscellany″ chapter of MPI-2 were provided
in prior releases of PE. This release provides the rest of these miscellaneous
functions.

DPCL is now an open source offering
The Dynamic Probe Class Library (DPCL) is no longer a part of the IBM PE for AIX
licensed program, but it is still shipped with PE for convenience. Instead, DPCL is
now available as an open source offering that supports PE. For more information on
the DPCL open source project, go to this World Wide Web address:

http://oss.software.ibm.com/developerworks/opensource/dpcl/

Removal of pedb debugger support
Beginning with this release, PE no longer includes the pedb parallel debugger. As a
result, the pedb command is no longer available. The pdbx parallel debugger,
however, is still supported; use it instead of pedb to debug your parallel
applications.

Removal of VT trace collection support
Beginning with this release, PE no longer supports the parallel trace collection
facility formerly used by the PE Visualization Tool (which was removed from PE in
release 3.1). Because the usefulness of examining these traces independent of VT
is limited, the VT trace facility has been replaced by the more robust tracing
capabilities of the new PE Benchmarker suite of tools.

Commands no longer supported
Beginning with this release, PE no longer supports these commands:

v mpcc_chkpt

v mpCC_chkpt

v mpxlf_chkpt

v mpxlf90_chkpt

v mpxlf95_chkpt

v pedb

xviii IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|

|
|
|
|

|
|
|
|

|

|
|
|
|

|
|

|

|
|
|
|

|

|
|
|
|
|

|

|

|

|

|

|

|

|

Chapter 1. Using the pdbx debugger

This chapter describes the pdbx debugger. This debugger extends the dbx
debugger’s line-oriented interface and subcommands. Some of these
subcommands, however, have been modified for use on parallel programs. The
pdbx debugger is a POE application with some modifications on the home node to
provide a user interface.

Before invoking a parallel program using pdbx for interactive debugging, you first
need to compile the program and set up the execution environment. See IBM
Parallel Environment for AIX: Operation and Use, Volume 1, Using the Parallel
Operating Environment for more information on the following:

v Compiling the program. Be sure to specify the -g flag when compiling the
program. This produces an object file with symbol table references needed for
symbolic debugging. It is also advisable to not use the optimization option, -O.
Using the debugger on optimized code may produce inconsistent and erroneous
results. For more information on the -g and -O compiler options, refer to their use
on other compiler commands such as cc and xlf . These compiler commands are
described in AIX 5L Version 5.1 Commands Reference or your online manual
pages.

v Copying files to individual nodes. Like poe , pdbx requires that your application
program be available to run on each node in your partition. To support source
level debugging, pdbx requires the source files to be available as well. You will
generally use the same mechanism to make the source files accessible as you
used for the application program.

v Setting up the execution environment.

As you read these steps, keep in mind that pdbx accepts almost all the option flags
that poe accepts, and responds to the same environment variables.

Also, throughout this book, keep in mind the following information.

The pSeries or RS/6000 processors of your system are called processor nodes. A
parallel program executes as a number of individual, but related, parallel tasks on a
number of your system’s processor nodes. The group of parallel tasks is called a
partition. The processor nodes are connected on the same network, so the parallel
tasks of your partition can communicate to exchange data or synchronize execution.

pdbx subcommands
Table 1 on page 2 and Table 2 on page 3 outline the pdbx subcommands described
in this chapter. Complete syntax information for all these subcommands is also
provided under the entry for the pdbx command in “Appendix A. Parallel
environment tools commands” on page 139.

The debugger supports most of the familiar dbx subcommands, as well as some
additional pdbx subcommands. In pdbx , command context refers to a setting that
controls which task(s) receive the subcommands entered at the pdbx command
prompt.

pdbx subcommands can either be context sensitive or context insensitive. The
debugger directs context sensitive subcommands to just the tasks in the current
command context. Command context has no bearing on context insensitive

© Copyright IBM Corp. 2000, 2001 1

|

commands, which control overall debugger behavior, and are generally processed
on the home node only. These include subcommands for setting help and other
information, and ending a pdbx session.

You can set the command context on a single task or a group of tasks as described
in “Setting command context” on page 14.

Table 1. Context Insensitive pdbx Subcommands

This subcommand: Is used to: For more information see:

alias [alias_name
string]

Set or display aliases. “Creating, removing, and listing
command aliases” on page 28

attach <[all |
task_list]>

Attach the debugger to some or all the tasks of a given
poe job.

“Attach mode” on page 6

detach Detach pdbx from all tasks that were attached. This
subcommand causes the debugger to exit but leaves the
poe application running.

“Exiting pdbx” on page 32

dhelp [dbx_command] Display a brief list of dbx commands or help information
about them.

“Accessing help for dbx
subcommands” on page 27

group <action>
[group_name]
[task_list]

Manipulate groups. The actions are add , change ,
delete , and list . To indicate a range of tasks, enter the
first and last task numbers, separated by a colon or
dash. To indicate individual tasks, enter the numbers,
separated by a space or comma.

“Grouping tasks” on page 11

help [subject] Display a list of pdbx commands and topics or help
information about them.

“Accessing help for pdbx
subcommands” on page 27

on <[group | task]>
[command]

Set the command context used to direct subsequent
commands to a specific task or group of tasks. This
subcommand can also be used to deviate from the
command context for a single command without
changing the current command context.

“Setting the current command
context” on page 14

quit End a pdbx session. “Exiting pdbx” on page 32

source <cmd_file> Execute pdbx subcommands from a specified file.
Note: The file may contain context sensitive
commands.

“Reading subcommands from a
command file” on page 29

tasks [long] Display information about all the tasks in the partition. “Displaying tasks and their states”
on page 10

unalias alias_name Remove a command alias specified by the alias
subcommand.

“Creating, removing, and listing
command aliases” on page 28

2 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Table 2. Context Sensitive pdbx Subcommands

This Subcommand: Is used to: For more information see:

delete <[event_list | * |
all]>

Remove breakpoints and tracepoints set by the stop and
trace subcommands. To indicate a range of events,
enter the first and last event numbers, separated by a
colon or a dash. To indicate individual events, enter the
number(s), separated by a space or comma.

“Deleting pdbx events” on
page 22

dbx <dbx_command> Issue a dbx subcommand directly to the dbx sessions
running on the remote nodes. This subcommand is not
intended for casual use. It must be used with caution,
because it circumvents the pdbx server which normally
manages communication between the user and the
remote dbx sessions. It enables experienced dbx users
to communicate directly with remote dbx sessions, but
can cause problems as pdbx will have no knowledge of
the communication that transpired.
Note: In addition to the pdbx subcommands shown in
this table, you can use most of the dbx subcommands.
The dbx subcommands are all context sensitive. The
only dbx subcommands that you cannot use are clear ,
detach , edit , multproc , prompt , run , rerun , screen ,
and the sh subcommand with no arguments.

the online PE manual page for
pdbx . This manual page also
appears in “Appendix A. Parallel
environment tools commands” on
page 139.

hook Regain control over an unhooked task. “Unhooking and hooking tasks” on
page 23

list [line_number |
line_number,
line_number |
procedure]

Display lines of the current source file, or of a procedure. “Displaying source” on page 26

load <program>
[program_arguments]

Load a program on each node in the current context.
This can only be issued once per task per pdbx session.
pdbx will look for the program in the current directory
unless a relative or absolute pathname is specified.

“Loading the partition with the
load subcommand” on page 9

print <[expression |
procedure]>

Print the value of an expression, or run a procedure and
print the return code of that procedure.

“Viewing program variables” on
page 24

status [all] Display a list of breakpoints and tracepoints set by the
stop and trace subcommands in the current context. If
“all” is specified, all events, regardless of context are
shown.

“Checking event status” on
page 23

stop Set a breakpoint for tasks in the current context.
Breakpoints are stopping places in your program that
halt execution.

“Setting breakpoints” on page 18

trace Set a tracepoint for tasks in the current context.
Tracepoints are places in your program that, when
reached during execution, cause the debugger to print
information about the state of the program.

“Setting tracepoints” on page 20

unhook Unhook a task or group of tasks. Unhooking allows the
task(s) to run without intervention from the debugger.

“Unhooking and hooking tasks” on
page 23

where Display a list of active procedures and functions. “Viewing program call stacks” on
page 24

<Ctrl-c > Regain debugger control when some tasks in the current
context are running. This causes a pdbx subset prompt
to be displayed, which allows a subset of the pdbx
function to be performed.

“Context switch when blocked” on
page 16

Chapter 1. Using the pdbx debugger 3

Starting the pdbx debugger
You can start the pdbx debugger in either normal mode or attach mode. In normal
mode your program runs under the control of the debugger. In attach mode you
attach to a program that is already running. Certain options and functions are only
available in one of the two modes. Since pdbx is a source code debugger, some
files need to be compiled with the -g option so that the compiler provides debug
symbols, source line numbers, and data type information.

When the application is started using pdbx in normal mode, debugger control of the
application is given to the user by default at the first executable source line within
the main routine. This is function main in C code or the routine defined by the
program statement in Fortran. In Fortran, if there is no program statement, the
program name defaults to main. If the file containing the main routine is not
compiled with -g the debugger will exit. The environment variable
MP_DEBUG_INITIAL_STOP can be set before starting the debugger to manually
set an alternate file name and source line where the user initially receives debugger
control of the application. Refer to the appendix on POE environment variables and
command-line flags in IBM Parallel Environment for AIX: Operation and Use,
Volume 1, Using the Parallel Operating Environment

Normal mode
The way you start the debugger in normal mode depends on whether the
program(s) you are debugging follow the SPMD (Single Program Multiple Data) or
MPMD (Multiple Program Multiple Data) model of parallel programming. In the
SPMD model, the same program runs on each of the nodes in your partition. In the
MPMD model, different programs can run on the nodes of your partition.

If you are debugging an SPMD program, you can enter its name on the pdbx
command line. It will be loaded on all the nodes of your partition automatically. If
you are debugging an MPMD program, you will load the tasks of your partition after
the debugger is started. pdbx will look for the program in the current directory
unless a relative or absolute pathname is specified.

ENTER
pdbx [program [program_options]] [poe opt ions] [-c command_file] [-d
nesting_depth] [-I directory [-I directory]...] [-F] [-x]

This starts pdbx . If you specified a program, it is loaded on each node of
your partition and you see the message:

0031-504 Partition loaded ...

You will then see the pdbx prompt:

pdbx(all)

The prompt shows the command context all. For more information see
“Setting command context” on page 14.

ENTER
pdbx -a poe process id [limited poe options] [-c command_file] [-d
nesting_depth] [-I directory [-I directory]...] [-F] [-x]

This starts pdbx in attach mode. See “Attach mode” on page 6 for more
information.

4 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

ENTER
pdbx -h

This writes the pdbx usage to STDERR. It includes pdbx command line
syntax and a description of pdbx options.

The options you specify with the pdbx command can be program options, POE
options, or pdbx options listed in Table 3. Program options are those that your
application program will understand.

You can use the same command-line flags on the pdbx command as you use when
invoking a parallel program using the poe command. For example, you can override
the MP_PROCS variable by specifying the number of processes with the -procs
flag. Or you could use the -hostfile flag to specify the name of a host list file. For
more information on the POE command-line flags, see IBM Parallel Environment for
AIX: Operation and Use, Volume 1, Using the Parallel Operating Environment

Note: poe uses the PATH environment variable to find the program, while pdbx
does not.

After pdbx initializes, the pdbx command prompt displays to indicate that pdbx is
ready for a command.

Table 3. Debugger Option Flags (pdbx)

Use this flag: To: For example:

-a Attach to a running poe job by specifying its process id.
This must be executed from the node where the poe job
was initiated. When using the debugger in attach mode
there are some debugger command line arguments that
should not be used. In general, any arguments that control
how the partition is set up or specify application names and
arguments should not be used.

To attach the pdbx debugger to an
already running poe job.

ENTER
pdbx -a <poe_process_id>

-c
Read pdbx startup commands from the specified
commands_file. The commands stored in the specified file
are executed before command input is accepted from the
keyboard.

If the -c flag is not used, the pdbx debug program attempts
to read startup commands from the file .pdbxinit. To find this
file, it first looks in the current directory, and then in the
user’s home directory.

In a pdbx session, you can also read commands from a file
using the source subcommand. “Reading subcommands
from a command file” on page 29 describes how to use this
subcommand in pdbx .

To start the pdbx debugger and
read startup commands from a file
called start.cmd:

ENTER
pdbx -c start.cmd

-d Set the limit for the nesting of program blocks. The default
nesting depth limit is 25. This flag is passed to dbx
unmodified.

To specify a nesting depth limit:

ENTER
pdbx -d nesting.depth

Chapter 1. Using the pdbx debugger 5

Table 3. Debugger Option Flags (pdbx) (continued)

Use this flag: To: For example:

-F This flag can be used to turn off lazy reading mode. Turning
lazy reading mode off forces the remote dbx sessions to
read all symbol table information at startup time. By default,
lazy reading mode is on.

Lazy reading mode is useful when debugging large
executable files, or when paging space is low. With lazy
reading mode on, only the required symbol table information
is read upon initialization of the remote dbx sessions.
Because all symbol table information is not read at dbx
startup time when in lazy reading mode, local variable and
related type information will not be initially available for
functions defined in other files. The effect of this can be
seen with the whereis command, where instances of the
specified local variable may not be found until the other files
containing these instances are somehow referenced.

To start the pdbx debugger and
read all symbol table information:

ENTER
pdbx -F

-h Write the pdbx usage to STDERR then exit. This includes
pdbx command line syntax and a description of pdbx
options.

ENTER
pdbx -h

-I

(upper case i)

Specify a directory to be searched for an executable’s
source files. This flag must be specified multiple times to set
multiple paths. (Once pdbx is running, this list can be
overridden on a group or single node basis with the use
command.)

To add directory1 to the list of
directories to be searched when
starting the pdbx debugger:

ENTER
pdbx -I dir1

You can add as many directories as
you like to the directory list in this
way. For example, to add two
directories:

ENTER
pdbx -I dir1 -I dir2

-x Prevent the dbx command from stripping _ (trailing
underscore) characters from symbols originating in Fortran
source code. This flag allows dbx to distinguish between
symbols which are identical except for an underscore
character, such as xxx and xxx_.

To prevent trailing underscores from
being stripped from symbols in
Fortran source code:

ENTER
pdbx -x

These pdbx flags are closely tied to the flags supported by dbx . For more
information on the option flags described in this table, refer to their use with dbx as
described in AIX 5L Version 5.1 Commands Reference and AIX 5L Version 5.1
General Programming Concepts: Writing and Debugging Programs.

For a listing of pdbx subcommands, you can also refer to its online manual page.
This manual page also appears in “Appendix A. Parallel environment tools
commands” on page 139.

Attach mode
The pdbx debugger provides an attach feature, which allows you to attach the
debugger to a parallel application that is currently executing. This feature is typically
used to debug large, long running, or apparently “hung” applications. The debugger
attaches to any subset of tasks without restarting the executing parallel program.

6 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Parallel applications run on the partition managed by poe . For attach mode, you
must specify the appropriate process identifier (PID) of the poe job, so the
debugger can attach to the correct application processes contained in that particular
job. To get the PID of the poe job, enter the following command on the node where
poe was started:

$ ps -ef | grep poe

You initiate attach mode by invoking pdbx with the -a flag and the PID of the
appropriate poe process:

$ pdbx -a <poe PID>

For example, if the process id of the poe process is 12345 then the command would
be:

$ pdbx -a 12345

After you invoke the debugger in attach mode, it displays a list of tasks you can
choose. The paging tool used to display the menu will default to pg -e unless
another pager is specified by the PAGER environment variable.

pdbx starts by showing a list of task numbers that comprise the parallel job. The
debugger obtains this information by reading a configuration file created by poe
when it begins a job step. At this point you must choose a subset of that list to
attach the debugger. Once you make a selection and the attach debug session
starts, you cannot make additions or deletions to the set of tasks attached to. It is
possible to attach a different set of tasks by detaching the debugger and attaching
again, then selecting a different set of tasks.

The debugger attaches to the specified tasks. The selected executables are
stopped wherever their program counters happen to be, and are then under the
control of the debugger. The other tasks in the original poe application continue to
run. pdbx displays information about the attached tasks using the task numbering
of the original poe application partition.

Attach screen
Figure 1 shows a sample pdbx Attach screen.

Chapter 1. Using the pdbx debugger 7

The pdbx Attach screen contains a list of tasks and, for each task, the following
information:

v Task - the task number

v IP - the ip address of the node on which the task/application is running

v Node - the name of the node on which the task/application is running, if available

v PID - the process identifier of the task/application

v Program - the name of the application and arguments, if any.

After initiating attach mode, you can select a set of tasks to attach to. At the
command prompt:

ENTER
attach all

OR

ENTER
attach followed by the task_list (see “Syntax for task_list” on page 11 for
the correct syntax).

It is also possible to use the quit or help command at this prompt. Any other
command will produce an error message. The quit command will not kill the
application at this point, since the debugger has not been attached as of yet.

Note: When debugging in attach mode, the load subcommand is not available. An
error message is displayed if an attempt is made to use it.

Other compiling options
pdbx provides substantial information when debugging an executable compiled with
the -g option. However, you may find it useful to attach to an application not
compiled with -g. pdbx allows you to attach to an application not compiled with -g,
however, the information provided is limited to a stack trace.

ATTENTION: 0029-9049 The following environment variables have been
ignored since they are not valid when starting the debugger
in attach mode -

'MP_PROCS'.

To begin debugging in attach mode, select a task or tasks to attach.

Task IP Addr Node PID Program
0 9.117.8.62 pe02.kgn.ibm.com 23870 ftoc
1 9.117.8.63 pe03.kgn.ibm.com 14908 ftoc
2 9.117.8.64 pe04.kgn.ibm.com 14400 ftoc
3 9.117.8.65 pe05.kgn.ibm.com 13114 ftoc
4 9.117.8.66 pe06.kgn.ibm.com 11330 ftoc
5 9.117.8.67 pe07.kgn.ibm.com 19784 ftoc
6 9.117.8.68 pe08.kgn.ibm.com 19524 ftoc
7 9.117.8.69 pe09.kgn.ibm.com 22086 ftoc

At the pdbx prompt enter the "attach" command followed by a
list of tasks or "all". (ex. "attach 2 4 5-7" or "attach all")
You may also type "help" for more information or "quit" to exit
the debugger without attaching.

pdbx(none)

Figure 1. pdbx Attach screen

8 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

You can also attach pdbx to an application compiled with both the -g and
optimization flags. However, the optimized code can cause some confusion when
debugging. For example, when stepping through code, you may notice the line
marker points to different source lines than you would expect. The optimization
causes this re-mapping of instructions to line numbers.

Command line arguments
You should not use certain command line arguments when debugging in attach
mode. If you do, the debugger will not start, and you will receive a message saying
the debugger will not start. In general, do not use any arguments that control how
the debugger partition is set up or that specify application names and arguments.
You do not need information about the application, since it is already running and
the debugger uses the PID of the poe process to attach. Other information the
debugger needs to set up its own partition, such as node names and PIDs, comes
from the configuration file and the set of tasks you select. See “Appendix B.
Command line flags for normal or attach mode” on page 213 for a list of command
line flags showing which ones are valid in normal and in attach debugging mode.

The information in the appendix is also true for the corresponding environment
variables, however pdbx ignores the invalid setting. The debugger displays a
message containing a list of the variables it ignores, and continues.

For example, if you had MP_PROCS set, when the debugger starts in attach mode
it ignores the setting. It displays a message saying it ignored MP_PROCS, and
continues initializing the debug session.

Loading the partition with the load subcommand
Before you can debug a parallel program with the pdbx debugger, you need to load
your partition. If you specified a program name on the pdbx command, it is already
loaded on each task of your partition. If not, you need to load your partition using
the load subcommand. pdbx will look for the program in the current directory
unless a relative or absolute pathname is specified. The Partition Manager allocates
the tasks of your partition when you enter the pdbx command. It does this either by
connecting to the Resource Manager or by looking to your host list file. The number
of tasks in the partition depends on the value of the MP_PROCS environment
variable (or the value specified on the -procs flag) when you enter the pdbx
command.

The following pdbx commands are available before the program is loaded on all
tasks:

v alias

v group

v help

v load

v on

v quit

v source

v tasks

v unalias

Chapter 1. Using the pdbx debugger 9

To load the same executable on all tasks of the
partition:

To load separate executables on the partition:

CHECK
the pdbx command prompt to make sure the
command context is on all tasks. The context all
is the default when you start the pdbx debugger,
so the prompt should read:

pdbx(all)
If the command context is not set on all tasks, reset it. To
do this:

ENTER
on all

Once the command context is on all tasks:

ENTER
load program [program_options]

The specified program is loaded onto all tasks in
the partition, and the message “Partition
loaded...” displays. The parallel program runs up
to the first executable statement and stops.

Note: The example above has the same effect as
putting the program name and options on the command
line.

SET the command context before loading each
program. For example, say your partition
consists of five tasks numbered 0 through 4. To
load a program named program1 on task 0 and
a program named program2 on tasks 1 through
4, you would:

ENTER
on 0

The debugger sets the command context on
task 0

ENTER
load program1 [program_options]

The debugger loads program1 on task 0.

ENTER
group add groupa 1-4

The debugger creates a task group named
groupa consisting of tasks 1 through 4.

ENTER
on groupa

The debugger sets the command context on
tasks 1 through 4.

ENTER
load program2 [program_options]

The debugger loads program2 onto tasks 1
through 4, and the message “Partition loaded...”
displays. The parallel program runs up to the
first executable statement and stops.

Displaying tasks and their states

With the tasks subcommand, you display information about all the tasks in the
partition. Task state information is always displayed (see Table 4 on page 14 for
information on task states). If you specify “long” after the command, it also displays
the name, ip address, and job manager number associated with the task.

Following is an example of output produced by the tasks and tasks long
command.
pdbx(others) tasks
0:D 1:D 2:U 3:U 4:R 5:D 6:D 7:R

pdbx(others) tasks long
0:Debug ready pe04.kgn.ibm.com 9.117.8.68 -1
1:Debug ready pe03.kgn.ibm.com 9.117.8.39 -1
2:Unhooked pe02.kgn.ibm.com 9.117.11.56 -1
3:Unhooked augustus.kgn.ibm.com 9.117.7.77 -1
4:Running pe04.kgn.ibm.com 9.117.8.68 -1
5:Debug ready pe03.kgn.ibm.com 9.117.8.39 -1
6:Debug ready pe02.kgn.ibm.com 9.117.11.56 -1
7:Running augustus.kgn.ibm.com 9.117.7.77 -1

10 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Grouping tasks
You can set the context on a group of tasks by first using the context insensitive
group subcommand to collect a number of tasks under a group name you choose.
None of these tasks need to have been loaded for you to include them in a group.
Later, you can set the context on all the tasks in the group by specifying its group
name with the on subcommand.

For example, you could use the group subcommand to collect a number of tasks
(tasks 0, 1, and 2) as a group named groupa. Then, to set the context on tasks 0,
1, and 2, you would:

ENTER
on groupa

The debugger sets the command context on tasks 0, 1, and 2.

Another use of the group subcommand is to give a name to a task. For example,
assume you have a typical master/worker program. Task 0 is the master task,
controlling a number of worker tasks. You could create a group named master
consisting of just task 0. Then, to set the context on the master task you would:

ENTER
on master

The debugger sets the command context on task 0. Entering on master,
therefore, is the same as entering on 0, but would be more meaningful and
easier to remember.

The group subcommand has a number of actions. You can use it to:
v Create a task group, or add tasks to an existing task group
v Delete a task group, or delete tasks from an existing task group
v Change the name of an existing task group
v List the existing task groups, or list the members of a particular task group.

Syntax for group_name
Provide a group name that is no longer than 32 characters which starts with an
alphabetic character, and is followed by any alphanumeric character combination.

Syntax for task_list
To indicate a range of tasks, enter the first and last task numbers, separated by a
colon or dash. To indicate individual tasks, enter the numbers, separated by a
space or comma.

Note: Group names “all”, “none”, and “attached” are reserved group names. They
are used by the debugger and cannot be used in the group add or group
delete commands. However, the group “all” or “attached” can be renamed
using the group change command, if it currently exists in the debugging
session.

Adding a task to a task group
To add a task to a new or already existing task group, use the add action of the
group subcommand. The syntax is:

group add group_name task_list

If the specified group_name already exists, then the debugger adds the tasks in
task_list to that group. If the specified group_name does not yet exist, the debugger
creates it.

Chapter 1. Using the pdbx debugger 11

The variable task_list can be: For example, to add
the following
task(s) to groupa:

You would ENTER: The following message
displays:

a single task task 6 group add groupa 6 1 task was added to group
"groupa".

a collection of tasks tasks 6, 8, and 10 group add groupa 6 8 10 3 tasks were added to group
"groupa".

a range of tasks tasks 6 through 10 group add groupa 6:10 5 tasks were added to group
"groupa".

a range of tasks tasks 6 through 10 group add groupa 6-10 5 tasks were added to group
"groupa".

Deleting tasks from a task group
To delete tasks from a task group, use the delete action of the group
subcommand. The syntax is:

group delete group_name [task_list]

The variable task_list can be: For example, to
delete the following
from groupa:

You would ENTER: The following message
displays:

a single task task 6 group delete groupa 6 Task: 6 was successfully
deleted from group "groupa".

a collection of tasks task 6, 8, and 10 group delete groupa 6 8
10

Task: 6 was successfully
deleted from group "groupa".
Task: 8 was successfully
deleted from group "groupa".
Task: 10 was successfully
deleted from group "groupa".

a range of tasks tasks 6 through 10 group delete groupa 6:10 Task: 6 was successfully
deleted from group "groupa".
Task: 7 was successfully
deleted from group "groupa".
Task: 8 was successfully
deleted from group "groupa".
Task: 9 was successfully
deleted from group "groupa".
Task: 10 was successfully
deleted from group "groupa".

a range of tasks tasks 6 through 8 group delete groupa 6-8 Task: 6 was successfully
deleted from group "groupa".
Task: 7 was successfully
deleted from group "groupa".
Task: 8 was successfully
deleted from group "groupa".

12 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

You can also use the delete action of the group subcommand to delete an entire
task group. For example, to delete the task group groupa, you would:

ENTER
group delete groupa

The debugger deletes the task group.

Note: The pre-defined task group all cannot be deleted.

Changing the name of a task group
To change the name of an existing task group, use the change action of the group
subcommand. The syntax is:

group change old_group_name new_group_name

For example, say you want to change the name of task group group1 to groupa. At
the pdbx command prompt, you would:

ENTER
group change group1 groupa

The following message displays:
Group "group1" has been renamed to "groupa".

Listing task groups
To list task groups, their members, and task states use the list action of the group
subcommand. The syntax is:

group list [group_name]

You can use the list
action to:

For example, if
you ENTER:

Then:

list all the task
groups.

group list The debugger displays a list of all existing task groups and their
members. An example of such a list is shown below.

pdbx(0) group list

allTasks 0:R 1:D 2:D 3:U 4:U 5:D 6:D
7:D 8:D 9:D 10:D 11:D

evenTasks 0:R 2:D 4:U 6:D 8:D 10:R
oddTasks 1:D 3:U 5:D 7:D 9:D 11:R
master 0:R
workers 1:D 2:D 3:U 4:U 5:D 6:D 7:D

8:D 9:D 10:R 11:R

list all the members
of a single task group

group list oddTasks
The debugger displays a list of all the members of task group
oddTasks.

1:D 3:U 5:D 7:D 9:D 11:R

When you list tasks, a single letter will follow each task number. The following table
represents the state of affairs on the remote tasks. Common states are “debug
ready”, where pdbx commands can be issued, and running, where the application
has control and is executing.

Chapter 1. Using the pdbx debugger 13

Table 4. Task States

This letter displayed
after a task number:

Represents: And indicates that:

N Not loaded the remote task has not yet been loaded with an executable.

S Starting the remote task is being loaded with an executable.

D Debug ready the remote task is stopped and debug commands can be issued.

R Running the remote task is in control and executing the program.

X Exited the remote task has completed execution.

U Unhooked the remote task is executing without debugger intervention.

E Error the remote task is in an unknown state.

When thinking about “task states”, consider the perspective of the remote tasks
which are each running a copy of dbx . pdbx attempts to coordinate activities in
multiple dbx sessions. There are times when this is not possible, typically when one
or more tasks have not yet stopped. In this case, from a remote task’s dbx
perspective, a dbx prompt has not yet been displayed, and your application is still
running. Similarly, pdbx will not display a pdbx prompt until all the remote dbx
sessions are “debug ready”.

Setting command context
You can set the current command context on a specific task or group of tasks so
that the debugger directs subsequent context sensitive subcommands to just that
task or group. This section also shows how you can temporarily deviate from the
current command context you set.

Setting the current command context: When you begin a pdbx session, the
default command context is set on all tasks. The pdbx command prompt always
indicates the current command context setting, so it initially reads:
pdbx(all)

You can use the on subcommand to set the current command context on one task
or a group of tasks. The debugger then directs context sensitive subcommands to
just the task(s) specified by group or task name.

You can use the on subcommand to set the current command context before you
load your partition. The debugger will only direct context sensitive subcommands to
the tasks in the current context. The syntax of the on subcommand is:

on {group_name | task_id}

For example, assume you have a parallel program divided into tasks numbered 0
through 4. To set the current command context on just task 1:

ENTER
on 1

The pdbx command prompt indicates the new setting of the current
command context.
pdbx(1)

You can also use the on subcommand to set the current command context on all
the tasks in a specified task group. The task group all – consisting of all tasks – is
automatically defined for you and cannot be deleted. To set the command context
back on all tasks, you would:

14 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

ENTER
on all

The pdbx command prompt shows that the current command context has
changed, and that the debugger will now direct context sensitive
subcommands to all tasks in the partition.
pdbx(all)

When you switch context using on context_name, and the new context has at least
one task in the “running” state, a message is displayed stating that at least one task
is in the “running” state. No pdbx prompt is displayed until all tasks in this context
are in the “debug ready” state.

When you switch to a context where all tasks are in the “debug ready” state, the
pdbx prompt is displayed immediately, indicating pdbx is ready for a command.

At the pdbx subset prompt, on context_name causes one of the following to
happen: either a pdbx prompt is displayed; or a message is displayed indicating the
reason why the pdbx prompt will be displayed at a later time. This is generally
because one of the tasks is in “running” state. See “Context switch when blocked”
on page 16 for more information.

Temporarily deviating from the current command context: There are times
when it is convenient to deviate from the current command context for a single
command. You can temporarily deviate from the command context by entering the
on subcommand with, on the same line, a context sensitive subcommand. The
pdbx prompt will be presented after all of the tasks in the temporary context have
completed the command specified. It is possible, using <Ctrl-c > followed by the
back or the on command, to issue further pdbx commands in the original context.
The syntax is:

on {group_name | task_id} [subcommand]

For example, assume a task group named groupa contains tasks 3 through 5. The
current command context is on this group. You want to set a breakpoint at line 99 of
task 3 only, and then continue directing commands to all three members of groupa.
One way to do this is to enter the three subcommands shown in the following
example. This example shows the pdbx command prompt for additional illustration.

pdbx(groupa) on 3
pdbx(3) stop at 99
pdbx(3) on groupa
pdbx(groupa)

It is easier, however, to temporarily deviate from the current command context.

pdbx(groupa) on 3 stop at 99
pdbx(groupa)

The context sensitive stop subcommand is directed to task 3 only, but the current
command context is unchanged. The next command entered at the pdbx command
prompt is directed to all the tasks in the groupa task group.

At a pdbx prompt, you cannot use on context_name pdbx_command if any of the
tasks in the specified context are running.

Chapter 1. Using the pdbx debugger 15

Context switch when blocked
When a task is blocked (there is no pdbx prompt), you can press <Ctrl-c> to
acquire control. This displays the pdbx subset prompt pdbx-subset([group |
task]), and provides a subset of pdbx functionality including:

v Changing the current context

v Displaying information about groups/tasks

v Interrupting the application

v Showing breakpoint/tracepoint status

v Getting help

v Exiting the debugger.

You can change the subset of tasks to which context sensitive commands are
directed. Also, you can understand more about the current state of the application,
and gain control of your application at any time, not just at user-defined
breakpoints.

When a pdbx subset prompt is encountered, all input you type at the command line
is intercepted by pdbx . All commands are interpreted and operated on by the home
node. No data is passed to the remote nodes and standard input (STDIN) is not
given to the application. Most commands in the pdbx subset produce information
about the application and display the pdbx subset prompt. The exceptions are the
halt , back , on , and quit commands. The halt , back , and on commands cause the
pdbx prompt to be displayed when all of the tasks in the current context are in
“debug ready” state.

The following example shows how the function works. A user is trying to understand
the behavior of a program when tasks in the current context hang. This is a four
task job with two groups defined called low and high. Low has tasks 0 and 1 while
high has tasks 2 and 3. A breakpoint is set after a blocking read in task 2, and
somewhere else in task 3. Group high is allowed to continue, and task 2 has a
blocking read that will be satisfied by a write from task 0. Since task 0 is not
executing, the job is effectively deadlocked and the pdbx prompt will not be
displayed. The “effective deadlock” happens because the debugger controls some
of the tasks that would otherwise be running. This could be called a debugger
induced deadlock.

Using <Ctrl-c > allows the debugger to switch to task 0, then step past the write that
satisfies the blocking read in task 2. A subsequent switch to group high shows task
2.

pdbx subset commands: The following table shows some commands that are
uniquely available at the pdbx subset prompt, plus other pdbx commands that can
be used. Certain commands are not allowed. The available commands keep the
same command syntax as the pdbx subcommands (see “pdbx subcommands” on
page 1).

This subset
command:

Is used to: For more information see:

alias [alias_name
string]

Set or display aliases. “Creating, removing, and listing
command aliases” on page 28

back Return to a pdbx prompt. “Returning to a pdbx prompt” on
page 17

16 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

This subset
command:

Is used to: For more information see:

group <action>
[group_name]
[task_list]

Manipulate groups. The actions are add , change ,
delete , and list . To indicate a range of tasks, enter the
first and last task numbers, separated by a colon or
dash. To indicate individual tasks, enter the numbers,
separated by a space or comma.

“Grouping tasks” on page 11

halt [all] Interrupt all tasks in the current context that are running.
If “all” is specified, all tasks, regardless of state, are
interrupted. This command always returns to a pdbx
prompt.

“Interrupting tasks” on page 19

help [subject] Display a list of pdbx commands and topics or help
information about them.

“Accessing help for pdbx
subcommands” on page 27

on <[group | task]> Set the current context for later subcommands. This
command always returns to a pdbx prompt.

“Setting command context” on
page 14

source <cmd_file> Execute subcommands stored in a file.
Note: The file may contain context sensitive
commands.

“Reading subcommands from a
command file” on page 29

status [all] Display the trace and stop events within the current
context. If “all” is specified, all events, regardless of
context, are displayed.

“Checking event status” on
page 23

tasks [long] Display processes (tasks) and their states. “Displaying tasks and their states”
on page 10

quit Exit the pdbx program and kill the application. “Exiting pdbx” on page 32

unalias alias_name Remove a previously defined alias. “Creating, removing, and listing
command aliases” on page 28

<Ctrl-c> Has no effect, except to display the following message:

Typing Ctrl-c from the pdbx subset prompt
has no effect.
Use the halt command to interrupt
the application.
Use the quit command to quit pdbx.
Type help then enter to view brief help of
the commands available.

“Context switch when blocked” on
page 16

Returning to a pdbx prompt: The back command causes the pdbx prompt to be
displayed, when all the tasks in the current context are in “debug ready” state. You
can use the back command if you want the application to continue as it was before
<Ctrl-c> was issued. Also, you can use it if during subset mode all of the nodes are
checked into debug ready state, and you want to do normal pdbx processing. The
back command is only valid in pdbx subset mode.

It is also possible to return to the pdbx prompt using the on and the halt
commands.

Controlling program execution
Like the dbx debugger, pdbx lets you set breakpoints and tracepoints to control
and monitor program execution. Breakpoints are stopping places in your program.
They halt execution, enabling you to then examine the state of the program.
Tracepoints are places in the program that, when reached during execution, cause
the debugger to print information about the state of the program. An occurrence of
either a breakpoint or a tracepoint is called an event.

Chapter 1. Using the pdbx debugger 17

If you are already familiar with breakpoints and tracepoints as they are used in dbx ,
be aware that they work somewhat differently in pdbx . The subcommands for
setting, checking, and deleting them are similar to their counterparts in dbx , but
have been modified for use on parallel programs. These differences stem from the
fact that they can now be directed to any number of parallel tasks.

This section describes how to:

v Set a breakpoint for tasks in the current context using the stop subcommand.

v Use the halt subcommand to interrupt tasks in the current context.

v Set a tracepoint for tasks in the current context using the trace subcommand.

v Use the delete subcommand to remove events for tasks in the current context.

v Use the status subcommand to display events set for tasks in the current
context.

If you are already familiar with the dbx subcommands stop , trace , status , and
delete , read the following as a discussion of how these subcommands are changed
for pdbx .

The next few pages should act as an introduction to breakpoints and tracepoints if
you are unfamiliar with dbx .

Refer to AIX 5L Version 5.1 Commands Reference and AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs for more information on
subcommands.

Setting breakpoints
The stop subcommand sets breakpoints for all tasks in the current context. When
all tasks reach some breakpoint, execution stops and you can then examine the
state of the program using other pdbx or dbx subcommands. These breakpoints
can be different on each task.

The syntax of this context sensitive subcommand is:

stop if <condition>

stop at <source_line_number> [if <condition>]

stop in <procedure> [if <condition>]

stop <variable> [if <condition>]

stop <variable> at <source_line_number>
[if <condition>]

stop <variable> in <procedure> [if <condition>]

Specifying stop at <source_line_number> causes the breakpoint to be triggered
each time that source line is reached.

Specifying stop in <procedure> causes the breakpoint to be triggered each time
the program counter reaches the first executable source line in the procedure
(function, subroutine).

18 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Using the <variable> argument to stop causes the breakpoint to be triggered when
the contents of the variable changes. This form of breakpoint can be very time
consuming. For better results, when possible, further qualify these breakpoints with
a source_line or procedure argument.

Specify the <condition> argument using the syntax described by “Specifying
expressions” on page 29.

For example, to set a breakpoint at line 19 for all tasks in the current context, you
would:

ENTER
stop at 19

The debugger displays a message reporting the event it has built. The
message includes the current context, the event ID associated with your
breakpoint, and an interpretation of your command. For example:
all:[0] stop at "ftoc.c":19

The message reports that a breakpoint was set for the tasks in the task
group all, and that the event ID associated with the breakpoint is 0. Notice
that the syntax of the interpretation is not exactly the same as the
command entered.

Notes:

1. The pdbx debugger will not set a breakpoint at a line number in a group
context if the group members have different current source files. Instead, the
following error message will be displayed.
ERROR: 0029-2081 Cannot set breakpoint or tracepoint event in

different source files.

If this happens, you can either:

v change the current context so that the stop subcommand will be directed to
tasks with identical source files.

v set the same source file for all members of the group using the file
subcommand.

2. When specifying a variable name on the stop subcommand in pdbx , it is
important to use fully-qualified names as arguments. See “Specifying variables
on the trace and stop subcommands” on page 21 for more information.

3. For further details on the stop subcommand, refer to its use on the dbx
command as described in AIX 5L Version 5.1 Commands Reference and AIX 5L
Version 5.1 General Programming Concepts: Writing and Debugging Programs.

Interrupting tasks
By using the halt command, you interrupt all tasks in the current context that are
running. This allows the debugger to gain control of the application at whatever
point the running tasks happen to be in the application. To a dbx user, this is the
same as using <Ctrl-c> . This command works at the pdbx prompt and at the pdbx
subset prompt. If you specify “all” with the halt command, all running tasks,
regardless of context, are interrupted.

Note: At a pdbx prompt, the halt command never has any effect without “all”
specified. This is because by definition, at a pdbx prompt, none of the tasks
in the current context are in “running” state.

Chapter 1. Using the pdbx debugger 19

The halt all command at the pdbx prompt affects tasks outside of the current
context. Messages at the prompt show the task numbers that are and are not
interrupted, but the pdbx prompt returns immediately because the state of the tasks
in the current context is unchanged.

When using halt at the pdbx subset prompt, the pdbx prompt occurs when all
tasks in the current context have returned to “debug ready” state. If some of the
tasks in the current context are running, a message is presented.

Setting tracepoints
The trace subcommand sets tracepoints for all tasks in the current context. When
any task reaches a tracepoint, it causes the debugger to print information about the
state of the program for that task.

The syntax of this context sensitive subcommand is:

trace [in <procedure>] [if <condition>]

trace <source_line_number> [if <condition>]

trace <procedure> [in <procedure>]
[if <condition>]

trace <variable> [in <procedure>]
[if <condition>]

trace <expression> at <source_line_number>
[if <condition>]

Specifying trace with no arguments causes trace information to be displayed for
every source line in your program.

Specifying trace <source_line_number> causes the tracepoint to be triggered each
time that source line is reached.

Specifying trace [in <procedure>] causes the tracepoint to be triggered each time
your program executes a source line within the procedure (function, subroutine).

Using the <variable> argument to trace causes the tracepoint to be triggered when
the contents of the variable changes. This form of tracepoint can be very time
consuming. For better results, when possible, further qualify these tracepoints with
a source_line_number or procedure argument.

Specify the <condition> argument using the syntax described by “Specifying
expressions” on page 29.

The trace subcommand prints tracing information for a specified procedure,
function, sourceline, expression, variable, or condition. For example, to set a
tracepoint for the variable foo at line 21 for all tasks in the current context, you
would:

ENTER
trace foo at 21

The debugger displays a message reporting the event it has built. The
message includes the current context, the event ID associated with your
tracepoint, and an interpretation of your command. For example:

20 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

all:[1] trace foo at "bar.c":21

This message reports that the tracepoint was set for the tasks in the task
group all, and that the event ID associated with the tracepoint is 1. Notice
that the syntax of the interpretation is not exactly the same as the
command entered.

Notes:

1. The pdbx debugger will not set a tracepoint at a line number in a group
context if the group members have different current source files. Instead, the
following error message will be displayed.
ERROR: 0029-2081 Cannot set breakpoint or tracepoint event in

different source files.

If this happens, you can either:

v change the current context so that the trace subcommand will be directed to
tasks with identical source files.

v set the same source file for all members of the group using the file
subcommand.

2. When specifying a variable name on the trace subcommand in pdbx , it is
important to use fully-qualified names as arguments. See “Specifying variables
on the trace and stop subcommands” for more information.

3. For further detail on the trace subcommand, refer to its use on the dbx
command as described in AIX 5L Version 5.1 Commands Reference

Specifying variables on the trace and stop subcommands
When specifying a variable name as an argument on either the stop or trace
subcommand, you should use fully-qualified names. This is because, when the stop
or trace subcommand is issued, the tasks of your program could be in different
functions, and the variable name may resolve differently depending on a task’s
position.

For example, consider the following SPMD code segment in myfile.c. It is running
as two parallel tasks – task 0 and task 1. Task 0 is in func1 at line 4, while task 1 is
in func2 at line 9.
1 int i;
2 func1()
3 {
4 i++;
5 }
6 func2()
7 {
8 int i;
9 i++;
10 }

To display the full qualification of a given variable, you use the which subcommand.
For example, to display the full qualification of the variable i if the current context is
all:

ENTER
which i

The pdbx debugger displays the full qualification of the variable specified.

0:@myfile.i (from line 1 of previous example)
1:@myfile.func2.i (from line 8 of previous example)

Chapter 1. Using the pdbx debugger 21

Because the tasks are at different lines, issuing the following stop command would
set a different breakpoint for each task:

stop if (i == 5)

The debugger would display a message reporting the event it has built.
all:[0] stop if (i == 5)

The i for task 0, however, would represent the global variable (@myfile.i) while the i
for task 1 would represent the local variable i declared within func2
(@myfile.func2.i). To specify the global variable i without ambiguity on the stop
subcommand, you would:

ENTER
stop if (@myfile.i == 5)

The debugger reports the event it has built.
all:[0] stop if (@myfile.i == 5)

Deleting pdbx events
The delete subcommand removes events (breakpoints and tracepoints) of the
specified pdbx event numbers. To indicate a range of events, enter the first and last
event numbers, separated by a colon or dash. To indicate individual events, enter
the numbers, separated by a space or comma. You can specify “ * ”, which deletes
all events that were created in the current context. You can also specify “all”, which
deletes all events regardless of context. The syntax of this context sensitive
subcommand is:

delete [event_list | * | all]

The event number is the one associated with the breakpoint or tracepoint. This
number is displayed by the stop and trace subcommands when an event is built.
Event numbers can also be displayed using the status subcommand. The output of
the status command shows the creating context as the first token on the left before
the colon.

Event numbers are unique to the context in which they were set, but not globally
unique. Keep in mind that, in order to remove an event, the context must be on the
appropriate task or task group, except when using the “all” keyword. For example,
say the current context is on task 1 and the output of the status subcommand is:
1:[0] stop in celsius
all:[0] stop at "foo.c":19
all:[1] trace "foo.c":21

To delete all these events, you would do one of the following:

ENTER on 1

delete 0

on all

delete 0,1

OR

ENTER on 1

delete 0

on all

22 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

delete *

OR

ENTER delete all

Checking event status
A list of pdbx events can be displayed using the status subcommand. You can
specify “all” after this command to list all events (breakpoints and tracepoints) that
have been set in all groups and tasks. This is valid at the pdbx prompt and the
pdbx subset prompt.

The following shows examples of status , status all , and incorrect syntax with
different breakpoints set on three different groups and two tasks.
pdbx(all) status
all:[0] stop at "test/vtsample.c":60

pdbx(all) status all
1:[0] stop in main
2:[0] stop in mpl_ring
all:[0] stop at "test/vtsample.c":60
evenTasks:[0] stop at "test/vtsample.c":58
oddTasks:[0] stop at "test/vtsample.c":56

pdbx(all) status woops
0029-2062 The correct syntax is either 'status' or 'status all'.

Because the status command (without “all” specified) is context sensitive, it will not
display status for events outside the context.

Unhooking and hooking tasks
The unhook subcommand lets you unhook a task so that it executes without
intervention from the debugger. This subcommand is context sensitive and similar to
the detach subcommand in dbx . The important difference is that you can regain
control over a task that has been unhooked, while you cannot regain control over
one that has been detached. To regain control over an unhooked task, use the
hook subcommand. Detach is not supported in pdbx .

To better understand the hook and unhook subcommands, consider the following
example. You are debugging a typical master/worker program containing many
blocking sends and receives. You have created two task groups. One – named
workers – contains all the worker tasks, and the other – named master – contains
the master task. You would like to manipulate the master task and let the worker
tasks process without debugger interaction. This would save you the bother of
switching the command context back and forth between the two task groups.

Since the unhook subcommand is context sensitive, you must first set the context
on the workers task group using the on subcommand. At the pdbx command
prompt:

ENTER
on workers

The debugger sets the command context on the task group workers.

ENTER
unhook

The debugger unhooks the tasks in the task group workers.

Chapter 1. Using the pdbx debugger 23

The worker tasks are still indirectly affected by the debugger since they might, for
example, have to wait on a blocking receive for a message from the master task.
However, they do execute without any direct interaction from the debugger. If you
later wish to reestablish control over the tasks in the workers task group, you would,
assuming the context is on the workers task group:

ENTER
hook

The debugger hooks any unhooked task in the current command context.

Note: The hook subcommand is actually an interrupt. When you interrupt a
blocking receive, you cause the request to fail. If the program does not deal
with an interrupted receive, then data loss may occur.

Examining program data
The following section explains the where , print , and list subcommands for
displaying and verifying data.

Viewing program call stacks
The where subcommand displays a list of active procedures and functions.

The syntax of this context sensitive subcommand is:

where

To view the stack trace, issue the where command. The following stack trace was
encountered after halting task 1. You can see that the main routine at line 144 has
issued an mpi_recv() call.
pdbx(1) where
read(??, ??, ??) at 0xd07b5ce0
readsocket() at 0xd07542f4
kickpipes() at 0xd0750e14
mpci_recv() at 0xd076032c
_mpi_recv() at 0xd0700e2c
MPI__Recv() at 0xd06ffab8
mpi__recv() at 0xd03c4474
main(), line 144 in "send1.f"

Viewing program variables
The print subcommand does either of the following:

v Prints the value of a list of expressions, specified by the expression parameters.

v Executes a procedure, specified by the procedure parameter, and prints the
return value of that procedure. Parameters that are included are passed to the
procedure.

The syntax of this context sensitive subcommand is:

print expression ...

print procedure ([parameters])

See “Specifying expressions” on page 29 for a description of valid expressions.

Following are some examples of printing portions of a two dimensional array of
floats in a c program which is running on two nodes.

To display the type of array ff, enter:

24 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

pdbx(all) whatis ff
0:float ff[10][10];
1:float ff[10][10];

We can see the differences in the array values across the two nodes.

To show elements 4 through 7 of rows 2 and 3, enter:
pdbx(all) print ff[2..3][4..7]
0:[2][4] = 30.0000076
0:[2][5] = 42.0
0:[2][6] = 0.0
0:[2][7] = -3.52516241e+30
0:[3][4] = -3.54361545e+30
0:[3][5] = -3.60971468e+30
0:[3][6] = 2.68063283e-09
0:[3][7] = 4.65661287e-10
0:
1:[2][4] = -1.60068157e+10
1:[2][5] = 0.0
1:[2][6] = 0.0
1:[2][7] = -3.52516241e+30
1:[3][4] = -3.54361545e+30
1:[3][5] = -3.60971468e+30
1:[3][6] = 2.63675126e-09
1:[3][7] = 1.1920929e-07
1:

The same results as above could be achieved by entering:
print ff(2..3,4..7)

The array ff is being processed within a loop with loop counters i and j. The
following demonstrates printing multiple variables and using program variables to
specify the array elements.
pdbx(all) print "i is:", i, "\tj is:", j, "\n", ff[i][j..j+1]
1:i is: 0 j is: 1
1: [0][1] = -3.54331806e+30
1:[0][2] = 4.40487202e-10
1:
0:i is: 2 j is: 6
0: [2][6] = 0.0
0:[2][7] = -3.52516241e+30
0:

Following are some examples which display the elements of an array of structs:

The command whatis here is used to show that the type of the variable tree is an
array size 4 of wood_attr_t’s.
pdbx(0) whatis tree
0:wood_attr_t tree[4];

Here the whatis command shows that wood_attr_t is a typedef for the listed
structure.
pdbx(0) whatis wood_attr_t
0:typedef struct {
0: int max_age;
0: int max_size;
0: int is_hard_wood;
0:} wood_attr_t;

This whatis command shows that this_tree is a wood_attr_t ptr.

Chapter 1. Using the pdbx debugger 25

pdbx(0) whatis this_tree
0:wood_attr_t *this_tree;

To display the elements of the first three entries in the tree array, enter:
pdbx(0) print tree[0..2]
0:[0] = (max_age = 150, max_size = 120, is_hard_wood = 0)
0:[1] = (max_age = 250, max_size = 150, is_hard_wood = 1)
0:[2] = (max_age = 200, max_size = 125, is_hard_wood = 0)
0:

To display the element max_size of entry 1 of the tree array, enter:
pdbx(0) p tree[1].max_size
0:150

To display the entry that this_tree is pointing to, enter:
pdbx(0) p *this_tree
0:(max_age = 200, max_size = 125, is_hard_wood = 0)

To display just the max_size of the entry that this_tree is pointing to, enter:
pdbx(0) p this_tree->max_size
0:125

Following are some examples of displaying elements of a two dimensional array of
reals in a Fortran program:

To take a look at the type of var43:
pdbx(all) whatis var43
real*4 var43(4,3)

To display the entire array var43, enter:
pdbx(all) print var43
(1,1) 11.0
(2,1) 21.0
(3,1) 31.0
(4,1) 41.0
(1,2) 12.0
(2,2) 22.0
(3,2) 32.0
(4,2) 42.0
(1,3) 13.0
(2,3) 23.0
(3,3) 33.0
(4,3) 43.0

To display a portion of the array var43, enter:
pdbx(all) print var43(1..2, 2..3)
(1,2) = 12.0
(2,2) = 22.0
(1,3) = 13.0
(2,3) = 23.0

Refer to AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs for more information on expression handling.

Displaying source
The list subcommand displays a specified number of lines of the source file. The
number of lines displayed is specified in one of two ways:

Tip: Use on <task> list , or specify the ordered standard output option.

v By specifying a procedure using the procedure parameter.

26 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

In this case, the list subcommand displays lines starting a few lines before the
beginning of the specified procedure and until the list window is filled.

v By specifying a starting and ending source line number using the
sourceline-expression parameter.

The sourceline-expression parameter should consist of a valid line number
followed by an optional + (plus sign), or − (minus sign), and an integer. In
addition, a sourceline of $ (dollar sign) can be used to denote the current line
number. A sourceline of @ (at sign) can be used to denote the next line number
to be listed.

All lines from the first line number specified to the second line number specified,
inclusive, are then displayed, provided these lines fit in the list window.

If the second source line is omitted, 10 lines are printed, beginning with the line
number specified in the sourceline parameter.

If the list subcommand is used without parameters, the default number of lines is
printed, beginning with the current source line. The default is 10.

To change the number of lines to list by default, set the special debug program
variable, $listwindow, to the number of lines you want. Initially, $listwindow is set
to 10.

The syntax of this context sensitive subcommand is:

list [procedure | sourceline-expression[, sourceline-expression]]

Other key features
Some other features offered by pdbx include the following subcommands:

v help

v dhelp

v alias

v source

Also, this section includes information about how to specify expressions for the
print , stop , and trace commands.

Accessing help for pdbx subcommands

The help command with no arguments displays a list of pdbx commands and
topics about which detailed information is available.

If you type “help” with one of the help commands or topics as the argument,
information will be displayed about that subject.

The syntax of this context insensitive command is:

help [subject]

Accessing help for dbx subcommands

The dhelp command with no arguments displays a list of dbx commands about
which detailed information is available.

If you type “dhelp” with an argument, information will be displayed about that
command.

Chapter 1. Using the pdbx debugger 27

Note: The partition must be loaded before you can use this command, because it
invokes the dbx help command. It is also required that a task be in “debug
ready” state to process this command. After the program has finished
execution, the dhelp command is no longer available.

The syntax of this context insensitive command is:

dhelp [dbx_command]

Creating, removing, and listing command aliases
The alias subcommand specifies a command alias. You could use it to reduce the
amount of typing needed, or to create a name more easily remembered. The syntax
of this context insensitive subcommand is:

alias [alias_name [alias_string]]

For example, assume that you have organized all tasks into two convenient groups
– master and workers. During the execution of a program, you need to switch the
command context back and forth between these two groups. You could save
yourself some typing by creating one alias for on workers and one for on master. At
the pdbx command prompt, you would:
ENTER alias mas on master

alias wor on workers

Now to set the command context on the task group master, all you have to do is:

ENTER
mas

Likewise, you can now enter wor instead of on workers.

In addition to any aliases you create, there are a number of aliases supplied by
pdbx when the partition is loaded. To display the list of all existing aliases, use the
alias subcommand with no parameters. At the pdbx command prompt:

ENTER
alias

The debugger displays a list of existing aliases. The example listing below
shows all the default aliases provided by pdbx , as well as the two aliases –
mas and wor – created in the previous example.
t where
j status
st stop
s step
x registers
q quit
p print
n next
m map
l list
h help
d delete
c cont
mas on master
wor on workers
th thread
mu mutex

28 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

cv condition
attr attribute
active tasks
threads thread

Any aliases you create are not saved between pdbx sessions. You can also
remove command aliases using the unalias subcommand. The syntax of this
context insensitive subcommand is:

unalias alias_name

For example, to remove the alias mas defined above, you would:

ENTER unalias mas

Note: You can create, remove, and list command aliases as soon as you start the
debugger. The partition does not need to be loaded.

Reading subcommands from a command file
The source subcommand enables you to read a series of subcommands from a
specified command file. The syntax of this context-insensitive subcommand is:

source command_file

The command_file should reside on the home node, and can contain any of the
subcommands that are valid on the pdbx command line. For example, say you
have a commands file named myalias which contains a number of command alias
settings. To read its commands:

ENTER source myalias

The debugger reads the commands listed in myalias as if they had
each been entered at the command line.

Notes:

1. You can also read commands from a file when starting the debugger. This is
done using the -c flag on the pdbx command, or via a .pdbxinit file, as
described in Table 3 on page 5. The .pdbxinit file would be a great way to
automatically create your common aliases. When using a .pdbxinit file or the -c
flag, you need to keep in mind that only a limited set of commands are
supported until the partition is loaded.

2. STDIN cannot be included in a command file.

Specifying expressions
Expressions are commonly used in the print command, and when specifying
conditions for the stop or trace command.

You can specify conditions with a subset of C syntax, with some Fortran extensions.
The following operators are valid:

Arithmetic Operators

+ Addition

- Subtraction

- Negation

* Multiplication

/ Floating point division

Chapter 1. Using the pdbx debugger 29

div Integer division

mod Modulo

exp Exponentiation

Relational and Logical Operators

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

= Equal to

!= Not equal to

< > Not equal to

|| Logical OR

or Logical OR

&& Logical AND

and Logical AND

Bitwise Operators

bitand
Bitwise AND

| Bitwise OR

xor Bitwise exclusive OR

˜ Bitwise complement

<< Left shift

>> Right shift

Data Access and Size Operators

[] Array element

() Array element

* Indirection or pointer dereferencing

& Address of a variable

. Member selection for structures and unions

. Member selection for pointers to structures and unions

-> Member selection for pointers to structures and unions

sizeof
Size in bytes of a variable

Miscellaneous Operators

() Operator grouping

30 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

(Type)Expression
Type cast

Type(Expression)
Type cast

Expression\Type
Type cast

Other important notes on pdbx

Initial breakpoint
The initial automatic breakpoint, which is set by default at function main, for pdbx
can be redefined by the environment variable MP_DEBUG_INITIAL_STOP . See the
manual page for the pdbx command in “Appendix A. Parallel environment tools
commands” on page 139 for more information.

Overloaded symbols
While pdbx recognizes function names, it is the combination of a function’s name
and its parameters, or the function name and the shared object it resides in, that
uniquely identify it to pdbx . When encountering ambiguous functions, pdbx issues
the Select menu, which lets the user choose the desired instance of the function.

The Select menu looks like this:
pdbx(all) stop in f1
1.ambig.f1(double)
2.ambig.f1(float)
3.ambig.f1(char)
4.ambig.f1(int)
Select one or more of [1 - 4]:

The whatis subcommand can be used to determine whether or not a function is
ambiguous. If whatis returns more than one function definition for a given symbol,
pdbx will consider it ambiguous.

There are a few restrictions for the pdbx select menu:
v All tasks in the context must have an identical view of the ambiguous function

because pdbx will only present one menu to the user that covers all tasks. As a
result, you may need to create additional groups. The view of the ambiguous
function is determined by the result of the whatis subcommand. In the example
above, whatis f1 should have returned the same result on all tasks, in order to
proceed.

v The hook subcommand will not restore the set of events generated by the Select
menu.

v The trace and print subcommands do not support ambiguous functions within
complex expressions. For example, simple expressions are always allowed:
trace myfunc

print myfunc(parm1, parm2)

but complex expressions are not allowed when a function (myfunc) is ambiguous:
trace myvar-myfunc(parm1, parm2)

print myvar*myfunc(parm1)

Chapter 1. Using the pdbx debugger 31

Exiting pdbx

It is possible to end the debug session at any time using either the quit
subcommand, or the detach subcommand if debugging in attach mode.

To end a debug session in normal mode:

ENTER
quit

This returns you to the shell prompt.

To end a debug session in attach mode, you can choose either quit or detach .
Quitting causes the debugger and all the members of the original poe application
partition to exit. Detaching causes only the debugger to exit and leaves all the tasks
running.

ENTER
quit

The debugger session ends, along with the poe application partition tasks.

OR

ENTER
detach

The debugger session ends. All tasks have been detached, but stay
running.

Note: You can enter the quit and detach subcommands from either the pdbx
prompt or pdbx subset prompt.

Choosing detach causes pdbx to exit, and allows the program to which you had
attached to continue execution if it hasn’t already finished. If this program has
finished execution, and is part of a series of job steps, then detaching allows the
next job step to be executed.

If instead you want to exit the debugger and end the program, choose quit as
described above.

32 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Chapter 2. Profiling parallel programs with Xprofiler

This chapter describes how to profile your programs with the Xprofiler profiling tool
of the IBM Parallel Environment for AIX. This chapter explains how to use the
Xprofiler graphical user interface (GUI) to profile your application, so it is best to
read it while you have the GUI up and running.

If you intend to use the AIX gprof command to profile your parallel application, see
“Appendix D. Profiling programs with the AIX prof and gprof commands” on
page 223 for information on how to do so. You may also find it helpful to consult the
AIX 5L Version 5.1 Commands Reference.

You do not need to be familiar with the AIX gprof command to use Xprofiler.

Xprofiler is a tool that helps you analyze your parallel application’s performance
quickly and easily. It uses data collected by the -pg compiling option to construct a
graphical display of the functions within your application. Xprofiler provides quick
access to the profiled data, which lets you identify the functions that are the most
CPU-intensive. The graphical user interface also lets you manipulate the display in
order to focus on the application’s critical areas.

Before you begin

About Xprofiler
Xprofiler lets you profile both serial and parallel applications. The difference is that
when you run a serial application, a single profile data file is generated, while a
parallel application produces multiple profile data files. Either way, you can use
Xprofiler to analyze the resulting profiling information.

Xprofiler provides a set of resource variables that let you customize some of the
features of the Xprofiler window and reports. For information about customizing
resources for Xprofiler, see IBM Parallel Environment for AIX: Operation and Use,
Volume 2, Tools Reference

The word function is used frequently throughout this chapter. Consider it to be
synonymous with the terms routine, subroutine, and procedure.

Requirements and limitations
To use Xprofiler, your application must be compiled with the -pg option. For more
information about compiling, see “Compiling applications to be profiled” on page 34.

Like gprof, Xprofiler lets you analyze CPU (busy) usage only. It cannot give you
other kinds of information such as CPU idle, I/O, or communication.

If you compile your application on one machine, and then analyze it on another, you
must first make sure that both machines have similar library configurations, at least
for the system libraries used by the application. For instance, say you ran an HPF
application on an SP, then tried to analyze the profiled data on a workstation. The
levels of HPF runtime libraries must match, and must be placed in a location that
Xprofiler recognizes on the workstation. Otherwise, Xprofiler produces unpredictable
results.

© Copyright IBM Corp. 2000, 2001 33

Since Xprofiler collects data by sampling, short-executing functions may show no
CPU use.

Xprofiler does not give you information about the specific threads in a
multi-threaded program. The data that Xprofiler presents is a summary of the
activities of all the threads.

Xprofiler versus gprof
With Xprofiler, you can produce the same tabular reports that you may be
accustomed to seeing with gprof . Just as with gprof , you can generate the Flat
Profile, Call Graph Profile, and Function Index reports. Xprofiler is different from
gprof in that it provides a graphical user interface (GUI) from which you can profile
your application. It generates a graphical display of your application’s performance,
as opposed to just a text-based report. Unlike gprof , Xprofiler also lets you profile
your application at the source statement level.

From the Xprofiler GUI, you can use all the same command line flags as gprof ,
plus a few more that are unique to Xprofiler.

Compiling applications to be profiled
In order to use Xprofiler, you must compile and link your application with the -pg
option of the compiler command. This applies regardless of whether you are
compiling a serial or parallel application. You can compile and link your application
all at once, or perform the compile and link operations separately. Here’s an
example of how you would compile and link all at once:
cc -pg -o foo foo.c

And here’s an example of how you would first compile your application and then
link it. To compile:
cc -pg -c foo.c

To link:
cc -pg -o foo foo.o

Notice that when you compile and link separately, you must use the -pg option with
both the compile and link commands.

The -pg option compiles and links the application so that when you run it, the CPU
usage data gets written to one or more output files. For a serial application, this
output consists of just one file called gmon.out, by default. For parallel applications,
the output is written into multiple files, one for each task that is running in the
application. To prevent each output file from overwriting the others, POE appends
the task ID to each gmon.out file. For instance, gmon.out.10.

The -pg option is not a combination of the -p and the -g compiling options.

In order to get a complete picture of your parallel application’s performance, you
must indicate all of its gmon.out files when you load the application into Xprofiler.
When you specify more than one gmon.out file, Xprofiler shows you the sum of the
profile information contained in each file.

The Xprofiler GUI provides the capability of viewing included functions. Note,
however, that your application must also be compiled with the -g option in order for
Xprofiler to display the included functions.

34 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

The -g option, in addition to the -pg option, is also required for source statement
profiling.

Starting Xprofiler
You start Xprofiler by issuing the xprofiler command from the AIX command line.
You also need to specify the executable, profile data file(s), and options, which you
can do one of two ways. You can either specify them on the command line, with the
xprofiler command, or you can issue the xprofiler command alone, then specify
them from within the GUI. See “Loading files from the Xprofiler GUI” on page 38.

Under some circumstances you may have multiple profile data files (gmon.out files).
You will have more than one of these files if you are profiling a parallel application,
because a gmon.out file is created for each task in the application when it is run. If
you are running a serial application, there may be times when you want to
summarize the profiling results from multiple runs of the application. In these cases,
you will need to specify each of the profile data files you want to profile with
Xprofiler.

To start Xprofiler and specify the executable, profile data file(s), and options:

ENTER xprofiler a.out gmon.out... [options]

where a.out is the binary executable file, gmon.out is the name of
your profile data file(s), and options may be one or more of the
options listed in “Xprofiler command line options”.

To print basic Xprofiler command syntax to the screen, use the -h or -? option with
the xprofiler command from the command line. For example, xprofiler -h.

Xprofiler command line options
You can specify the same command line options with the xprofiler command that
you do with gprof , plus one additional option (-disp_max), which is specific to
Xprofiler. The command line options let you control the way Xprofiler displays the
profiled output.

When you enter an option, there must be a space between the option and its
corresponding value. For example,
-e main

You can specify the following options from either the Xprofiler GUI or the command
line. See “Specifying command line options (from the GUI)” on page 43 for more
information.

The Xprofiler command line options are:

Table 5. Xprofiler Command Line Options

Use this flag: To: For example:

-b Suppresses the printing of the field descriptions for the Flat
Profile, Call Graph Profile, and Function Index reports when
they are written to a file with the Save As option of the File
menu.

To suppress printing of the field
descriptions for the Flat Profile, Call
Graph Profile, and Function Index
reports in the saved file: file,

ENTER
xprofiler -b a.out gmon.out

Chapter 2. Profiling parallel programs with Xprofiler 35

Table 5. Xprofiler Command Line Options (continued)

Use this flag: To: For example:

-s If multiple gmon.out files are specified when Xprofiler is
started, produces the gmon.sum profile data file. The
gmon.sum file represents the sum of the profile information
in all the specified profile files. Note that if you specify a
single gmon.out file, the gmon.sum file contains the same
data as the gmon.out file.

To write the sum of the data from
three profile data files, gmon.out.1,
gmon.out.2, and gmon.out.3, into a
file called gmon.sum:

ENTER
xprofiler -s a.out
gmon.out.1 gmon.out.2
gmon.out.3

-z Includes functions that have both zero CPU usage and no
call counts in the Flat Profile, Call Graph Profile, and
Function Index reports. A function will not have a call count
if the file that contains its definition was not compiled with
the -pg option, which is common with system library files.

To include all functions used by the
application, in the Flat Profile, Call
Graph Profile, and Function Index
reports, that have zero CPU usage
and no call counts:

ENTER
xprofiler -z a.out gmon.out

-a Adds alternative paths to search for source code and library
files, or changes the current path search order. When using
this command line option, you can use the “at” symbol (@)
to represent the default file path, in order to specify that
other paths be searched before the default path.

To set the alternative file search
path(s) so that Xprofiler searches
pathA, the default path, then pathB:

ENTER xprofiler -a pathA:@:pathB

-c Loads the specified configuration file. If the -c option is used
on the command line, the configuration file name specified
with it will appear in the Configuration File (-c): text field in
the Load Files Dialog, and the Selection field of the Load
Configuration File Dialog. When both the -c and -disp_max
options are specified on the command line, the -disp_max
option is ignored, but the value that was specified with it will
appear in the Initial Display (-disp_max): field in the Load
Files Dialog, the next time it is opened.

To load the configuration file:

ENTER xprofiler a.out gmon.out -c
config_file_name

-disp_max Sets the number of function boxes that Xprofiler initially
displays in the function call tree. The value supplied with
this flag can be any integer between 0 and 5,000. Xprofiler
displays the function boxes for the most CPU-intensive
functions through the number you specify. For instance, if
you specify 50, Xprofiler displays the function boxes for the
50 functions in your program that consume the most CPU.
After this, you can change the number of function boxes that
are displayed via the Filter menu options. This flag has no
effect on the content of any of the Xprofiler reports.

To display the function boxes for
only 50 most CPU-intensive
functions in the function call tree:

ENTER
xprofiler -disp_max 50
a.out gmon.out

36 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Table 5. Xprofiler Command Line Options (continued)

Use this flag: To: For example:

-e De-emphasizes the general appearance of the function
box(es) for the specified function(s) in the function call tree,
and limits the number of entries for these function in the Call
Graph Profile report. This also applies to the specified
function’s descendants, as long as they have not been
called by non-specified functions.

In the function call tree, the function box(es) for the
specified function(s) appears greyed-out. Its size and the
content of the label remain the same. This also applies to
descendant functions, as long as they have not been called
by non-specified functions.

In the Call Graph Profile report, an entry for the specified
function only appears where it is a child of another function,
or as a parent of a function that also has at least one
non-specified function as its parent. The information for this
entry remains unchanged. Entries for descendants of the
specified function do not appear unless they have been
called by at least one non-specified function in the program.

To deemphasize the appearance of
the function boxes for foo and bar,
as well as their qualifying
descendants in the function call tree,
and limit their entries in the Call
Graph Profile report:

ENTER
xprofiler -e foo -e bar a.out
gmon.out

-E Changes the general appearance and label information of
the function box(es) for the specified function(s) in the
function call tree. Also limits the number of entries for these
functions in the Call Graph Profile report, and changes the
CPU data associated with them. These results also apply to
the specified function’s descendants, as long as they have
not been called by non-specified functions in the program.

In the function call tree, the function box for the specified
function appears greyed-out, and its size and shape also
changes so that it appears as a square of the smallest
allowable size. In addition, the CPU time shown in the
function box label, appears as 0 (zero). The same applies to
function boxes for descendant functions, as long as they
have not been called by non-specified functions. This option
also causes the CPU time spent by the specified function to
be deducted from the left side CPU total in the label of the
function box for each of the specified function’s ancestors.

In the Call Graph Profile report, an entry for the specified
function only appears where it is a child of another function,
or as a parent of a function that also has at least one
non-specified function as its parent. When this is the case,
the time in the self and descendants columns for this entry
is set to 0 (zero). In addition, the amount of time that was in
the descendants column for the specified function is
subtracted from the time listed under the descendants
column for the profiled function. As a result, be aware that
the value listed in the % time column for most profiled
functions in this report will change.

To change the display and label
information for foo and bar, as well
as their qualifying descendants in
the function call tree, and limit their
entries and data in the Call Graph
Profile report:

ENTER
xprofiler -E foo -E bar
a.out gmon.out

Chapter 2. Profiling parallel programs with Xprofiler 37

Table 5. Xprofiler Command Line Options (continued)

Use this flag: To: For example:

-f De-emphasizes the general appearance of all function
boxes in the function call tree, except for that of the
specified function(s) and its descendant(s). In addition, the
number of entries in the Call Graph Profile report for the
non-specified functions and non-descendant functions is
limited. The -f flag overrides the -e flag.

In the function call tree, all function boxes except for that of
the specified function(s) and its descendant(s) appear
greyed-out. The size of these boxes and the content of their
labels remain the same. For the specified function(s), and its
descendant(s), the appearance of the function boxes and
labels remain the same.

In the Call Graph Profile report, an entry for a non-specified
or non-descendant function only appears where it is a
parent or child of a specified function or one of its
descendants. All information for this entry remains the same.

To de-emphasize the display of
function boxes for all functions in the
function call tree except for foo, bar,
and their descendants, and limit their
types if entries in the Call Graph
Profile report:

ENTER
xprofiler -f foo -f bar a.out
gmon.out

-F Changes the general appearance and label information of all
function boxes in the function call tree except for that of the
specified function(s) and its descendants. In addition, the
number of entries in the Call Graph Profile report for the
non-specified and non-descendant functions is limited, and
the CPU data associated with them is changed. The -F flag
overrides the -E flag.

In the function call tree, all function boxes except for that of
the specified function(s) and its descendant(s) appear
greyed-out. The size and shape of these boxes also
changes so that they appear as squares of the smallest
allowable size. In addition, the CPU time shown in the
function box label, appears as 0 (zero).

In the Call Graph Profile report, an entry for a non-specified
or non-descendant function only appears where it is a
parent or child of a specified function or one of its
descendants. When this is the case, the time in the self and
descendants columns for this entry is set to 0 (zero). As a
result, be aware that the value listed in the % time column
for most profiled functions in this report will change.

To change the display and label
information of the function boxes for
all functions except the functions foo
and bar and their descendants, and
limit their types of entries and data
in the Call Graph Profile:

ENTER
xprofiler -F foo -F bar a.out
gmon.out

-L Sets the pathname for locating shared libraries. If you plan
to specify multiple paths, use the Set File Search Path
option of the File menu on the Xprofiler GUI. See “Setting
the file search sequence” on page 46 for information.

To specify /lib/profiled/libc.a:shr.o as
an alternate pathname for your
shared libraries:

ENTER
xprofiler -L
/lib/profiled/libc.a:shr.o

After you issue the xprofiler command, the Xprofiler main window appears, and
displays your application’s data.

Loading files from the Xprofiler GUI
If you issue the xprofiler command without specifying an executable file, a profile
data file, or options, you may do so from within the Xprofiler GUI. You use the Load
File option of the File menu to do this.

38 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

When you issue the xprofiler command alone, the Xprofiler main window appears.
Since you did not load an executable or specify a profile data file, the window will
be empty.

If you issue the xprofiler command with the -h option only, Xprofiler displays the
syntax for the command and then exits.

Select the File menu, and then the Load File option. The Load Files Dialog window
appears.

Figure 2. Xprofiler Main Window with No Executables Loaded

Chapter 2. Profiling parallel programs with Xprofiler 39

The Load Files Dialog window lets you specify your application’s executable, and its
corresponding profile data (gmon.out) files. When you load a file, you can also
specify the various command line options that let you control the way Xprofiler
displays the profiled data.

To load the files for the application you wish to profile, you need to specify the:

v Binary Executable (required)

v Profile Data File(s) (required)

v Command Line Options (optional)

Specifying the binary executable
You specify the binary executable from the Binary Executable File of the Load Files
Dialog window. The Binary Executable File area looks similar to this:

Figure 3. Load Files Dialog Window

40 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Use the scroll bars of the Directories and Files selection boxes to locate the
executable file you wish to load. By default, all the files in the directory from which
you invoked Xprofiler appear in the Files selection box. To select a file, click on it
with the left mouse button.

To make locating your binary executable files easier, the Binary Executable File
area includes a Filter button. Filtering lets you limit the files that are displayed in the
Files selection box to those of a specific directory or of a specific type. For
information on using the Filter, see “Using the dialog window filters” on page 54.

Specifying the profile data file(s)
You specify the profile data file(s) from the gmon.out Profile Data File(s) area of the
Load Files Dialog window. The gmon.out Profile Data File(s) area looks similar to
this:

Figure 4. Binary Executable File Area

Chapter 2. Profiling parallel programs with Xprofiler 41

When you started Xprofiler, with the xprofiler command, you were not required to
indicate the name of the profile data file (which is probably why you are specifying it
from the GUI). If you did not specify a profile data file, Xprofiler searches your
directory for the presence of a file named gmon.out and, if found, places it in the
Selection field of the gmon.out Profile File(s) area, as the default. Xprofiler then
uses this file as input, even if it is not related to the binary executable file you
specify. Since this will cause Xprofiler to display incorrect data, it is important that
you enter the correct file into this field. So, if the profile data file you wish to use is
named something other than what appears in the Selection field, you must replace
it with the correct file name, as follows.

Use the scroll bars of the Directories and Files selection boxes to locate one or
more of the profile data (gmon.out) files you wish to specify. The file you use does
not have to be named gmon.out, and you may specify more than one profile data
file. To select a file, click on it with the left mouse button. You can select multiple
files by holding down the <Ctrl > key and clicking on each one with the left mouse
button. To select multiple consecutive files, press and hold the left mouse button

Figure 5. gmon.out Profile Data File(s) Area

42 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

over the first file, and then drag the mouse over the other files. To de-select a file,
press and hold the <Ctrl > key while clicking on the file.

To make locating your output files easier, the gmon.out Profile File(s) area includes
a Filter button. Filtering lets you limit the files that get displayed in the Files
selection box to those in a specific directory or of a specific type. For information on
using the Filter, see “Using the dialog window filters” on page 54.

Specifying command line options (from the GUI)
You specify command line options from the Command Line Options area of the
Load Files Dialog window. The Command Line Options area looks similar to this:

You may specify one or more options as follows:

Table 6. Xprofiler GUI Command Line Options

Use this flag: To: For example:

-b (button) Suppresses the printing of the field descriptions for the Flat
Profile, Call Graph Profile, and Function Index reports when
they are written to a file with the Save As option of the File
menu.

To suppress printing of the field
descriptions for the Flat Profile, Call
Graph Profile, and Function Index
reports in the saved file, set the -b
button to the pressed-in position.

-s (button) If multiple gmon.out files are specified in the gmon.out
Profile File(s) area, produces the gmon.sum profile data file.
The gmon.sum file represents the sum of the profile
information in all the specified profile files. Note that if you
specify a single gmon.out file, the gmon.sum file contains
the same data as the gmon.out file.

To write the sum of the data from
three profile data files, gmon.out.1,
gmon.out.2, and gmon.out.3, into a
file called gmon.sum, set the -s
button to the pressed-in position to
activate this option.

-z (button) Includes functions that have both zero CPU usage and no
call counts in the Flat Profile, Call Graph Profile, and
Function Index reports. A function will not have a call count
if the file that contains its definition was not compiled with
the -pg option, which is common with system library files.

To include all functions used by the
application, in the Flat Profile, Call
Graph Profile, and Function Index
reports, that have zero CPU usage
and no call counts, set the -z button
to the pressed-in position to activate
this option.

Figure 6. Command Line Options Area

Chapter 2. Profiling parallel programs with Xprofiler 43

Table 6. Xprofiler GUI Command Line Options (continued)

Use this flag: To: For example:

-a (field) Adds alternative paths to search for source code and library
files, or changes the current path search order. After clicking
on the OK button, any modifications to this field are also
made to the Enter Alt File Search Paths: field of the Alt
File Search Path Dialog window. If both the Load Files
Dialog window and the Alt File Search Path Dialog window
are opened at the same time, when you make path changes
in the Alt File Search Path Dialog and click the OK button,
these changes are also made to the Load Files Dialog
window. Also, when both of these windows are open
concurrently, clicking on the OK or Cancel buttons in the
Load Files Dialog causes both windows to close. If you wish
to restore the Alt File Search Path(s) (-a): field to the same
state as when the Load Files Dialog window was opened,
click on the Reset button.

You can use the “at” symbol (@) with this option to
represent the default file path, in order to specify that other
paths be searched before the default path.

To set the alternative file search
path(s) so that Xprofiler searches
pathA, the default path, then pathB,
type pathA:@:pathB in the Alt File
Search Path(s) (-a) field.

-c (field) Loads the specified configuration file. If the -c option was
used on the command line, or a configuration file had been
previously loaded with the Load Files Dialog or Load
Configuration File Dialog windows, the name of the most
recently loaded file will appear in the Configuration File
(-c): text field in the Load Files Dialog, as well as the
Selection field of the Load Configuration File Dialog. If both
the Load Files Dialog and Load Configuration File Dialog
windows are open at the same time, when you specify a
configuration file in the Load Configuration File Dialog and
then click the OK button, the name of the specified file also
appears in the Load Files Dialog. Also, when both of these
windows are open concurrently, clicking on the OK or
Cancel buttons in the Load Files Dialog causes both
windows to close. When entries are made to both the
Configuration File (-c): and Initial Display (-disp_max):
fields in the Load Files Dialog, the value in the Initial
Display (-disp_max): field is ignored, but is retained the
next time this window is opened. If you wish to retrieve the
file name that was in the Configuration File (-c): field when
the Load Files Dialog window was opened, click on the
Reset button.

To load the configuration file, type
gmon.out in the Configuration File
(-c) field.

-disp_max (field) Sets the number of function boxes that Xprofiler initially
displays in the function call tree. The value supplied with
this flag can be any integer between 0 and 5,000. Xprofiler
displays the function boxes for the most CPU-intensive
functions through the number you specify. For instance, if
you specify 50, Xprofiler displays the function boxes for the
50 functions in your program that consume the most CPU.
After this, you can change the number of function boxes that
are displayed via the Filter menu options. This flag has no
effect on the content of any of the Xprofiler reports.

To display the function boxes for
only 50 most CPU-intensive
functions in the function call tree,
type 50 in the Init Display
(-disp_max) field

44 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Table 6. Xprofiler GUI Command Line Options (continued)

Use this flag: To: For example:

-e (field) De-emphasizes the general appearance of the function
box(es) for the specified function(s) in the function call tree,
and limits the number of entries for these function in the Call
Graph Profile report. This also applies to the specified
function’s descendants, as long as they have not been
called by non-specified functions.

In the function call tree, the function box(es) for the
specified function(s) appears greyed-out. Its size and the
content of the label remain the same. This also applies to
descendant functions, as long as they have not been called
by non-specified functions.

In the Call Graph Profile report, an entry for the specified
function only appears where it is a child of another function,
or as a parent of a function that also has at least one
non-specified function as its parent. The information for this
entry remains unchanged. Entries for descendants of the
specified function do not appear unless they have been
called by at least one non-specified function in the program.

To de-emphasize the appearance of
the function boxes for foo and bar,
as well as their qualifying
descendants in the function call tree,
and limit their entries in the Call
Graph Profile report, type foo and
bar in the Exclude Routines (-e)
field.

You specify multiple functions by
separating each one with a space.

-E (field) Changes the general appearance and label information of
the function box(es) for the specified function(s) in the
function call tree. Also limits the number of entries for these
functions in the Call Graph Profile report, and changes the
CPU data associated with them. These results also apply to
the specified function’s descendants, as long as they have
not been called by non-specified functions in the program.

In the function call tree, the function box for the specified
function appears greyed-out, and its size and shape also
changes so that it appears as a square of the smallest
allowable size. In addition, the CPU time shown in the
function box label, appears as 0 (zero). The same applies to
function boxes for descendant functions, as long as they
have not been called by non-specified functions. This option
also causes the CPU time spent by the specified function to
be deducted from the left side CPU total in the label of the
function box for each of the specified function’s ancestors.

In the Call Graph Profile report, an entry for the specified
function only appears where it is a child of another function,
or as a parent of a function that also has at least one
non-specified function as its parent. When this is the case,
the time in the self and descendants columns for this entry
is set to 0 (zero). In addition, the amount of time that was in
the descendants column for the specified function is
subtracted from the time listed under the descendants
column for the profiled function. As a result, be aware that
the value listed in the % time column for most profiled
functions in this report will change.

To change the display and label
information for foo and bar, as well
as their qualifying descendants in
the function call tree, and limit their
entries and data in the Call Graph
Profile report, type foo and bar in the
Exclude Routines (-E) field.

You specify multiple functions by
separating each one with a space.

Chapter 2. Profiling parallel programs with Xprofiler 45

Table 6. Xprofiler GUI Command Line Options (continued)

Use this flag: To: For example:

-f (field) De-emphasizes the general appearance of all function
boxes in the function call tree, except for that of the
specified function(s) and its descendant(s). In addition, the
number of entries in the Call Graph Profile report for the
non-specified functions and non-descendant functions is
limited. The -f flag overrides the -e flag.

In the function call tree, all function boxes except for that of
the specified function(s) and its descendant(s) appear
greyed-out. The size of these boxes and the content of their
labels remain the same. For the specified function(s), and its
descendants, the appearance of the function boxes and
labels remain the same.

In the Call Graph Profile report, an entry for a non-specified
or non-descendant function only appears where it is a
parent or child of a specified function or one of its
descendants. All information for this entry remains the same.

To de-emphasize the display of
function boxes for all functions in the
function call tree except for foo, bar,
and their descendants, and limit their
types if entries in the Call Graph
Profile report, type foo and bar in the
Include Routines (-f) field.

You specify multiple functions by
separating each one with a space.

-F (field) Changes the general appearance and label information of all
function boxes in the function call tree except for that of the
specified function(s) and its descendants. In addition, the
number of entries in the Call Graph Profile report for the
non-specified and non-descendant functions is limited, and
the CPU data associated with them is changed. The -F flag
overrides the -E flag.

In the function call tree, all function boxes except for that of
the specified function(s) and its descendant(s) appear
greyed-out. The size and shape of these boxes changes so
that they appear as squares of the smallest allowable size.
In addition, the CPU time shown in the function box label,
appears as 0 (zero).

In the Call Graph Profile report, an entry for a non-specified
or non-descendant function only appears where it is a
parent or child of a specified function or one of its
descendants. When this is the case, the time in the self and
descendants columns for this entry is set to 0 (zero). As a
result, be aware that the value listed in the % time column
for most profiled functions in this report will change.

To change the display and label
information of the function boxes for
all functions except the functions foo
and bar and their descendants, and
limit their types of entries and data
in the Call Graph Profile, type foo
and bar in the Include Routines (-F)
field.

You specify multiple functions by
separating each one with a space.

-L (field) Sets the alternate pathname for locating shared objects. If
you plan to specify multiple paths, use the Set File Search
Path option of the File menu on the Xprofiler GUI. See
“Setting the file search sequence” for information.

Type the alternate library pathname
in this field.

Once you have specified the binary executable, the profile data file, and any
command line options you wish to use, press the OK button to save the changes
and close the dialog window. Xprofiler loads your application and displays its
performance data.

Setting the file search sequence
You can specify where you want Xprofiler to look for your library files and source
code files by using the Set File Search Paths option of the File menu. By default,
Xprofiler searches the default paths first and then any alternative paths you specify.

46 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Default paths
For library files, Xprofiler uses the paths recorded in the specified gmon.out file(s). If
you use the -L command line option, the path you specify with this option will be
used instead of those in the gmon.out file.

Note: -L allows only one path to be specified and you can use this option only
once.

For source code files, the paths recorded in the specified a.out file are used.

Alternative paths
These are the paths you specify with the Set File Search Paths option of the File
menu.

For library files, if everything else failed, the search will be extended to the path(s)
specified by the LIBPATH environment variable associated with the executable.

To specify alternative path(s), do the following:

v Select the File menu, and then the Set File Search Paths option. The Alt File
Search Path Dialog window appears.

v Enter the name of the path in the Enter Alt File Search Path(s) text field. You can
specify more than one path by separating each with colon (:) or a space.

Notes:

1. You can use the “at” symbol (@) with this option to represent the default file
path, in order to specify that other paths be searched before the default path.
For example, to set the alternative file search path(s) so that Xprofiler
searches pathA, the default path, then pathB, type pathA:@:pathB in the Alt
File Search Path(s) (-a) field.

2. If @ is used in the alternative search path, the two buttons in the Alt File
Search Path Dialog will be greyed out, and have no effect on the search
order.

v Click on the OK button. The paths you specified in the text field become the
alternative paths.

Changing the search sequence: You can change the order of the search
sequence for library files and source code files via the Set File Search Paths option
of the File menu. To change the search sequence, do the following:

1. Select the File menu, and then the Set File Search Paths option. The Alt File
Search Path Dialog window appears.

2. To indicate the file search should use alternative paths first, click on the Check
alternative path(s) first button.

3. Click on the OK button. This changes the search sequence to the:

a. Alternative paths

b. Default paths

c. Path(s) specified in LIBPATH (library files only)

To return the search sequence back to its default order, repeat steps 1 through 3,
but in step 2 above, click on the Check default path(s) first button. When the action
is confirmed (by clicking on the OK button), the search sequence will start with the
default paths again.

Chapter 2. Profiling parallel programs with Xprofiler 47

Keep in mind that if a file is found in one of the alternative paths or a path in
LIBPATH, this path now becomes the default path for this file throughout the current
Xprofiler session (until you exit this Xprofiler session or load a new set of data).

Understanding the Xprofiler display
The primary difference between Xprofiler and the UNIX® gprof command is that
Xprofiler gives you a graphical picture of your application’s CPU consumption in
addition to textual data. This allows you to focus quickly on the areas of your
application that consume a disproportionate amount of CPU.

Xprofiler displays your profiled program in a single main window. It uses several
types of graphic images to represent the relevant parts of your program. Functions
appear as solid green boxes (called function boxes), and the calls between them
appear as blue arrows (called call arcs). The function boxes and call arcs that
belong to each library within your application appear within a fenced-in area called
a cluster box. The way that functions, calls, and library clusters are depicted is
discussed later.

The Xprofiler main window
The Xprofiler main window contains a graphical representation of the functions and
calls within your application as well as their inter-relationships. It provides six
menus, including one for online help.

The Xprofiler main window looks similar to this when an application has been
loaded:

48 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

In the main window, Xprofiler displays the function call tree. The function call tree
displays the function boxes, arcs, and cluster boxes that represent the functions
within your application.

Note: When Xprofiler first opens, by default, the function boxes for your application
will be clustered by library, as in the example above. This means that a
cluster box appears around each library, and the function boxes and arcs
within the cluster box are reduced in size. If you wish to see more detail, you
need to uncluster the functions. To do this, select the File menu and then the
Uncluster Functions option.

Xprofiler main menus
Along the upper portion of the main window is the menu bar. The left side of the
menu bar contains the Xprofiler menus that let you work with your profiled data. On
the right side of the menu bar, there is a Help menu for accessing online help.

The Xprofiler menus are described below:

File menu: The File menu lets you specify the executable (a.out) files and profile
data (gmon.out) files that Xprofiler will use. It also lets you control how your files are
accessed and saved.

View menu: The View menu lets you focus on specific portions of the function call
tree in order to get a better view of the application’s critical areas.

Figure 7. Sample Xprofiler Main Window

Chapter 2. Profiling parallel programs with Xprofiler 49

Filter menu: The Filter menu lets you add, remove, and change specific parts of
the function call tree. By controlling what Xprofiler displays, you can focus on the
objects that are most important to you.

Report menu: The Report menu provides several types of profiled data in a
textual and tabular format. In addition to presenting the profiled data, the options of
the Report menu let you:

v Display textual data

v Save it to a file

v View the corresponding source code

v Locate the corresponding function box or call arc in the function call tree.

Utility menu: The Utility menu contains one option; Locate Function By Name,
which lets you highlight a particular function in the function call tree.

Xprofiler hidden menus

Function menu: The Function menu lets you perform a number of operations for
any of the functions shown in the function call tree. You can access statistical data,
look at source code, and control which functions get displayed.

The Function menu is not visible from the Xprofiler window. You access it by
clicking on the function box of the function in which you are interested with your
right mouse button. By doing this, you not only bring up the Function menu, but you
select this function as well. Then, when you select actions from the Function menu,
they are applied to this function.

Arc menu: The Arc menu lets you locate the caller and callee functions for a
particular call arc. A call arc is the representation of a call between two functions
within the function call tree.

The Arc menu is not visible from the Xprofiler window. You access it by clicking on
the call arc in which you are interested with your right mouse button. By doing this,
you not only bring up the Arc menu, but you select that call arc as well. Then, when
you perform actions with the Arc menu, they are applied to that call arc.

Cluster Node menu: The Cluster Node menu lets you control the way your
libraries are displayed by Xprofiler. In order to access the Cluster Node Menu, the
function boxes, in the function call tree, must first be clustered by library. See
“Clustering libraries together” on page 70 for information about clustering and
unclustering the function boxes of your application. When the function call tree is
clustered, all the function boxes within each library appear within a cluster box.

The Cluster Node menu is not visible from the Xprofiler window. You access it by
clicking on the edge of the cluster box in which you are interested with your right
mouse button. By doing this, you not only bring up the Cluster Node menu, but you
select that cluster as well. Then, when you perform actions with the Cluster Node
menu, they are applied to the functions within that library cluster.

Display Status field
At the bottom of the Xprofiler window is a single field that tells you:

v The name of your application

v The number of gmon.out files used in this session.

v The total amount of CPU used by the application.

50 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

v The number of functions and calls in your application, and how many of these
are currently displayed

How functions are depicted
Functions are represented by green, solid-filled boxes in the function call tree. The
size and shape of each function box indicates its CPU usage. The height of each
function box represents the amount of CPU time it spent on executing itself. The
width of each function box represents the amount of CPU time it spent executing
itself, plus its descendant functions.

This type of representation is known as summary mode. In summary mode, the size
and shape of each function box is determined by the total CPU time of multiple
gmon.out files used on that function alone, and the total time used by the function
and its descendant functions. A function box that is wide and flat represents a
function that uses a relatively small amount of CPU on itself (it spends most of its
time on its descendants). On the other hand, the function box for a function that
spends most of its time executing only itself will be roughly square-shaped.

Functions can also be represented in average mode. In average mode, the size and
shape of each function box is determined by the average CPU time used on that
function alone, among all loaded gmon.out files, and the standard deviation of CPU
time for that function among all loaded gmon.out files. The height of each function
node represents the average CPU time, among all the input gmon.out files, used on
the function itself. The width of each node represents the standard deviation of CPU
time, among the gmon.out files, used on the function itself. The average mode
representation is available only when more than one gmon.out file is entered. For
more information on summary mode and average mode, see “Controlling the
representation of the function call tree” on page 63.

Under each function box in the function call tree is a label that contains the name of
the function and related CPU usage data. For information on the function box
labels, see “Getting basic data” on page 75.

The example below shows the function boxes for two functions, sub1 and printf, as
they would appear in the Xprofiler display.

Chapter 2. Profiling parallel programs with Xprofiler 51

Each function box has its own menu. To access it, place your mouse cursor over
the function box of the function in which you are interested, and press the right
mouse button. Each function also has an information box that lets you get basic
performance numbers quickly. To access the information box, place your mouse
cursor over the function box of the function in which you are interested, and press
the left mouse button.

How calls between functions are depicted
The calls made between each of the functions in the function call tree are
represented by blue arrows extending between their corresponding function boxes.
These lines are called call arcs. Each call arc appears as a solid blue line between
two functions. The arrowhead indicates the direction of the call; the function
represented by the function box it points to is the one that receives the call. The
function making the call is known as the caller, while the function receiving the call
is known as the callee.

Each call arc includes a numerical label that tells you how many calls were
exchanged between the two corresponding functions.

Figure 8, above, shows several call arcs. For the call arc that connects sub1 and
printf, sub1 is the caller and printf is the callee. The label tells you that sub1 called
printf four times.

Note that each call arc has its own menu that lets you locate the function boxes for
its caller and callee functions. To access it, place your mouse cursor over the call
arc for the call in which you are interested, and press the right mouse button. Each
call arc also has an information box that shows you the number of times the caller

Figure 8. Example of Function Boxes and Arcs in Xprofiler Display

52 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

function called the callee function. To access the information box, place your mouse
cursor over the call arc for the call in which you are interested, and press the left
mouse button.

How library clusters are depicted
Xprofiler lets you collect the function boxes and call arcs that belong to each of your
shared libraries into cluster boxes. Figure 7 on page 49 shows an example of an
Xprofiler display in which the libraries are clustered.

Since there will be a box around each library, the individual function boxes and call
arcs will be difficult to see. If you want to see more detail, you will need to uncluster
the function boxes. To do this, select the Filter menu and then the Uncluster
Functions option.

When viewing function boxes within a cluster box, note that the size of each
function box is relative to those of the other functions within the same library cluster.
On the other hand, when all the libraries are unclustered, the size of each function
box is relative to all the functions in the application (as shown in the function call
tree).

Each library cluster has its own menu that lets you manipulate the cluster box. To
access it, place your mouse cursor over the edge of the cluster box you are
interested in, and press the right mouse button. Each cluster also has an
information box that shows you the name of the library and the total CPU usage (in
seconds) consumed by the functions within it. To access the information box, place
your mouse cursor over the edge of the cluster box you are interested in and press
the left mouse button.

Using the Xprofiler graphical user interface
The Xprofiler graphical user interface (GUI) contains features and buttons that are
common throughout the interface. This section explains how to use some of these
common elements.

Using the dialog window buttons
The buttons that appear on the Xprofiler dialog windows are explained below:

OK
Saves the changes, executes the action, and closes the dialog window.

Apply
Saves the changes, executes the action, but leaves the dialog window open.

Reset
Restores the fields of the dialog window to their original values (at the time you
opened it), and keeps the dialog window open.

Cancel
Ignores changes and closes the dialog window.

Help
Brings up the Xprofiler online help.

Filter
Executes filtering criteria provided by you in the dialog window.

Chapter 2. Profiling parallel programs with Xprofiler 53

Using the search engine
Some of the Xprofiler windows that are accessible via the Report and Function
menus provide a Search Engine field that lets you search for a specific string. In the
Search Engine field, which is located at the bottom of these windows, you type the
string in which you are interested. The first row that contains the string you
specified is highlighted.

To use the Search Engine to search for a string:

1. Click on the Search Engine field with the left mouse button. The Search Engine
field highlights to show that it is selected.

2. Type the string you are looking for in the Search Engine field.

Extended regular expressions are allowed. For more information, see the
explanation of the regcmp and regcomp commands in AIX 5L Version 5.1
Technical Reference, Volume 2: Base Operating System and Extensions.

3. Press the <Enter > key. The first row, in the Report or Source Code window, that
contains the string you specified is highlighted. Each time you press the
<Enter > key, a subsequent occurrence of the string in highlighted. The Search
wraps back to the first occurrence after all other occurrences have been
highlighted.

Using the save dialog windows
A Save dialog window appears when you choose the Save As option from any of
the Xprofiler reports windows or from the File Menu. It allows you to save the data
you see, in the report window that is currently open, to a file.

Note: If you choose the Save As option from one of the reports windows, the title
of the dialog window included the name of the report (for example Save Flat
Profile).

To save the current report data to a file using the Save dialog window:

1. Specify the file into which the data should be placed. You can specify either an
existing file or a new one. If you specify and existing file, be aware that Xprofiler
replaces the file altogether (instead of appending to the existing data). To
replace an existing file, use the scroll bars of the Directories and the Files
selection boxes to locate the file you want. To make locating your file easier,
you can also use the Filter button (see “Using the dialog window filters” for more
information). To specify a new file, type its name in the Selection field.

2. Click on the OK button. A file containing the profiled window data appears in the
directory you specified, under the name you gave it.

Using the dialog window filters
Many of the Xprofiler dialog windows include a Filter button. The use of the
Xprofiler Filter function follows the Motif standard. To use the Filter:

1. In the Filter field, specify the directory that contains the files that you wish to
see in the Files selection box. You may specify an asterisk (*) as a wildcard.

2. Click on the Filter button with the left mouse button. The list of files in the Files
selection box is updated to reflect your selection.

Using the Radio/Toggle buttons and sliders
Many of the dialog windows include buttons and sliders that allow you to select
options and specify values.

54 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Using the buttons
Aside from push-buttons, the Xprofiler dialog windows also use radio buttons and
toggle buttons. Radio buttons let you select one item from a set of items, while
toggle buttons let you activate or de-activate a single item.

In the example below, the Screen Dump Options Dialog window uses both radio
buttons and toggle buttons. For instance, under Output To, there are two radio
buttons; File and Printer . You must select one or the other, but you cannot select
both. Just above the Default Directory field, notice two toggle buttons; Enable
Landscape and Annotate Output . By using the toggle buttons, you can activate
either one or both of these options.

To select (or activate) an option with a radio or toggle button, set the button to the
pressed-in position by clicking on it. When a button is pressed-in, it appears
shaded. Under Output To, in the example below, File is selected and Printer is not.

Chapter 2. Profiling parallel programs with Xprofiler 55

Using the sliders
Several of the Xprofiler dialog windows include sliders that let you specify a
numerical value. In the example above, the Delay Before Grab slider lets you
specify the number of seconds you want to pass before the screen image is
actually captured.

Figure 9. Example Showing Radio Buttons, Toggle Buttons, and Slider

56 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Place your mouse cursor over the slider. Press and hold the left mouse button while
moving the slider horizontally in either direction. The number above the slider
changes as you move it, and indicates the number selected. Once the slider is at
the setting you want, release the mouse button.

If the number of selectable values on the slider is high, you may want to have finer
control over the placement of the slider. If so, click on the slider and then use the
arrow keys on your keyboard to place it.

Manipulating the function call tree
Xprofiler lets you look at your profiled data a number of ways, depending on what
you want to see. It provides:

v Navigation that lets you move around the display and zoom in on specific areas

v Display options, based on your personal viewing preferences.

v Filtering capability, to let you include and exclude certain objects from the display

Zooming in on the function call tree
Xprofiler lets you magnify specific areas of the window to get a better view of your
profiled data. The View menu includes three options that let you do this:

v Overview

v Zoom In

v Zoom Out

To resize a specific area of the display, you can use either the Overview or Zoom In
options of the View menu. To magnify an area with the Overview option:

1. Select the View menu, and then the Overview option. The Overview Window
appears, as in the example below.

Chapter 2. Profiling parallel programs with Xprofiler 57

The Overview Window contains a miniature view of the function call tree, just as it
appears in the Xprofiler main display. When you open the Overview Window, the
light blue highlight area represents the current view of the main window.

You control the size and placement of the highlight area with your mouse.
Depending on where you place your mouse over the highlight area, your cursor
changes to indicate the operation you can perform. Here is an explanation of the
cursor images, and what they indicate to you:

When your cursor appears as two crossed arrows, it means that by pressing and
holding your mouse button, you can control where the box is placed.

When your cursor appears as a line with an arrow perpendicular to it, it means that
your mouse button has grabbed the edge of the highlight area, and you now have
the ability to resize it. By pressing and holding your mouse button, and dragging it

Figure 10. The Overview Window

Figure 11. Cursor when movement of highlight box is under mouse control

58 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

in or out, you can increase or decrease the size of the box. Notice that as you
move the edge in or out, the size of the entire highlight area changes.

When your cursor appears as a right angle with an arrow pointing into it, it means
that your mouse button has grabbed the corner of the highlight area and you now
have the ability to resize it. By pressing and holding your mouse button, and
dragging it diagonally up or down, you can increase or decrease the size of the
box. Notice that as you move the corner up or down, the size of the entire highlight
area changes.

3. Place your mouse cursor within the light blue highlight area. Notice that the
cursor changes to four crossed arrows. This indicates that your cursor has
control over the placement of the box.
4. Move your cursor over one of the four corners of the highlight area. Notice
that the cursor changes to a right angle with an arrow pointing into it. This
indicates that you now have control over the corner of the highlight area.
5. Press and hold the left mouse button, and drag the corner of the box
diagonally inward. The box shrinks as you move it. The example below shows
the highlight area reduced in size, with only a few function boxes visible within it.

Figure 12. Cursor when edge of highlight box is under mouse control

Figure 13. Cursor when corner of highlight box is under mouse control

Chapter 2. Profiling parallel programs with Xprofiler 59

6. When the highlight area is as small as you would like it (or the smallest
allowable size), release the mouse button. The Xprofiler main display redraws
itself to contain only the functions within the highlight area, and in the same
proportions. This has the effect of magnifying the items within the highlight area.
7. Place your mouse cursor over the highlight area. Your cursor again changes
to four crossed arrows to indicate that you have control over the placement of
the highlight area. Press and hold the left mouse button and drag the highlight
area to the area of the Xprofiler display you want to magnify.
8. Release the mouse button. The Xprofiler main display now contains the items
in which you are interested.

The example below shows the Xprofiler main display with the area, indicated by the
highlight area in Figure 14, magnified. Note that the performance data, on the label
of each function box, is now visible.

Figure 14. Highlight Area Reduced in Size

60 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

To use the Zoom In option of the View menu to magnify a specific area of the
function call tree:

1. Select the View menu, and then the Zoom In option. Once you select the Zoom
In option, your cursor changes to a hand to indicate that your selection is active.

2. Place the mouse cursor in the upper left hand corner of the area you would like
to view more closely. Press and hold the left mouse button while dragging it
diagonally downward, until the rubber band box surrounds the area you want to
view.

3. Release the mouse button. Xprofiler redraws the display so that the area of the
function call tree you selected is centered and sized proportionately, according
to the size of the rubber band box you drew.

To get an even closer view of the area you selected, choose the Zoom In option
again and follow the steps above.

There may be times when you are looking at the function call tree too closely. The
Zoom Out option lets you widen the view of the function call tree, as if you were
taking a few steps back from a painting on a wall.

The Zoom Out option is most useful after using the Zoom In or Overview options to
magnify an area of the function call tree. By default, the Xprofiler main window is
completely zoomed out (it shows you the entire function call tree). The Zoom Out
option helps you return the main window to this state.

To zoom out:

Figure 15. Magnified View of Xprofiler Display

Chapter 2. Profiling parallel programs with Xprofiler 61

1. Select the View menu, and then the Zoom Out option. Once you select the
Zoom Out option, your cursor changes to a hand to indicate that your selection
is active.

2. Place the mouse cursor in the upper left hand corner of the area you want to
view. Press and hold the left mouse button while dragging it diagonally
downward, until the rubberband box surrounds the area you want to widen.

3. Release the mouse button. Xprofiler redraws the display so that the area of the
function call tree you selected is centered and sized proportionately according to
the size of the rubber band box that you drew.

To further step back from the area you selected, choose the Zoom Out option
again, and follow the steps above.

Controlling how the display is updated
The Utility menu of the Overview window lets you choose the mode in which the
display is updated. The default is the Immediate Update option, which causes the
display to show you the items in the highlight area as you are moving it around.
The Delayed Update option, on the other hand, causes the display to be updated
only when you have moved the highlight area over the area in which you are
interested, and released the mouse button. The Immediate Update option only
applies to what you see when you move the highlight area; it has no effect on the
resizing of items in highlight area, which is always delayed.

Other viewing options
Xprofiler lets you change the way it displays the function call tree, based on your
own personal preferences.

Controlling the graphic style of the function call tree
You can choose between 2-D and 3-D function boxes in the function call tree. The
default style is 2-D, but you can change this to 3-D. To do this:

1. Select the View menu, and then the 3-D Image option. The function boxes in
the function call tree now appear in 3-D format.

Controlling the orientation of the function call tree
You can choose to have Xprofiler display the function call tree in either
Top-to-Bottom or Left-to-Right format. The default is Top-to-Bottom. If you would
rather see the function call tree displayed in Left-to-Right format:

1. Select the View menu, and then the Layout: Left→Right option. The function call
tree appears in Left-to-Right format.

62 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Controlling the representation of the function call tree
You can choose to have Xprofiler represent the function call tree in either summary
mode or average mode.

When you select the Summary Mode option of the View menu, the size and shape
of each function box is determined by the total CPU time of multiple gmon.out files
used on that function alone, and the total time used by the function and its
descendant functions. The height of each function node represents the total CPU
time used on the function itself. The width of each node represents the total CPU
time used on the function and its descendant functions. When the display is in
summary mode, the Summary Mode option is greyed out and the Average Mode
option is activated.

When you select the Average Mode option of the View menu, the size and shape of
each function box is determined by the average CPU time used on that function
alone, among all loaded gmon.out files, and the standard deviation of CPU time for
that function among all loaded gmon.out files. The height of each function node
represents the average CPU time, among all the input gmon.out files, used on the
function itself. The width of each node represents the standard deviation of CPU
time, among the gmon.out files, used on the function itself.

Figure 16. Left-to-Right Format

Chapter 2. Profiling parallel programs with Xprofiler 63

The purpose of average mode is to reveal workload balancing problems when an
application is involved with multiple gmon.out files. In general, a function node with
large standard deviation has a wide width, and a node with small standard deviation
has a slim width.

Both summary mode and average mode only affect the appearance of the function
call tree and the labels associated with it. All the performance data in Xprofiler
reports and code displays are always summary data. If only one gmon.out file is
given, both Summary Mode and Average Mode will be greyed out, and the display
is always in Summary Mode.

Filtering what you see
When Xprofiler first opens, the entire function call tree appears in the main window.
This includes the function boxes and call arcs that belong to your executable as
well as the shared libraries that it utilizes. At times, you may want to simplify what
you see in the main window, and there are a number of ways to do this.

Note: Filtering options of the Filter menu let you change the appearance of the
function call tree only. The performance data contained in the reports (via the
Reports menu) is not affected.

Restoring the status of the function call tree
Xprofiler allows you to undo operations that involve adding or removing nodes and
arcs from the function call tree. When you undo an operation, you reverse the effect
of any operation which adds or removes function boxes or call arcs to the function
call tree. When you select the Undo option, the function call tree is returned to its
appearance just prior to the performance of the add or remove operation. To undo
an operation:

1. Select the Filter menu, and then the Undo option. The function call tree is
returned to its appearance just prior to the performance of the add or remove
operation.

Whenever you invoke the Undo option, the function call tree loses its zoom focus
and zooms all the way out to reveal the entire function call tree in the main display.
When you start Xprofiler, the Undo option is greyed out. It is activated only after an
add or remove operation involving the function call tree takes place. After you undo
an operation, the option greys out again until the next add or remove operation
takes place.

The options that activate the Undo option include:

v In the main File menu:

v Load Configuration

v In the main Filter menu:

v Show Entire Call Tree

v Hide All Library Calls

v Add Library Calls

v Filter by Function Names

v Filter by CPU Time

v Filter by Call Counts

v In the Function menu:

v Immediate Parents

v All Paths To

64 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

v Immediate Children

v All Paths From

v All Functions on The Cycle

v Show This Function Only

v Hide This Function

v Hide Descendant Functions

v Hide This & Descendant Functions

If a dialog, like the Load Configuration Dialog or the Filter by CPU Time Dialog, is
invoked and then cancelled immediately, the status of the Undo option is not
affected. Once the option is available, it stays that way until you invoke it, or a new
set of files is loaded into Xprofiler through the Load Files Dialog.

Displaying the entire function call tree
When you first open Xprofiler, by default, all the function boxes and call arcs of your
executable and its shared libraries appear in the main window. After that, you may
choose to filter out specific items from the window. However, there may be times
when you want to see the entire function call tree again, without having to reload
your application. To do this:

1. Select the Filter menu, and then the Show Entire Call Tree option. Xprofiler
erases whatever is currently displayed in the main window and replaces it with
the entire function call tree.

Excluding and including specific objects
There are a number of ways that Xprofiler lets you control the items that get
displayed in the main window. For the most part, you will want to include or exclude
certain objects so that you can more easily focus on the things that are of most
interest to you.

Filtering shared library functions: In most cases, your application will call
functions that are within shared libraries. By default, these shared libraries will
appear in the Xprofiler window along with your executable. As a result, the window
may get crowded and obscure the items that you really want to see. If this is the
case, you may want to filter the shared libraries from the display. To do this:

1. Select the Filter menu, and then the Remove All Library Calls option.

The shared library function boxes disappear from the function call tree, leaving only
the function boxes of your executable file visible.

If you removed the library calls from the display, you may want to add all or some
of them back. To do this:

1. Select the File menu, and then the Add Library Calls option

The function boxes once again appear with the function call tree. Note, however,
that all of the shared library calls that were in the initial function call tree may not be
added back. This is because the Add Library Calls option only adds back in the
function boxes for the library functions that were called by functions that are
currently displayed in the Xprofiler window.

There may be times when you want to add only specific function boxes back into
the display. To do this:

1. Select the Filter menu, and then the Filter by Function Names option. The Filter
By Function Names Dialog window appears.

Chapter 2. Profiling parallel programs with Xprofiler 65

2. From the Filter By Function Names Dialog window, select the add these
functions to graph button, and then type the name of the function you want to
add in the Enter function name field. If you enter more than one function name,
you must separate them by putting a blank space between each function name
string.

If there are multiple functions in your program that include the string you enter
in their names, the filter applies to each one. For example, say you specified
sub, and print, and your program also included functions named sub1, psub1
and printf. The sub, sub1, psub1, print, and printf functions would all be added
to the graph.

3. Click on the OK button. The function box(es) appears in the Xprofiler display
with the function call tree.

Filtering by function characteristics: The Filter menu of Xprofiler offers you
three options that allow you to add or subtract function boxes from the main
window, based on specific characteristics. The options are:

v Filter by Function Names

v Filter by CPU Time

v Filter by Call Counts

Each one of these options uses a different dialog window to let you specify the
criteria by which you want to include or exclude function boxes from the window.

To filter by function names:
1. Select the Filter menu.
2. Select the Filter by Function Names option. The Filter By Function Names
Dialog window appears.

3. The Filter By Function Names Dialog window includes three options:

– add these functions to graph

– remove these functions from the graph

– display only these functions

Figure 17. Filter By Function Names Dialog window

66 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

From the Filter By Function Names Dialog window, select the option you want,
and then type the name of the function(s) to which you want it applied in the
Enter function name field. For example, say you wanted to remove function box
for a function called printf, from the main window. You would click on the remove
this function from the graph button and type printf in the Enter function name
field.

You can enter more than one function name in this field. If there are multiple
functions in your program that include the string you enter in their names, the
filter will apply to each one. For example, say you specified sub and print, and
your program also included functions named sub1, psub1, and printf. The option
you chose would be applied to the sub, sub1, psub1, print, and printf functions.
4. Click on the OK button. The contents of the function call tree now reflect the
filtering options you specified.

To filter by CPU time:
1. Select the Filter menu.
2. Select the Filter by CPU Time option. The Filter By CPU Time Dialog window
appears.

3. The Filter By CPU Time Dialog window includes two options:

– show functions consuming the most CPU time

– show functions consuming the least CPU time
4. Click on the button for the option you want (show functions consuming the
most CPU time is the default).
5. Select the number of functions to which you want it applied (1 is the default).
You can move the slider in the Functions bar until the desired number appears,
or you can enter the number in the Slider Value field. The slider and Slider
Value field are synchronized so when the slider is updated, the text field value is
updated also. If you enter a value in the text field, the slider is updated to that
value when you click on the Apply button or the OK button.

Figure 18. Filter By CPU Time Dialog window

Chapter 2. Profiling parallel programs with Xprofiler 67

For example, if you wanted to display the function boxes for the 10 functions in
your application that consumed the most CPU, you would select the show
functions consuming the most CPU button, and specify 10 with the slider or
enter the value 10 in the text field.
6. Click on the Apply button to show the changes to the function call tree
without closing the dialog. Click on the OK button to show the changes and
close the dialog.

To filter by call counts:
1. Select the Filter menu.
2. Select the Filter by Call Counts option. The Filter By Call Counts Dialog
window appears.

3. The Filter By Call Counts Dialog window includes two options:

– show arcs with the most call counts

– show arcs with the least call counts
4. Click on the button for the option you want (show arcs with the most call
counts is the default).
5. Select the number of call arcs to which you want it applied (1 is the default).
You can move the slider in the Call Arcs bar until the desired number appears,
or you can enter the number in the Slider Value field. The slider and Slider
Value field are synchronized so when the slider is updated, the text field value is
updated also. If you enter a value in the text field, the slider is updated to that
value when you click on the Apply button or the OK button.

Figure 19. Filter By Call Counts Dialog window

68 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

For example, if you wanted to display the 10 call arcs in your application that
represented the least number of calls, you would select the show arcs with the
least call counts button, and specify 10 with the slider or enter the value 10 in
the text field.
6. Click on the Apply button to show the changes to the function call tree
without closing the dialog. Click on the OK button to show the changes and
close the dialog.

Including and excluding parent and child functions: When tuning the
performance of your application, you will want to know which functions consumed
the most CPU time, and then you will need to ask several questions in order to
understand their behavior:

v Where did each function spend most of the CPU time?

v What other functions called this function? Were the calls made directly or
indirectly?

v What other functions did this function call? Were the calls made directly or
indirectly?

Once you understand how these functions behave, and are able to improve their
performance, you can move on to analyzing the functions that consume less CPU.

When your application is large, the function call tree will also be large. As a result,
the functions that are the most CPU-intensive may be difficult to see in the function
call tree. To get around this, use the Filter by CPU option of the Filter menu, which
lets you display only the function boxes for the functions that consume the most
CPU time. Once you’ve done this, the Function menu for each function lets you add
the parent and descendant function boxes to the function call tree. By doing this,
you create a smaller, simpler function call tree that displays the function boxes
associated with most CPU-intensive area of the application.

A child function is one that is directly called by the function of interest. To see only
the function boxes for the function of interest and its child functions:

1. Place your mouse cursor over the function box in which you are interested, and
press the right mouse button. The Function menu appears.

2. From the Function menu, select the Immediate Children option, and then the
Show Child Functions Only option.

Xprofiler erases the current display and replaces it with only the function boxes
for the function you chose, plus its child functions.

A parent function is one that directly calls the function of interest. To see only the
function box for the function of interest and its parent functions:

1. Place your mouse cursor over the function box in which you are interested, and
press the right mouse button. The Function menu appears.

2. From the Function menu, select the Immediate Parents option, and then the
Show Parent Functions Only option.

Xprofiler erases the current display and replaces it with only the function boxes
for the function you chose, plus its parent functions.

There may be times when you may want to see the function boxes for both the
parent and child functions of the function in which you are interested, without
erasing the rest of the function call tree. This is especially true if you chose to
display the function boxes for two or more of the most CPU-intensive functions with
the Filter by CPU option of the Filter menu (you suspect that more than one
function is consuming too much CPU). To do this:

Chapter 2. Profiling parallel programs with Xprofiler 69

1. Place your mouse cursor over the function box in which you are interested, and
press the right mouse button. The Function menu appears.

2. From the Function menu, select the Immediate Parents option, and then the
Add Parent Functions to Tree option.

Xprofiler leaves the current display as it is, but adds the parent function boxes.

3. Place your mouse cursor over the same function box and press the right mouse
button. The Function menu appears.

4. From the Function menu, select the Immediate Children option, and then the
Add Child Functions to Tree option.

Xprofiler leaves the current display as it is, but now adds the child function
boxes in addition to the parents.

Clustering libraries together
When you first bring up the Xprofiler window, by default, the function boxes of your
executable, and the libraries associated with it, are clustered. Since Xprofiler
shrinks the call tree of each library when it places it in a cluster, you will need to
uncluster the function boxes if you want to look closely at a specific function box
label.

It is important to understand that you can see significantly more detail per function,
when your display is in the unclustered or expanded state, than when it is in the
clustered or collapsed state. So, depending on what you want to do, you will need
to cluster or uncluster (collapse or expand) the display.

There may be times when the Xprofiler window is visually crowded. This is
especially true if your application calls functions that are within shared libraries;
function boxes representing your executable functions as well as the functions of
the shared libraries get displayed. As a result, you may want to organize what you
see in the Xprofiler window so you can focus on the areas that are most important
to you. One way you can do this is to collect all the function boxes of each library
into a single area, known as a library cluster.

When you choose to cluster your libraries, Xprofiler gathers all the functions for
each one into a single area, and draws a green box around them. This is known as
a cluster box. The name of the library also appears below the box.

The function boxes in the application shown in Figure 7 on page 49 have been
clustered. Note that one cluster box holds the function boxes associated with the
executable hello_world, while the other cluster box holds the function boxes of the
shared library /lib/profiled/libc.a:shr.o.

The example below shows the same application, hello_world, with its function boxes
unclustered. Now that the function boxes of your executable and its shared libraries
are displayed together, which means their relationships are more apparent.

70 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Clustering functions
If the functions within your application are unclustered, you can use an option of the
Filter menu to cluster them.

1. Select the Filter menu, and then the Cluster Functions by Library option. The
libraries within your application appear within their respective cluster boxes.

Once you cluster the functions in your application, as shown in Figure 7 on page 49,
you can further reduce the size (also referred to as collapse) of each cluster box. To
do this:

1. Place your mouse cursor over the edge of the cluster box and press the right
mouse button. The Cluster Node Menu appears.

2. Select the Collapse Cluster Node option. The cluster box, and its contents, now
appear as a small solid green box. In the example below, the library
/lib/profiled/libc.a:shr.o is collapsed.

Figure 20. Xprofiler Window with Function Boxes Unclustered

Chapter 2. Profiling parallel programs with Xprofiler 71

To return the cluster box to its original condition (expand it):

1. Place your mouse cursor over the collapsed cluster box and press the right
mouse button. The Cluster Node Menu appears.

2. Select the Expand Cluster Node option. The cluster box, and its contents,
appear once again.

Unclustering functions
If the functions within your application are clustered, you can use an option of the
Filter menu to uncluster them.

1. Select the Filter menu, and then the Uncluster Functions option. The cluster
boxes disappear and the functions boxes of each library expand to fill the
Xprofiler window.

If your functions have been clustered, you may want to remove one or more (but
not all) cluster boxes. For example, say you wanted to uncluster only the functions
of your executable, but keep its shared libraries within their cluster boxes. You
would:

1. Place your mouse cursor over the edge of the cluster box that contains the
executable and press the right mouse button. The Cluster Node Menu appears.

2. Select the Remove Cluster Box option. The cluster box disappears and the
function boxes and call arcs, that represent the executable functions, now
appear in full detail. The function boxes and call arcs of the shared libraries
remain within their cluster boxes, which now appear smaller to make room for
the unclustered executable function boxes.

Figure 21. Xprofiler Window with One Library Cluster Box Collapsed

72 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

The example below shows the executable, hello_world with its cluster box removed.
Its shared library, /lib/profiled/libc.a:shr.o, remains within its cluster box.

Locating specific objects in the function call tree
If you are interested in one or more specific functions in a complex program, you
may need help locating their corresponding function boxes in the function call tree.

If you would like to locate a single function, and you know its name, you can use
the Locate Function By Name option of the Utility menu. To locate a function by
name:

1. Select the Utility menu, and then the Locate Function By Name option. The
Search By Function Name Dialog window appears.

2. Type the name of the function you wish to locate in the Enter Function Name
field. The function name you type here must be a continuous string (it cannot
include blanks).

3. Press the OK or Apply button. The corresponding function box is highlighted
(its color changes to red) in the function call tree and Xprofiler zooms in on its
location.

To display the function call tree in full detail again, go to the View menu and use
the Overview option.

There may also be times when you want to see only the function boxes for the
functions you are concerned with, plus other specific functions that are related to it.
For instance, suppose you want to see all the functions that directly called the

Figure 22. Xprofiler Window with One Library Cluster Box Removed

Chapter 2. Profiling parallel programs with Xprofiler 73

function in which you are interested. It might not be easy to pick out these function
boxes when you view the entire call tree, so you would want to display them, plus
the function of interest, alone.

Each function has its own menu, called a Function menu. Via the Function menu,
you can choose to see the following for the function in which you are interested:

v Parent functions (functions that directly call the function of interest)

v Child functions (functions that are directly called by the function of interest)

v Ancestor functions (functions that can call, directly or indirectly, the function of
interest)

v Descendant functions (functions that can be called, directly or indirectly, by the
function of interest)

v Functions that belong to the same cycle

When you use these options, Xprofiler erases the current display and replaces it
with only the function boxes for the function of interest and all the functions of the
type you specified.

Locating and displaying parent functions
A parent is any function that directly calls the function in which you are interested.
To locate the parent function boxes of the function in which you are interested:

1. Click on the function box of interest with the right mouse button. The Function
menu appears.

2. From the Function menu, select Immediate Parents→Show Parent Functions
Only. Xprofiler redraws the display to show you only the function boxes for the
function of interest and its parent functions.

Locating and displaying child functions
A child is any function that is directly called by the function in which you are
interested. To locate the child functions boxes for the function in which you are
interested:

1. Click on the function box of interest with the right mouse button. The Function
menu appears.

2. From the Function menu, select Immediate Children→Show Child Functions
Only. Xprofiler redraws the display to show you only the function boxes for the
function of interest and its child functions.

Locating and displaying ancestor functions
An ancestor is any function that can call, directly or indirectly, the function in which
you are interested. To locate the ancestor functions:

1. Click on the function box of interest with the right mouse button. The Function
menu appears.

2. From the Function menu, select All Paths To→Show Ancestor Functions Only.
Xprofiler redraws the display to show you only the function boxes for the
function of interest and its ancestor functions.

Locating and displaying descendant functions
A descendant is any function that can be called, directly or indirectly, by the function
in which you are interested. To locate the descendant functions (all the functions
that the function of interest can reach, directly or indirectly):

1. Click on the function box of interest with the right mouse button. The Function
menu appears.

74 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

2. From the Function menu, select All Paths From→Show Descendant Functions
Only. Xprofiler redraws the display to show you only the function boxes for the
function of interest and its descendant functions.

Locating and displaying functions on a cycle
To locate the functions that are on the same cycle as the function you are
interested in:

1. Click on the function of interest with the right mouse button. The Function menu
appears.

2. From the Function menu, select All Functions on the Cycle→Show Cycle
Functions Only. Xprofiler redraws the display to show you only the function of
interest and all the other functions on its cycle.

Getting performance data for your application
With Xprofiler, you can get performance data for your application on a number of
levels, and in a number of ways. You can easily view data pertaining to a single
function, or you can use the reports provided to get information on your application
as a whole.

Getting basic data
Xprofiler makes it easy to get data on specific items in the function call tree. Once
you’ve located the item you are interested in, you can get data a number of ways. If
you are having trouble locating a function in the function call tree, see “Locating
specific objects in the function call tree” on page 73.

Basic function data
Below each function box in the function call tree is a label that contains basic
performance data. The example below shows the function box for the function sub1,
and its label.

Figure 23. Example of a Function Box Label

Chapter 2. Profiling parallel programs with Xprofiler 75

The label contains the name of the function, its associated cycle, if any, and its
index. In the example above, the name of the function is sub1. It is associated with
cycle 1, and its index is 5. Also, depending on whether the function call tree is
viewed in summary mode or average mode, the label will contain the information
listed below. See “Controlling the representation of the function call tree” on page 63
for more about summary mode and average mode.

v In summary mode:

v The total amount of CPU time (in seconds) this function spent on itself plus the
amount of CPU time it spent on its descendants (the number on the left of the x).
In the example above, the function sub1 spent .030 seconds on itself, plus its
descendants.

v The amount of CPU time (in seconds) this function spent only on itself (the
number on the right of the x). In the example above, the function sub1 spent .030
seconds on itself.

v In average mode:

v The average CPU time (in seconds), among all the input gmon.out files, used on
the function itself.

v The standard deviation of CPU time (in seconds), among all the input gmon.out
files, used on the function itself.

Since labels are not always visible in the Xprofiler window when it is fully zoomed
out, you may need to zoom in on it in order to see the labels. See “Zooming in on
the function call tree” on page 57 for information on how to do this.

Basic call data
Call arc labels appear over each call arc. The label shows you the number of calls
that were made between the two functions (from caller to callee). For example:

In order to see a call arc label, you will probably need to zoom in on it. See
“Zooming in on the function call tree” on page 57 for information on how to do this.

Basic cluster data
Cluster box labels tell you the name of the library that is represented by that cluster.
If it is a shared library, the label shows its full pathname.

Information boxes
For each function box, call arc, and cluster box, there is a corresponding
information box that you can access with your mouse. It gives you the same basic
data that appears on the label. This is useful when the Xprofiler display is fully

Figure 24. Example of a call arc label

76 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

zoomed out and the labels are not visible. To access the information box, click on
the function box, call arc, or cluster box (place it over the edge of the box) with the
left mouse button. The information box appears.

For a function, the information box contains:

v The name of the function, its associated cycle, if any, and its index.

v The amount of CPU used by this function. There are two values supplied in this
field. The first is the amount of CPU time spent on this function plus the time
spent on its descendants. The second value represents the amount of CPU time
this function spent only on itself.

v The number of times this function was called (by itself or any other function in
the application).

For a call, the information box contains:

– The caller and callee functions (their names) and their corresponding indexes.

– The number of times the caller function called the callee.

For cluster, the information box contains:

v The name of the library

v The total CPU usage (in seconds) consumed by the functions within it.

Function menu Statistics Report option
You can get performance statistics for a single function via the Statistics Report
option of the Function menu. It lets you see data on the CPU usage and call counts
of the selected function. If you are using more than one gmon.out file, this option
breaks down the statistics per each gmon.out file you use.

When you select the Statistics Report menu option, the Function Level Statistics
Report window appears, as in the example below.

The Function Level Statistics Report window provides the following information:

Figure 25. Function Level Statistics Report window

Chapter 2. Profiling parallel programs with Xprofiler 77

Function Name
The name of the function you selected. In Figure 25 on page 77, the function name
is main.

Summary Data
The total amount of CPU used by this function. If you used multiple gmon.out files,
the value shown here represents their sum.

The CPU Usage field shows you:

v The amount of CPU used by this function. There are two values supplied in this
field. The first is the amount of CPU time spent on this function plus the time
spent on its descendants. The second value represents the amount of CPU time
this function spent only on itself.

In Figure 25 on page 77, CPU usage is listed as 0.10 seconds (self+desc) x 0.10
seconds (self)

The Call Counts field shows you:

v The number of times this function called itself, plus the number of times it was
called by other functions.

In Figure 25 on page 77, the value in the Call Counts field is 1 times.

Statistics Data
The CPU usage and calls made to or by this function, broken down by gmon.out
file.

The CPU Usage field shows you:

v Average

The average CPU time used by the data in each gmon.out file. In Figure 25 on
page 77, the Average is listed as 0.0100 seconds.

v Std Dev

Standard deviation. A value that represents the difference in CPU usage
samplings, per function, from one gmon.out file to another. The smaller the
standard deviation, the more balanced the workload. In Figure 25 on page 77, the
Std Dev is listed as 0.0000 seconds.

v Maximum

Of all the gmon.out files, the maximum amount of CPU time used. The
corresponding gmon.out file appears to the right. In Figure 25 on page 77, the
Maximum is listed as 0.01 seconds.

v Minimum

Of all the gmon.out files, the minimum amount of CPU time used. The
corresponding gmon.out file appears to the right. In Figure 25 on page 77, the
Minimum is listed as 0.01 seconds.

The Call Counts field shows you:

v Average

The average number of calls made to this function or by this function, per
gmon.out file. In Figure 25 on page 77, the Average is 1.00 times.

v Std Dev

Standard deviation. A value that represents the difference in call count sampling,
per function, from one gmon.out file to another. A small standard deviation value

78 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

in this field means that the function was almost always called the same number
of times in each gmon.out file. In Figure 25 on page 77, the Std Dev is 0.00
times.

v Maximum

The maximum number of calls made to this function or by this function in a single
gmon.out file. The corresponding gmon.out file appears to the right. In Figure 25
on page 77, the Maximum is 1 times.

v Minimum

The minimum number of calls made to this function or by this function in a single
gmon.out file. The corresponding gmon.out file appears to the right. In Figure 25
on page 77, the Minimum is 1 times.

Getting detailed data via reports
Xprofiler provides performance data in textual and tabular format. This data is
provided in various tables called reports. If you are a gprof user, you are familiar
with the Flat Profile, Call Graph Profile, and Function Index reports. Xprofiler
generates these same reports, in the same format, plus two others.

You can access the Xprofiler reports from the Report menu. The Report menu lets
you see the following reports:

v Flat Profile

v Call Graph Profile

v Function Index

v Function Call Summary

v Library Statistics

Each report window includes a File menu. Under the File menu is the Save As
option which allows you to save the report to a file. For information on using the
Save File Dialog window to save a report to a file, see “Using the save dialog
windows” on page 54.

Each report window also includes a Search Engine field, which is located at the
bottom of the window. The Search Engine lets you search for a specific string in the
report. For information on using the Search Engine field, see “Using the search
engine” on page 54.

Note: If you select the Save As option from the Flat Profile, Function Index, or
Function Call Summary report windows, you must either complete the save
operation or cancel it before you can select any other option from the menus
of these reports. You can, however, use the other menus of Xprofiler before
completing the save operation or canceling it, with the exception of the Load
Files option, of the File menu, which remains greyed out.

Each of the Xprofiler reports are explained below.

Flat Profile report
When you select the Flat Profile menu option, the Flat Profile window appears. The
Flat Profile report shows you the total execution times and call counts for each
function (including shared library calls) within your application. The entries for the
functions that use the greatest percentage of the total CPU usage appear at the top
of the list, while the remaining functions appear in descending order, based on the
amount of time used.

Chapter 2. Profiling parallel programs with Xprofiler 79

Unless you specified the -z command line option, the Flat Profile report does not
include functions whose CPU usage is 0 (zero) and have no call counts.

Note that the data presented in the Flat Profile window is the same data that is
generated with the UNIX gprof command.

The Flat Profile report looks similar to this:

Flat Profile window fields: The Flat Profile window fields are explained below.

v %time

The percentage of the program’s total CPU usage that is consumed by this
function.

v cumulative seconds

A running sum of the number of seconds used by this function and those listed
above it.

v self seconds

The number of seconds used by this function alone. The self seconds values are
what Xprofiler uses to sort the functions of the Flat Profile report.

v calls

The number of times this function was called (if this function is profiled).
Otherwise, it is blank.

v self ms/call

The average number of milliseconds spent in this function per call (if this function
is profiled). Otherwise, it is blank.

v total ms/call

The average number of milliseconds spent in this function and its descendants
per call (if this function is profiled). Otherwise, it is blank.

v name

Figure 26. Flat Profile Report

80 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

The name of the function. The index appears in brackets [] to the right of the
function name. The index serves as the function’s identifier within Xprofiler. It
also appears below the corresponding function in the function call tree.

Call Graph Profile report
The Call Graph Profile menu option lets you view the functions of your application,
sorted by the percentage of total CPU usage that each function, and its
descendants, consumed. When you select this option, the Call Graph Profile
window appears.

Unless you specified the -z command line option, the Call Graph Profile report does
not include functions whose CPU usage is 0 (zero) and have no call counts.

Note that the data presented in the Call Graph Profile window is the same data that
is generated with the UNIX gprof command.

The Call Graph Profile report looks similar to this:

Call Graph Profile window fields: The fields of the Call Graph Profile are
explained below.

v index

The index of the function in the Call Graph Profile. Each function in the Call
Graph Profile has an associated index number which serves as the function’s
identifier. The same index also appears with each function box label in the
function call tree, as well as other Xprofiler reports.

v %time

The percentage of the program’s total CPU usage that was consumed by this
function and its descendants.

v self

The number of seconds this function spends within itself.

v descendants

Figure 27. Call Graph Profile Report

Chapter 2. Profiling parallel programs with Xprofiler 81

The number of seconds spent in the descendants of this function, on behalf of
this function.

v called/total, called+self, called/total

The heading of this column refers to the three different kinds of calls that take
place within your program. The values in this field correspond to the functions
listed in the name, index, parents, children field to its right. Depending on
whether the function is a parent, child, or the function of interest (the function
who’s index is listed in the index field of this row), this value can stand for one of
the following:

– Number of times a parent called the function of interest

– Number of times the function of interest called itself, recursively

– Number of times the function of interest called a child

In the example below, sub2 is the function of interest, sub1 and main are its
parents, and printf and sub1 are its children.

v called/total

For a parent function, this refers to the number of calls made to the function of
interest, as well as the total number of calls it made to all functions. In the
example above, one of the parent functions, main, made two calls; one to the
function of interest, sub2, and one to another function.

v called+self

This refers to the number of times the function of interest called itself, recursively.
In the example above, the function of interest, sub2, called itself two times. For a
child function, this refers to the number of times the function of interest called this
child. In the example above, one of the child functions, printf, was called eleven
times; four times by the function of interest, sub2, and seven times by other
functions.

v name, index, parents, children

The layout of the heading of this column is indicative of the information that is
provided. To the left is the name of the function, and to its right is the function’s
index number. Appearing above the function are its parents, and below are its
children.

Figure 28. called/total, call/self, called/total field

82 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

– name

The name of the function, with an indication of its membership in a cycle, if
any. Note that the function of interest appears to the left, while its parent and
child functions are indented above and below it. In the example above, the
name of the function is sub2.

– index

The index of the function in the Call Graph Profile. This number corresponds
to the index that appears in the index column of the Call Graph Profile and
the on the function box labels in the function call tree. In the example above,
the index of sub2 is [2].

– parents

The parents of the function. A parent is any function that directly calls the
function in which you are interested. In the example above, the parents are
sub1 and main.

If any portion of your application was not compiled with the -pg option,
Xprofiler will not be able to identify the parents for the functions within those
portions. As a result, these parents will be listed as spontaneous in the Call
Graph Profile report.

– children

The children of the function. A child is any function that is directly called by
the function in which you are interested. In the example above, the children
are printf and sub1.

Function Index report
The Function Index menu option lets you view a list of the function names included
in the function call tree. When you select this option, the Function Index window
appears, and displays the function names in alphabetical order. To the left of each
function name is its index, enclosed in brackets []. The index is the function’s
identifier, which is assigned by Xprofiler. An index also appears on the label of each
corresponding function box in the function call tree as well as other reports.

Unless you specified the -z command line option, the Function Index report does
not include functions whose CPU usage is 0 (zero) and have no call counts.

Figure 29. name/index/parents/children field

Chapter 2. Profiling parallel programs with Xprofiler 83

The Function Index menu option includes a Code Display menu, like the Flat Profile
menu option, allowing you to view source code or disassembler code. For more
information on viewing code, see “Viewing source code” on page 89 and “Viewing
disassembler code” on page 90.

The Function Index report looks similar to this:

Function Call Summary report
The Function Call Summary menu option lets you display all the functions in your
application that call other functions. They appear as caller-callee pairs (call arcs, in
the function call tree), and are sorted by the number of calls in descending order.
When you select this option, the Function Call Summary window appears.

The Function Call Summary report looks similar to this:

Figure 30. Sample Function Index Report

84 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Function Call Summary window fields: The fields of the Function Call Summary
window are explained below.

v %total

The percentage of the total number of calls generated by this caller-callee pair.

v calls

The number of calls attributed to this caller-callee pair.

v function

The name of the caller function and callee function.

Library Statistics report
The Library Statistics menu option lets you display the CPU time consumed and call
counts of each library within your application. When you select this option, the
Library Statistics window appears.

The Library Statistics report looks similar to this:

Figure 31. Sample Function Call Summary Report

Chapter 2. Profiling parallel programs with Xprofiler 85

Library Statistics window fields: The fields of the Library Statistics window are
explained below.

v total seconds

The total CPU usage of the library, in seconds.

v %total time

The percentage of the total CPU usage that was consumed by this library.

v total calls

Total number of calls generated by this library.

v %total calls

The percentage of the total calls that were generated by this library.

v %calls out of

The percentage of the total number of calls made from this library to other
libraries.

v %calls into

The percentage of the total number of calls made from other libraries into this
library.

v %calls within

The percentage of the total number of calls made between the functions within
this library.

v load unit

The library’s full path name.

Saving reports to a file
Xprofiler lets you save any of the reports you generate with the Report menu to a
file. You can do this via the File and Report menus of the Xprofiler GUI.

Saving a single report: To save a single report, go to the Report menu, on the
Xprofiler main window, and select the report you would like to save. Each report
window includes a File menu. Select the File menu and then the Save As option to

Figure 32. Sample Library Statistics Report

86 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

save the report. A Save dialog window appears, which is named according to the
report from which you selected the Save As option. For instance, if you chose Save
As from the Flat Profile window, the dialog window is named Save Flat Profile
Dialog.

Saving the Call Graph Profile, Function Index, and Flat Profile reports to a
file: You can save the Call Graph Profile, Function Index, and Flat Profile reports
to a single file with the File menu of the Xprofiler main window. The information you
generate here is identical to the output of the UNIX gprof command. From the File
menu, select the Save As option. The Save File Dialog window appears.

To save the report(s):

1. Specify the file into which the profiled data should be placed. You can specify
either an existing file or a new one. To specify an existing file, use the scroll
bars of the Directories and the Files selection boxes to locate the file you want.
To make locating your files easier, you can also use the Filter button (see
“Using the dialog window filters” on page 54 for more information). To specify a
new file, type its name in the Selection field.

2. Click on the OK button. A file containing the profiled data appears in the
directory you specified, under the name you gave it.

Note: Once you select the Save As option from the File menu, and the Save
Profile Reports window opens, you must either complete the save operation
or cancel it before you can select any other option from the menus of its
parent window. For example, if you select the Save As option from the Flat
Profile report, and the Save File Dialog window appears, you cannot use any
other option of the Flat Profile report window.

The File Selection field of the Save File Dialog window follows Motif standards.

Saving summarized data from multiple profile data files: If you are profiling a
parallel program, you could specify more than one profile data (gmon.out) file when
you started Xprofiler. The Save gmon.sum As option of the File menu lets you save
a summary of the data in each of these files to a single file.

The Xprofiler Save gmon.sum As option produces the same result as the Xprofiler
and gprof -s command line option. If you run Xprofiler later, you can use the file
you create here as input with the -s option. In this way, you can accumulate
summary data over several runs of your application.

To create a summary file:

1. Select the File menu, and then the Save gmon.sum As option. The Save
gmon.sum Dialog window appears.

2. Specify the file into which the summarized, profiled data should be placed. By
default, Xprofiler puts the data into a file called gmon.sum, but you can
designate a different file. You can either specify a new file or an existing one. To
specify a new file, type its name in the selection field. To specify an existing file,
use the scroll bars of the Directories and Files selection boxes to locate the file
you want. To make locating your files easier, you can also use the Filter button
(see “Using the dialog window filters” on page 54 for information).

3. Click on the OK button. A file, containing the summary data, appears in the
directory you specified, under the name you gave it.

Saving a configuration file: The Save Configuration menu option lets you save
the names of the functions that are displayed currently to a file. Later, in the same

Chapter 2. Profiling parallel programs with Xprofiler 87

Xprofiler session or a different session, you can read in this configuration file using
the Load Configuration option. See the following section, “Loading a Configuration
File”, for more information.

To save a configuration file:

1. Select the File menu, and then the Save Configuration option. The Save
Configuration File Dialog window opens with the program.cfg file as the default
value in the Selection field. “Program” is the name of the input a.out file.

You can use the default file name, enter a file name in the Selection field, or
select a file from the dialog’s files list.

2. Specify a file name in the Selection field and click on the OK button. A
configuration file is created containing the name of the program and the names
of the functions that are displayed currently.

3. Specify an existing file name in the Selection field and click on the OK button.
An Overwrite File Dialog window appears so you can check the file before
overwriting it.

If you select the Forced File Overwriting option in the Runtime Options Dialog
window, the Overwrite File Dialog does not open and the specified file is overwritten
without warning.

Loading a configuration file: The Load Configuration menu option lets you read
in a configuration file that you saved. See the previous section, “Saving a
Configuration File”, for more information. The Load Configuration option
automatically reconstructs the function call tree according to the function names
recorded in the configuration file.

To load a configuration file:

1. Select the File menu, and then the Load Configuration option. The Load
Configuration File Dialog window opens. If a configuration files were loaded
previously during the current Xprofiler session, the name of the file that was
most recently loaded will appear in the Selection field of this dialog.

You can also load the file with the -c command line option. See “Specifying
command line options (from the GUI)” on page 43 for more information.

2. Select a configuration file from the dialog’s Files list or specify a file name in the
Selection field, and click on the OK button. The function call tree is redrawn to
show only those function boxes for functions that are listed in the configuration
file and are called within the program that is currently represented in the display.
All corresponding call arcs are also drawn.

If the a.out name, that is, the program name in the configuration file, is different
from the a.out name in the current display, a confirmation dialog appears to
allow you to decide whether or not you still wish to load the file.

3. If after loading a configuration file, you wish to return the function call tree back
to its previous state, select the Filter menu, and then the Undo option.

Looking at source code
Xprofiler provides several ways for you to view your source code. You can view the
source or disassembler code for your application on a per-function basis. This also
applies to any included function code your application may use.

When you view source or included function code, you use the Source Code
window. When you view disassembler code, you use the Disassembler Code

88 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

window. You can access these windows through the Report menu of the Xprofiler
GUI or the Function menu of the function in which you are interested.

Viewing source code
Both the Function menu and Report menu provide the means for you to access the
Source Code window, from which you will view your code.

To access the Source Code window via the Function menu:

1. Click on the function box you are interested in with the right mouse button. The
Function menu appears.

2. From the Function menu, select the Show Source Code option. The Source
Code window appears.

To access the Source Code window via the Report menu:

1. Select the Report menu, and then the Flat Profile option. The Flat Profile
window appears.

2. From the Flat Profile window, select the function you would like to view by
clicking on its entry in the window. The entry highlights to show that it is
selected.

3. Select the Code Display menu, and then the Show Source Code option. The
Source Code window appears, containing the source code for the function you
selected.

Using the Source Code window: The Source Code window shows you only the
source code file for the function you specified from the Flat Profile window or the
Function menu. The Source Code Window looks similar to this:

The Source Code Window contains information in the following fields:

v line

The source code line number.

v no. ticks per line

Figure 33. Sample Source Code Window

Chapter 2. Profiling parallel programs with Xprofiler 89

Each tick represents .01 seconds of CPU time used. The number that appears in
this field represents the number of ticks used by the corresponding line of code.
For instance, if the number 3 appeared in this field, for a source statement, this
source statement would have used .03 seconds of CPU time. Note that the CPU
usage data only appears in this field if you used the -g option when you compiled
your application. Otherwise, this field is blank.

v source code

The application’s source code.

The Search Engine field, at the bottom of the Source Code window, lets you search
for a specific string in your source code. For information on using the Search
Engine field, see “Using the search engine” on page 54

The Source Code window contains the following menus:

v File

The Save As option lets you save the annotated source code to a file. When you
select this option, the Save File Dialog window appears. For more information on
using the Save File Dialog window, see “Using the save dialog windows” on
page 54

Select Close if you wish to close the Source Code window.

v Utility

The Utility menu contains only one option; Show Included Functions.

For C++ users, the Show Included Functions option lets you view the source code
of included function files that are included by the application’s source code.

If a selected function does not have an included function file associated with it or
does not have the function file information available because the -g option was not
used for compiling, the Utility menu will be greyed out. The availability of the Utility
menu serves as an indication of whether or not there is any included function file
information associated with the selected function.

When you select the Show Included Functions option, the Included Functions
Dialog window appears, which lists all of the included function files. Specify a file by
either clicking on one of the entries in the list with the left mouse button, or by
typing the file name in the Selection field. Then click on the OK or Apply button.
After selecting a file from the Included Functions Dialog window, the Included
Function File window appears, displaying the source code for the file that you
specified.

Viewing disassembler code
Both the Function menu and Report menu provide the means for you to access the
Disassembler Code window, from which you can view your code.

To access the Disassembler Code window via the Function menu:

1. Click on the function you are interested in with the right mouse button. The
Function menu appears.

2. From the Function menu, select the Show Disassembler Code option. The
Disassembler Code window appears.

To access the Disassembler Code window via the Report menu:

1. Select the Report menu, and then the Flat Profile option. The Flat Profile
window appears.

90 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

2. From the Flat Profile window, select the function you would like to view by
clicking on its entry in the window. The entry highlights to show that it is
selected.

3. Select the Code Display menu, and then the Show Disassembler Code option.
The Disassembler Code window appears, and contains the disassembler code
for the function you selected.

Using the Disassembler Code window: The Disassembler Code window shows
you only the disassembler code for the function you specified from the Flat Profile
window. The Disassembler Code Window looks similar to this:

The Disassembler Code window contains information in the following fields:

v address

The address of each instruction in the function you selected (from either the Flat
Profile window or the function call tree).

v no. ticks per instr.

Each tick represents .01 seconds of CPU time used. The number that appears in
this field represents the number of ticks used by the corresponding instruction.
For instance, if the number 3 appeared in this field, this instruction would have
used .03 seconds of CPU time.

v instruction

The execution instruction.

v assembler code

The execution instruction’s corresponding assembler code.

v source code

The line in your application’s source code that corresponds to the execution
instruction and assembler code. In order for information to appear in this field,
you must have compiled your application with the -g compile option.

Figure 34. Sample Disassembler Code Window

Chapter 2. Profiling parallel programs with Xprofiler 91

The Search Engine field, at the bottom of the Disassembler Code window, lets you
search for a specific string in your disassembler code. For information on using the
Search Engine field, see “Using the search engine” on page 54.

The Disassembler Code window contains only one menu:

v File

Select Save As to save the annotated disassembler code to a file. When you
select this option, the Save File Dialog window appears. For information on using
the Save File Dialog window, see “Using the save dialog windows” on page 54.

Select Close if you wish to close the Disassembler window.

Saving screen images of profiled data
The File menu of the Xprofiler GUI includes an option called Screen Dump that lets
you capture an image of the Xprofiler main window. This option is useful if you want
to save a copy of the graphical display to refer to later. You can either save the
image as a file in PostScript format, or send it directly to a printer.

To capture a window image:
1. Select the File→Screen Dump options. The Screen Dump menu opens.
2. From the Screen Dump menu, select the Set Option option. The Screen
Dump Options Dialog window appears.

92 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

3. Make the appropriate selections in the fields of the Screen Dump Options
Dialog Window as follows:

– Output To:

This option lets you specify whether you want to save the captured image as
a PostScript file or send it directly to a printer.

If you would like to save the image to a file, select the File button. This file,
by default, is named Xprofiler.screenDump.ps.0, and is displayed in the

Figure 35. Screen Dump Options Dialog Window

Chapter 2. Profiling parallel programs with Xprofiler 93

Default File Name field of this dialog window. When you select the File
button, the text in the Print Command field greys out.

If you would like to send the image directly to a printer, select the Printer
button. The image is sent to the printer you specify in the Print Command
field of this dialog window. Note that when you specify the Print option, a file
of the image is not saved. Also, selecting this option causes the text in the
Default File Name field to grey out.

– PostScript Output:

This option lets you specify whether you want to capture the image in shades
of grey or in color.

If you want to capture the image in shades of grey, select the GreyShades
button. You must also select the number of shades you want the image to
include with the Number of Grey Shades option, as discussed below.

If you want to capture the image in color, select the Color button.
GreyShades.

– Number of Grey Shades

This option lets you specify the number of grey shades that the captured
image will include. Select either the 2, 4, or 16 buttons, depending on the
number of shades you want to use. Typically, the more shades you use, the
longer it will take to print the image.

– Delay Before Grab

This option lets you specify how long of a delay will occur between activating
the capturing mechanism and when the image is actually captured. By
default, the delay is set to one second, but you may need time to arrange the
window the way you want it. Setting the delay to a longer interval gives you
some extra time to do this. You set the delay with the slider bar of this field.
The number above the slider indicates the time interval in seconds. You can
set the delay to a maximum of thirty seconds.

To set the delay, place the mouse cursor over the slider. Next, press and
hold the left mouse button while moving the slider to the right. When the
slider is at the desired number, release the mouse button.

– Enable Landscape (button)

This option lets you specify that you want the output to be in landscape
format (the default is portrait). To select landscape format, select the Enable
Landscape button.

– Annotate Output (button)

This option lets you specify that you would like information about how the file
was created to be included in the PostScript image file. By default, this
information is not included. To do this, select the Annotate Output button.

– Default File Name

If you chose to put your output in a file, this field lets you specify the file
name. The default file name is Xprofiler.screenDump.ps.0. If you want to
change to a different file name, type it over the one that appears in this field.

If you specify the output file name with an integer suffix (that is, the file name
ends with xxx.nn, where nn is a non-negative integer), the suffix
automatically increases by one every time a new output file is written in the
same Xprofiler session.

– Print Command

94 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

If you chose to send the captured image directly to a printer, this field lets
you specify the print command. The default print command is qprt -B ga -c
-Pps. If you would like to use a different command, type the new command
over the one that appears in this field.

Press the OK button. The Screen Dump Options Dialog window closes.

Once you have set your screen dump options, you need to select the window, or
portion of a window, you wish to capture. From the Screen Dump menu, select the
Select Target Window option. A cursor in the image of a hand appears after the
number of seconds you specified. At any time you wish to cancel the capture, you
may do so by clicking on the right mouse button. The hand-shaped cursor will
change back to normal and the operation will be terminated.

To capture the entire Xprofiler window, place the cursor in the window and then
click the left mouse button.

To capture a portion of the Xprofiler window:

1. Place the cursor in the upper left corner of the area you wish to capture.

2. Press and hold the middle mouse button and drag the cursor diagonally
downward, until the area you wish to capture is within the rubberband box.

3. Release the middle mouse button to set the location of the rubberband box.

4. Press the left mouse button to capture the image.

If you chose to save the image as a file, the file is stored in the directory you
specified. If you chose to print the image, the image is sent to the printer you
specified.

Chapter 2. Profiling parallel programs with Xprofiler 95

|

96 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Chapter 3. Analyzing program performance using the PE
Benchmarker toolset

This chapter describes the tools and utilities of the PE Benchmarker toolset. You
can use these tools to collect and analyze program event trace or hardware
performance data. Specifically, this chapter describes:

v the Performance Collection Tool (PCT) for collecting MPI traces or
hardware/operating system profiles.

v a set of utilities for converting AIX trace records output by the PCT into a format
that can be analyzed within third party tools or other utilities that IBM supplies.

v the Profile Visualization Tool (PVT) for analyzing hardware/operating system
profiles collected by the PCT.

What is the PE Benchmarker?
The PE Benchmarker is a suite of applications and utilities that you can use to
analyze the performance of programs run within the IBM Parallel Environment for
AIX. The PE Benchmarker suite consists of:

v the Performance Collection Tool (PCT) . This tool enables you to collect either
MPI and user event data or hardware and operating system profiles for one or
more application processes (or ″tasks″). This tool is built on dynamic
instrumentation technology, the Dynamic Probe Class Library (DPCL). Unlike
more traditional tools for collecting message-passing and other performance
information, the PCT, because it is built on DPCL, enables you to insert and
remove instrumentation probes into the target application while the target
application is running. More traditional tools require the application to be
instrumented through compilation or linking. This often results in more
instrumentation being inserted into the application than is actually needed, and
so such tools are more likely to create situations in which the instrumented
version of the application is no longer representative of the actual,
uninstrumented, version of the application. Since the PCT enables you to make
the decision of what data is collected at run time, this typically results in a more
acceptable intrusion cost of the instrumentation. What’s more, the files output by
the PCT are output on each machine running instrumented processes rather than
on a single, centralized, machine. This means that your analysis can be
efficiently scaled to collect information on a large number of processes running
on a large number of nodes.

v a set of Unified Trace Environment (UTE) utilities . When you collect MPI and
user event traces using the PCT, the collected information is saved, on each
machine running instrumented processes, as a standard AIX event trace file. The
UTE utilities enable you to convert one or more of these AIX trace files into UTE
interval files. While an AIX event trace file has a time stamp indicating the point
in time when an event occurred, UTE interval files take this information to also
determine how long an event lasts before encountering the next event. Because
they include this duration information, UTE interval files are easier to visualize
than traditional AIX event trace files. The UTE utilities are:

– the uteconvert utility which converts AIX event trace records into UTE interval
trace files.

– the utemerge utility which merges multiple UTE interval files into a single
UTE interval file.

– the utestats utility which generates statistics tables from UTE interval files.

© Copyright IBM Corp. 2000, 2001 97

|

|

|

|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|

|

– the slogmerge utility which converts and merges UTE interval files into a
single SLOG file for analysis within Argonne National Laboratory’s Jumpshot
tool.

v the Profile Visualization Tool (PVT) . When you collect hardware and operating
system profiles using the PCT, the collected profile information is saved, on each
machine running instrumented processes, as netCDF (network Common Data
Form) files. The PVT can read netCDF files and summarize the profile
information in reports.

The following figure illustrates how the various tools in the PE Benchmarker toolset
work together to enable you to analyze the performance of programs run within the
IBM AIX Parallel Environment. Please note that Jumpshot is not part of the PE
Benchmarker toolset, but is instead a public domain tool developed at Argonne
National Laboratory. It is shown in the figure below, because PE Benchmarker
provides the slogmerge utility for converting UTE files into the SLOG format
required by Jumpshot.

98 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

The preceding figure illustrates the procedure for collecting and analyzing data
using the PE Benchmarker toolset. This procedure starts with the PCT. When using
the PCT, you must select the type of data you are collecting — either MPI and user
event trace data or hardware and operating system performance data. You use the
PCT to connect to existing processes, or start processes running (which also
connects to the processes). By ″connect to processes″ we mean the PCT
establishes a communication connection that enables it to control the process’
execution (suspend, resume, and terminate the process), and also instrument the
process with data collection probes. Data files containing the collected information
will be generated on each machine running at least one instrumented process. The
format of the files generated depends on the type of data you are collecting.

v If you are collecting MPI and user event trace data, standard AIX trace files will
be generated. You will first need to take the AIX trace files output by the PCT

AIX Trace

Files

UTE Interval

Files

uteconvert

uteconvert

uteconvert

uteconvert

uteconvert

uteconvert

UTE Interval

Files

utestats

utestats

utestats
utemerge

Merged

UTE

File

UTE Interval

Files

slogmerge

slogmerge
Merged

SLOG

File

SLOG

Files

Trace Data Collection

Hardware Performance Data Collection

netCDF

Files

PE Benchmarker

Statistics Tables Generated

By utestats Utility

Jumpshot

Profile Visualization Tool

Performance Collection Tool (Note: Jumpshot is a public domain tool

developed by Argonne National Laboratory,

and is NOT part of the PE Benchmarker Toolset)

Figure 36. Overview of the PE Benchmarker Toolset

Chapter 3. Analyzing program performance using the PE Benchmarker toolset 99

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

and convert them, using the uteconvert utility, into UTE interval files. If you want
to view statistical tables of the information contained in the UTE interval files, you
can use the utestats utility. You can optionally merge multiple UTE files into a
single UTE file using the utemerge utility before using the utestats utility to
generate the statistical tables. If you instead want to view the information
contained in the UTE interval files graphically, you can convert them into SLOG
files which are readable by Argonne National Laboratory’s Jumpshot tool. To
convert UTE interval files into SLOG files, you use the slogmerge utility. The
slogmerge utility can convert a single UTE interval file into a single SLOG file, or
it can convert multiple UTE interval files into a single, merged, SLOG file.

v If you are collecting hardware performance data, netCDF files will be generated.
You can use the PVT to generate graphs and reports of the information
contained in the netCDF files.

Using the Performance Collection Tool
This section describes how to collect MPI and user event traces or hardware and
operating system profiles for a particular serial or POE program’s run. It describes
how you can use the PCT’s graphical user interface or command-line interface to:

v connect to a running application, or (if the application you want to examine is not
already running) load an application and connect to it.

v select the type of data to collect (either MPI and user event traces, or hardware
and operating system profiles).

v start and stop execution of the target application.

v install performance collection probes into the target application to collect the MPI,
user event trace, or hardware profile information.

v remove the performance collection probes from the target application when you
are through collecting the performance data.

v Disconnect from, or terminate, the target application processes.

For information on the tool’s graphical user interface, refer to “Using the
Performance Collection Tool’s Graphical User Interface”. For information on the
tool’s command-line interface, refer to “Using the Performance Collection Tool’s
Command-Line Interface” on page 105.

Using the Performance Collection Tool’s Graphical User Interface
This section describes how you can use the PCT’s graphical user interface to
collect either MPI and user event traces, or hardware and operating system profiles.
This section begins with a brief overview of the tasks you can perform using the
PCT’s graphical user interface, and then describes each of these tasks in more
detail. You can also operate the PCT using its command-line interface. For
information on the tool’s command-line interface, refer to “Using the Performance
Collection Tool’s Command-Line Interface” on page 105.

100 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|

|
|

|
|

|

|
|

|
|

|

|
|
|
|

|

|
|
|
|
|
|
|

Performance Collection Tool (Graphical User Interface) Overview

Here’s an overview of the steps you’ll follow when using the PCT’s graphical user
interface to collect either MPI and user event traces, or hardware and operating
system profiles. More detailed instructions on each of the tasks summarized are
provided later in this chapter. To use the PCT, you:

1. Start the PCT by using the pct command. For more information, refer to
“Starting the Performance Collection Tool” on page 102.

2. Either load and start a new application, or connect to a running application.

v To load and start a new application, use the Load Application Dialog to load
either a serial or POE application. Using the Load Application Dialog, you can
select whether you would like to merely load the application, or load the
application and start its execution. If you choose to merely load the
application, its execution will be suspended at its first executable instruction.
This enables you to install performance collection probes before later starting
application execution.

v To connect to a running application, use the Connect Application Dialog.
Using the Connect Application Dialog, you can connect to a serial or POE
application. If connecting to a POE application, you can select whether you
would like to connect to all processes in the POE application, or just the
controlling, ″home node″, POE process. Connecting to only the controlling
POE process will enable you to later connect to select tasks in the POE
application, and may be desirable for performance reasons.

3. Select the type of data you will be collecting using the PCT. You can collect:

v MPI and user event traces for analysis using the utestats utility or a
graphical visualization tool like Jumpshot.

v hardware and operating system profiles for analysis within the PVT.

Chapter 3. Analyzing program performance using the PE Benchmarker toolset 101

|

|

|
|

|
|
|
|

|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|

|

4.

If you are collecting: Then:

MPI and user event traces. Use the Probe Selection Panel of the PCT’s Main Window to
specify which MPI events you want to collect data for. For
example, you can select ″All MPI events″, ″Collective
communication″, ″Point-to-point communication″, and so on. In
addition to specifying MPI trace data to be collected, you can
also add user markers to processes to mark events or states of
interest. Marking these states or events of interest gives you a
frame of reference when analyzing the trace record in a
graphical visualization tool like Jumpshot. You can also use
user markers to mark locations where tracing should be
stopped or started. Since you can add MPI probes only at a
program, file, or function level (meaning that the entire
program, file, or function will be traced), this gives you more
control over which part of your program is traced.

hardware and operating
system profiles.

Use the Probe Selection Panel of the PCT’s Main Window to
specify the hardware and operating system information you
want to collect for later analysis within the PVT.

5. When you are done collecting data, you can terminate connected processes,
disconnect from the processes, and/or exit the PCT.

In addition to the tasks summarized above, you can also:

v display the contents of source files in the View Source window.

v use a search string to locate functions within the Main Window’s Source Tree.

v set user preferences. Specifically, you can set the:

– search path used by the tool to locate source files for display

– size of the buffers used when creating MPI trace files

– maximum size of the MPI trace files

– types of events included in MPI trace files.

v start and stop execution of connected processes. You might, for example, wish to
suspend execution of your application prior to instrumenting it, and resume
execution after probes have been added.

v examine standard output and error from, and send standard input to, the
application using the I/O Console Window.

Starting the Performance Collection Tool
You can start the PCT in either graphical-user-interface mode or command-line
mode. For instructions on starting the PCT in command-line mode, refer to “Using
the Performance Collection Tool’s Command-Line Interface” on page 105. To start
the PCT in graphical-user-interface mode:

1. Enter the pct command at the AIX command prompt.
$ pct

Doing this starts the PCT in graphical-user-interface mode and opens its first
window — the Welcome Dialog.

102 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|

|||

||
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|

|

|

|

|

|

|

|

|
|
|

|
|

|
|
|
|
|

|

|

|
|
|

2. The Welcome Dialog provides option buttons that enable you to select whether
you would like to load a new application or connect to an existing one.

If: Then:

You want to examine an application that is
not already running.

Select the Load a new application option
button and click the OK command button.

Doing this closes the Welcome Dialog, and
opens the Load Application Dialog. The Load
Application Dialog will enable you to specify
the serial or POE program you wish to run.

You want to examine an application that is
already running.

Select the Connect to a running
application option button and click the OK
command button.

Doing this closes the Welcome Dialog, and
opens the Connect Application Dialog. The
Connect Application Dialog will enable you to
specify the serial or POE program to which
you want to connect.

You do not want to make the decision
between whether to load a new, or connect
to an existing, application at this time.

Click on the Cancel command button.

Doing this closes the Welcome Dialog and
opens the PCT’s Main Window. Since you
have neither loaded a new application, nor
connected to an existing application, the
Main Window will not provide any application
information at this time.

Accessing the Performance Collection Tool’s online help system
The PCT’s graphical user interface has been designed to be intuitive and easy to
use. If you do have any trouble using it to accomplish the tasks outlined in
“Performance Collection Tool (Graphical User Interface) Overview” on page 101,
refer to the PCT’s online help system. To access the tool’s online help, select Help
→ Contents off the main window’s menu bar, or else press the Help button that
appears on many of the PCT’s dialogs. Doing this opens the PCT help window.

Chapter 3. Analyzing program performance using the PE Benchmarker toolset 103

|

|
|
|

|||

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

If you open the help from one of the PCT’s dialogs, a help topic describing that
dialog is displayed. If you open the help from the main window, a task overview
topic is displayed.

The PCT help contains topics for each of the major tasks you can perform with the
PCT. The left hand pane of the window enables you to navigate the help system to
display the needed help topic in the right hand pane. There are three ways to
navigate the help system — using the contents tab, using the index tab, or using
the search tab:

104 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|

|
|
|
|

|
|
|
|
|
|

v the contents tab is displayed by default. Simply click on any entry in the contents
tab to display the help topic.

v the index tab shows an index of the entire help system. Simply click on any entry
in the index to display its associated help topic. To search the index, type a string
in the Find field and press <enter> . The first index entry containing the string is
highlighted. Press <enter> again to search for the next occurrence of the string
in the index.

v the search tab enables you to search the help for all occurrences of a text string.
Simply type the string in the Find field and press <enter> . A list of all help topics
containing the string is displayed. The topics are listed in descending order
according to the number of occurrences of the string. The help topic with the
most occurrences of the string is displayed by default.

Using the Performance Collection Tool’s Command-Line Interface
This section describes how you can use the PCT in command-line mode to collect
either MPI and user event traces or hardware and operating system profiles. The
purpose of this section is to illustrate how the various subcommands of the pct
command can be used to instrument serial or POE programs. Note, however, that
this section does not necessarily describe all the options of all the pct
subcommands. For complete reference information on any of the subcommands
described in this section, refer to the pct command’s man page in “Appendix A.
Parallel environment tools commands” on page 139.

This section begins with a brief overview of the tasks you can perform using the
PCT’s command-line interface, and then describes each of these tasks in more
detail. You can also operate the PCT using its graphical user interface. For
information on how to do this, refer to “Using the Performance Collection Tool’s
Graphical User Interface” on page 100.

Performance Collection Tool (Command-Line Interface) Overview
To use the PCT’s command-line interface to collect either MPI and user event
traces or hardware and operating system profiles:

The contents tab shows the

help’s table of contents. Click

on any entry in the table of

contents to display that help

topic.

The index tab shows the

help’s index. Click on any

entry in the index to display

that help topic. You can

use the Find field to locate

index entries.

The search tab enables

you to search the help

for all occurrences of

a particular text string.

Enter the text string in

the Find field.

Chapter 3. Analyzing program performance using the PE Benchmarker toolset 105

|

|
|
|

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

1. Start the PCT in command-line mode by issuing the pct command with its -c
option. You can optionally specify the -s option to instruct the PCT to read its
subcommands from a script file. For more information, refer to “Starting the
Performance Collection Tool In Command-Line Mode” on page 107.

2. Either load and start a new application, or connect to a running application.

v To load and start a new application, use the load subcommand to load either
a serial or POE application. When you load an application, its process
execution will be suspended at its first executable instruction. To start
execution of one or more loaded application processes, issue the start
subcommand. For more information, refer to “Loading and Starting a New
Application” on page 110.

v To connect to a running application, use the connect subcommand. You can
connect to a serial process or a POE home node process using this
subcommand. Once connected to a POE home node process, you can issue
the connect subcommand again to connect to one or more of its individual
tasks. For more information, refer to “Connecting to a Running Application” on
page 111.

When you load or connect to a serial or POE application, two task groups are
created. A task group is simply a named set of tasks — in this case, the task
groups are named ″all″ and ″connected″. Task groups are intended for when
you are working with POE applications as opposed to serial applications. The all
task group represents all the tasks in the POE application, while the connected
task group represents the POE application’s connected tasks only. You can also
create your own named task groups. Task groups enable you to more easily
manipulate the tasks of a POE application, since many of the PCT’s
subcommands are designed to operate upon one or more tasks. By default, the
tasks operated upon are those in a ″current task group″ that you specify. By
default, the current task group is the automatically-created task group
connected. If you are instrumenting a serial application, you naturally do not
need to concern yourself with task groups. You should be aware, however, that
the all and connected groups are still created by the PCT. For more information
on task groups, refer to “Grouping Tasks of a POE Application” on page 108.

3. Select the type of data you will be collecting using the PCT. You can collect
either:

v MPI and user event traces for analysis using the utestats utility or a
graphical visualization tool like Jumpshot.

v hardware and operating system profiles for analysis within the PVT.

To specify which type of data you’ll be collecting, use the select subcommand.
For more information, refer to “Selecting the Type of Probe Data To Be
Collected” on page 115.

4. Set an output location for files output by the PCT, and add probes to collect
data.

106 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|

|
|
|

|
|

If: Then:

you are collecting
MPI and user
event traces.

a. Set the output location for the trace files that are generated by the
PCT. To do this, use the trace set subcommand. For more
information, refer to “Setting the Output Location and Other
Preferences for the AIX Trace Files Generated” on page 116.

b. Add MPI trace probes and/or custom user markers using the trace
add subcommand. For more information, refer to “Adding MPI Trace
Probes to Processes” on page 117 and “Adding User Markers to
Processes” on page 119.

When you are done collecting the trace data, you can remove the
probes using the trace remove subcommand. For more information,
refer to “Removing MPI Trace Probes From Processes” on page 119
and “Removing User Markers From Processes” on page 120.

you are collecting
hardware and
operating system
profile
information.

a. Set the output location for the profile files that are generated by the
PCT. To do this, use the profile set path subcommand. For more
information, refer to “Setting the Output Location for the netCDF
Files Generated” on page 121.

b. Add the profile probes to processes using the profile add
subcommand. For more information, refer to “Adding Hardware
Profile Probes to Processes” on page 121.

When you are done collecting the profile data, you can remove the
probes using the profile remove subcommand. For more
information, refer to “Removing Hardware Profile Probes From
Processes” on page 123.

5. When you are done collecting data, you can terminate connected processes
using the destroy subcommand, or disconnect from the processes using the
disconnect subcommand. To exit the PCT, issue the exit subcommand. For
more information, refer to “Terminating Connected Processes” on page 124,
“Disconnecting From the Application” on page 124, and “Exiting the Performance
Collection Tool” on page 125.

In addition to the tasks summarized above, you can also:

v suspend and resume execution of connected processes by issuing the suspend
and resume subcommands. You might, for example, wish to suspend execution
of your application prior to instrumenting it, and resume execution after the
probes have been added. For more information, refer to “Suspending and
Resuming Application Execution” on page 112.

v send standard input text to your application using the stdin subcommand. For
more information, refer to “Sending Standard Input Text to the Application” on
page 113.

v Display the contents of source files using the list subcommand. For more
information, refer to “Displaying the Contents of a Source File” on page 113.

Starting the Performance Collection Tool In Command-Line Mode
To start the PCT in command-line mode, enter, at the AIX command prompt, the
pct command with its -c option:
pct -c

The PCT displays the pct> command prompt. You can now enter PCT
subcommands at this prompt.

Chapter 3. Analyzing program performance using the PE Benchmarker toolset 107

|||

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|

|
|
|

|
|

|
|
|

|

|
|

When starting the PCT in command-line mode, you can optionally specify the -s
option to instruct the PCT to read subcommands from a particular script file of PCT
subcommands. For example, to have the PCT read the subcommands in the script
file myscript.cmd:
pct -c -s myscript.cmd

For more information on PCT script files, refer to “Creating and Running PCT Script
Files” on page 125.

The first thing you’ll want to do after starting the PCT is either connect to a running
application, or load and connect to a new application. If the application you wish to
examine is already running, you can connect to it; refer to “Connecting to a Running
Application” on page 111. If the application you wish to examine is not already
running, you can load it; refer to “Loading and Starting a New Application” on
page 110. If you are going to connect or load a POE application, you need to
understand the concept of task groups; refer to “Grouping Tasks of a POE
Application”.

Getting help on the PCT’s command-line interface
To get a listing of all of the PCT’s subcommands, enter the help subcommand at
the pct> prompt.
pct> help

To get the syntax of a particular subcommand, enter the help subcommand
followed by the name of the subcommand whose syntax you want displayed. For
example, to get the syntax of the load subcommand.
pct> help load

Grouping Tasks of a POE Application
In the Parallel Operating Environment, the multiple cooperating processes of your
program are referred to as ″tasks″. Many of the PCT subcommands are designed to
operate on one or more tasks of a POE application. By default, the tasks operated
upon are those in a ″current task group″ that you can specify. A task group is simply
a named set of tasks. Two such task groups — all and connected — are created
automatically when you either connect to a running application (using the connect
subcommand), or load a new application (using the load subcommand). The all
task group represents all the tasks in the POE application. The connected task
group is the current task group by default — it represents the POE application’s
connected tasks only. You can also create your own task groups.

By default, the current task group will be connected; the subcommands you issue
will act upon all connected tasks in the POE application. You can change the
current task group to be the automatically created group all, or a task group that
you have created. You can also, for all of the subcommands that act upon task
groups, specify a set of tasks or a task group when issuing the subcommand. If you
do this, the subcommand will operate on the tasks specified rather than the current
task group. For example, consider the suspend subcommand for suspending
execution of one or more tasks. If you issue this subcommand without options as in:
pct> suspend

The tasks in the current task group are suspended. However, if you specify a task
list using the task clause, you suspend execution for the tasks specified — in this
next example tasks 0 through 5:
pct> suspend task 0:5

108 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|
|
|

|

|
|

|
|
|
|
|
|
|
|

|
|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|

|

Note: When using the task clause, the tasks in the POE application can be
specified by listing individual values separated by commas (1,3,8,9), by
giving a range of tasks using a colon to separate the ends of the range
(12:15 refers to tasks 12, 13, 14, and 15), by giving a range and increment
value using colons to separate the range and increment values (20:26:2
refers to tasks 20, 22, 24, and 26), or by using a combination of these
(12:18,22,30).

You can also specify a named task group (other than the current task group) using
the group clause:
pct> suspend group workers

To understand why you might want to specify a task group, consider the following
example. Say that the application you’re examining follows the master/workers
model in which one task (the ″master″) coordinates the activities of all the other
tasks — the ″workers″. You could create two task groups — one containing just the
master task, and the other containing all the other tasks. To do this, you would use
the group subcommand with its add clause. To create a task group master
containing just task 0:
pct> group add master 0

To create a task group workers containing the tasks 1 through 10:
pct> group add workers 1:10

Once these groups are created, you can make either one the current task group. To
do this, you would use the group subcommand with its default clause. For
example, the following subcommand sets the current task group to be the task
group master:
pct> group default master

While master is the current task group, any subcommands that operate upon tasks
will operate only upon task 0 — the only task in the group master. To make the
group workers the current task group:
pct> group default workers

While you cannot modify or delete the two groups that the PCT automatically
creates (all and connected), you can modify and delete the groups that you have
created. To add tasks 11 though 20 to the task group workers:
pct> group add workers 11:20

To delete task 11 from the task group workers:
pct> group delete workers 11

To delete the entire task group workers:
pct> group delete workers

Notes:

1. If you are instrumenting a serial application, you naturally do not need to
concern yourself with task groups. You should be aware, however, that the all
and connected groups are still created by the PCT.

2. You can list the existing task groups, or the members of a particular task group,
using the show subcommand. For example, the following subcommand lists the
existing task groups:

Chapter 3. Analyzing program performance using the PE Benchmarker toolset 109

|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|

|

|

|

|
|
|
|

|

|
|
|

|

|
|
|

|

|

|

|

|

|

|
|
|

|
|
|

pct> show groups
Default Group Name
------- ----------

all
@ connected
pct>

The @ symbol indicates which group is the current task group.

To list the tasks in the task group all:
pct> show group all
Tid Program Name Host Cpu Type State
--- ------------------------ ---------------- -------- ------
0 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded
1 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded
2 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded
3 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded
pct>

Loading and Starting a New Application
If the serial or POE application you wish to examine is not already running, you can
load it onto one or more nodes. When you load an application using the load
subcommand, it is loaded in a stopped state with execution suspended at the first
executable instruction. You can then start its execution using the start
subcommand.

To load a serial application, you simply supply the load subcommand with the
absolute path to the executable. The exec clause indicates the absolute path to the
executable. If the application takes arguments, you can specify them using the args
clause. For example:
pct> load exec /u/example/bin/foo args "a b c"

If loading a POE application, you specify the poe clause, and can also supply any
POE arguments using the poeargs clause. For information on the POE
command-line flags available to you, refer to the manual IBM Parallel Environment
for AIX: Operation and Use, Volume 1, Using the Parallel Operating Environment.

The procedure for loading a POE application differs depending on whether the
application follows the Single Program Multiple Data (SPMD) or Multiple Program
Multiple Data (MPMD) model. If your program follows the SPMD model, you specify
the absolute path to the executable using the exec clause:
pct> load poe exec /u/example/bin/parallel_foo poeargs "-procs 4 -hfile /tmp/host.list"

If your program follows the MPMD model, you supply the absolute path to a POE
commands file (which lists the individual programs to load) using the mpmdcmd
clause:
pct> load poe mpmdcmd /u/example/bin/foo.cmds poeargs "-procs 3 -hfile /tmp/host.list"

For information on creating a POE commands file for loading multiple programs,
refer to the manual IBM Parallel Environment for AIX: Operation and Use, Volume
1, Using the Parallel Operating Environment.

The load subcommand also enables you to specify that standard input, standard
output, or standard error should be redirected. To read standard input from a file,
use the stdin clause:
pct> load exec /u/example/bin/foo args "a b c" stdin input_file

110 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|

|
|
|
|

|
|
|
|

|

|
|
|

|

|
|
|

|
|
|

|

To redirect standard output to a file, use the stdout clause:
pct> load exec /u/example/bin/foo args "a b c" stdout output_file

To redirect standard error to a file, use the stderr clause:
pct> load exec /u/example/bin/foo args "a b c" stderr error_file

When you load an application, two task groups — all and connected — are
automatically created, and connected is made the current task group. Task groups
are important to know about only if you are working with a POE application and are
described in “Grouping Tasks of a POE Application” on page 108. Also note that the
application is loaded in a stopped state with execution suspended at the first
executable instruction. To start execution of the application, use the start
subcommand:
pct> start

Connecting to a Running Application
If the serial or POE application you wish to examine is already running, you can
connect to it using the connect subcommand. To list the processes to which you
can connect, use the show subcommand with its ps clause:
pct> show ps
Pid Command
----- ---
10652 /home/strofino/dpcltest/WORK/prod_cons
13256 /etc/dpcld /tmp/dpclsd
13316 /home/strofino/dpcltest/WORK/prod_cons
14302 /usr/lpp/ppe.dpcl/dpcl_beta/bin/poe
18108 /home/strofino/dpcltest/WORK/prod_cons
20614 /u/alfeng/public/perf/seqsleep
21996 /u/alfeng/bin/sesmgr
22644 /home/strofino/dpcltest/WORK/prod_cons
22802 java com/ibm/ppe/perf/main/Startup -l /u/alfeng/bin/sesmgr -cmd
23236 -ksh
24894 /etc/dpcld /tmp/dpclsd
27632 -ksh
pct>

If you are connecting to a serial application, you simply supply the process ID of the
process you wish to connect to using the pid clause of the connect subcommand.
pct> connect pid 12345

If you are connecting to a POE application, you connect to the processes in two
steps. First, you issue the connect subcommand to connect to the controlling,
home node, POE process. Once connected to the controlling POE process, you can
then reissue the connect subcommand to connect to any of its processes. For
example, to connect to the application whose AIX process ID is 12345:
pct> connect poe pid 12345

When you connect to the POE home node process, the PCT creates two task
groups — all and connected. The all task group refers to all of the tasks in the
application, while the connected task group refers only to connected tasks. The
connected task group will initially be empty since no tasks are connected. You can
list the existing task groups by issuing the show subcommand with its groups
clause:

Chapter 3. Analyzing program performance using the PE Benchmarker toolset 111

|

|

|

|

|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|

|

|
|
|
|
|
|

pct> show groups
Default Group Name
------- ----------

all
@ connected
pct>

To connect to all tasks in the POE application:
pct> connect group all

To connect to select tasks in the POE application, use the task clause:
pct> connect task 2,3

Suspending and Resuming Application Execution
The PCT enables you to suspend and resume execution of connected processes by
issuing the suspend and resume subcommands. You might, for example, wish to
suspend execution of your target application prior to instrumenting it as described in
“Collecting MPI Trace and Custom User Marker Information” on page 115. Once
your performance collection probes have been added to the application, you could
resume the application’s execution. By default, the suspend and resume
subcommands act upon the current task group. Unless you have specified another
task group to be the current task group, the current task group will be the task
group connected. The task group connected is created automatically by the PCT
when you either connect to or load an application (as described in “Connecting to a
Running Application” on page 111 and “Loading and Starting a New Application” on
page 110). The task group connected consists of all connected tasks in a POE
application. If you are instrumenting a serial application, you do not need to concern
yourself with task groups. If you are instrumenting a POE application, however, it is
useful to understand the concept of task groups as described in “Grouping Tasks of
a POE Application” on page 108.

To suspend execution of the tasks in the current task group:
pct> suspend

To suspend execution of tasks in a specific task group (in this case, the task group
connected), use the group clause on the suspend subcommand:
pct> suspend group connected

To suspend a specific set of tasks in a POE application, use the task clause on the
suspend subcommand. To determine how many tasks are available, you can use
the show group subcommand to list the tasks in the task group all:
pct> show group all
Tid Program Name Host Cpu Type State
--- ------------------------ ---------------- -------- ------
0 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded
1 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded
2 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded
3 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded
pct> suspend task 1,3

The resume subcommand works in the same way. By default, it operates on the
current task group:
pct> resume

But you can override this by specifying a task group:
pct> resume group connected

112 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|
|
|
|
|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|

|
|
|

|
|
|
|
|
|
|
|

|
|

|

|

|

or supplying a task list:
pct> resume task 1,5

Sending Standard Input Text to the Application
If you have loaded an application (as described in “Loading and Starting a New
Application” on page 110), you can use the stdin subcommand to send standard
input text to your application. However, if you have instead merely connected to an
application (as described in “Connecting to a Running Application” on page 111),
you cannot send standard input text to the application using the stdin
subcommand.

If you are instrumenting a serial application, the standard input text will be sent to
that application process. If you are instrumenting a POE application, the standard
input text will be sent to the controlling, ″home node″, POE process. As described
in “Loading and Starting a New Application” on page 110, you can, when loading an
application using the load subcommand, specify that standard input should be read
from a file. If you are reading standard input from a file, you cannot use the stdin
subcommand.

To send a standard input string to the application, specify the string on the stdin
subcommand. The string must be enclosed in double quotes:
> stdin "Now is the time for all good men"

If desired, you can use embedded formatting characters (such as \n) in your
standard input string:
> stdin "Now is the time \nfor all good men"

To send a newline character to the input stream reading this input data, issue the
stdin command without any text string:
stdin

To send an end-of-file character to the input stream reading this input data, use the
eof clause on the stdin subcommand:
> stdin eof

Displaying the Contents of a Source File
Using the list subcommand, you can display the contents of source files. Unless
you are certain of the file name of the source file you want to examine, you may
want to list the available source files using the file subcommand. The file
subcommand lists, for one or more connected tasks, the associated source file
names that match a regular expression you supply. By default, the file
subcommand acts upon the current task group. Unless you have specified another
task group to be the current task group (as described in “Grouping Tasks of a POE
Application” on page 108), the current task group will be the task group connected.
The task group connected is created automatically by the PCT when you either
connect to or load an application (as described in “Connecting to a Running
Application” on page 111 and “Loading and Starting a New Application” on
page 110). The task group connected consists of all connected tasks in a POE
application. If you are instrumenting a serial application, you do not need to concern
yourself with task groups. If you are instrumenting a POE application, however, it is
useful to understand the concept of task groups as described in “Grouping Tasks of
a POE Application” on page 108.

You supply the file subcommand with an AIX regular expression file-matching
pattern (enclosed in double quotation marks) to match the source files you want to
list. For example, to list all the available source files in the current task group:

Chapter 3. Analyzing program performance using the PE Benchmarker toolset 113

|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|

|
|

|

|
|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

pct> file "*"
Tid File Id File Name Path
--- ------- --------- -------------
0 0 bar.c ../../lib/src
0 1 foo1.c ../../lib/src
0 2 foo2.c ../src
pct>

Although this subcommand, by default, acts upon the current task group, you can
specify that it should instead act upon a different task group, or all the tasks in a
task list that you supply. This is done by using the task or group clause on the file
subcommand. For more information on the task and group clauses, refer to
“Grouping Tasks of a POE Application” on page 108.

After issuing the file subcommand, you’ll have both the file name and the file
identifier of the source file(s) you want to examine. Now you can use the list
subcommand to display the contents of one or more files. Like the file
subcommand, the list subcommand will, by default, act upon the current task
group. Using either the file or fileid clause of the list subcommand, you indicate
the file(s) whose contents you want listed.

When listing the contents of files using the list subcommand, the PCT uses a
special source path to locate the source files. This source path is, by default, the
directory in which the PCT was started, and can be displayed using the sourcepath
clause on the show subcommand as in:
pct> show sourcepath
Path

./
pct>

To modify the source path so that the PCT can locate source files that are not
located in the directory in which the tool was started, use the set subcommand. As
with setting your AIX PATH environment variable, you separate the various
directories in your source path using colons. For example:
pct> set sourcepath "/afs/aix/u/jbrady:/afs/aix/u/dlecker"

Using the file clause, you supply the list subcommand with an AIX regular
expression file-matching pattern (enclosed in double quotation marks) to match the
source file(s) whose contents you want to list. If desired, you can supply additional
regular expressions separated by commas (file "f*","b*"). For example, the
following subcommand lists the contents of the file bar.c:
pct> list file "bar.c"

While this subcommand lists the contents of the first file found in the application
that begins with the letter ″f″:
pct> list file "f*"

Using the fileid clause, you identify the file whose contents you want to list using
the process identifier(s) returned by the file subcommand. For example, the
following subcommand lists the contents of the file bar.c (whose file identifier is 0):
pct> list fileid 0

You can also use the line clause of the list subcommand to list only a portion of the
file’s contents. Use a colon to separate the ends of the line number range. For
example, the following subcommand lists lines 1 through 20 of the file bar.c.
pct> list file "bar.c" line 1:20

114 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|
|

|

|
|

|

|
|
|

|

|
|
|

|

To list the next few lines in bar.c, simply specify the next clause on the list
subcommand.
pct> list next

Selecting the Type of Probe Data To Be Collected
The PCT is capable of collecting two different types of information. It can collect:

v MPI and user event traces for analysis using the utestats utility or a graphical
visualization tool like Jumpshot (a public domain tool developed at Argonne
National Lab). For more information on the utestats utility, as well as utilities for
converting the AIX trace files created by the PCT into a format readable by
utestats and Jumpshot, refer to “Creating, Converting, and Viewing Information
Contained In, UTE Interval Files” on page 126.

v Hardware and operating system profiles for analysis within the PVT. For more
information on the PVT, refer to “Using the Profile Visualization Tool” on
page 131.

Be aware that, before you can collect either type of information, you must specify,
using the select subcommand, which type you are interested in:

If you want to collect: Then:

MPI and user event traces. Specify the trace clause on the select
subcommand:

select trace

Hardware and operating system profiles. Specify the profile clause on the select
subcommand:

select profile

Note: You can select the type of data to collect only once per load and connect.

Collecting MPI Trace and Custom User Marker Information
Using the PCT, you can collect MPI and user event traces for:

v analysis using the utestats utility

v eventual analysis within a graphical visualization tool like Jumpshot

The trace information collected is stored as an AIX trace file on each node running
instrumented processes. After you have generated these AIX trace files, you can
convert them into the Unified Trace Environment (UTE) format (using the
uteconvert utility) for analysis using the utestats utility. You can then also convert
the UTE files into the SLOG format (using the slogmerge utility) for analysis within
Jumpshot. For more information on the utilities for converting the AIX trace files
output by the PCT into formats readable by the utestats utility and Jumpshot, refer
to “Creating, Converting, and Viewing Information Contained In, UTE Interval Files”
on page 126.

In order to collect MPI trace information, the application to be traced must be linked
with the libute_a library. To cause this UTE library to be added to the link step, set
the MP_UTE environment variable to yes.

Before you can use any of the MPI trace collection subcommands described in this
section, you must first specify that you are collecting MPI trace information rather
than hardware profile information. Refer to “Selecting the Type of Probe Data To Be
Collected” for more information. Once you have indicated that you’ll be collecting
MPI and/or user event traces, you can select the output location for the trace files
generated by the PCT. To do this, you simply supply an output directory and ″base

Chapter 3. Analyzing program performance using the PE Benchmarker toolset 115

|
|

|

|
|

|
|
|
|
|
|

|
|
|

|
|

|||

||
|

|

||
|

|
|

|

|
|

|

|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

name″ (file prefix) for the trace files. Refer to “Setting the Output Location and
Other Preferences for the AIX Trace Files Generated” for more information. You can
collect information about:

v standard MPI messaging events such as collective communication, point-to-point
communication, or one-sided communication. This is done by adding MPI data
collecting probes to one or more application task. Refer to “Adding MPI Trace
Probes to Processes” on page 117 for more information.

v events of interest (such as program function calls). This is done by installing a
simple user marker into one or more application task at an instrumentation point
in the code. Instrumentation points are locations in the code (such as function
call sites) where it is safe to install probes. A simple marker will appear in the
trace record as a single point; its position gives you a frame of reference when
analyzing a trace record in a graphical visualization tool like Jumpshot.

v states of interest. This is done by installing beginning and ending state user
markers in the code at particular instrumentation points. A state will appear in the
trace record as a region and, like the simple markers, gives you a frame of
reference when analyzing a trace record in a graphical visualization tool like
Jumpshot.

Setting the Output Location and Other Preferences for the AIX Trace Files
Generated: The trace information collected by the PCT is stored as a separate
AIX trace file on each node running instrumented processes. You can select the
output location and other preferences for the trace files using the trace set
subcommand.

To specify: Use this clause of
the trace set
subcommand:

For example:

The output location and a
″base name″ prefix for the
generated files.

path pct> trace set path "/home/timf/trace
files/mytrace"

Specifies /home/timf/tracefiles as the
location for the generated files. The
basename prefix is mytrace.

The AIX trace buffer size in
Kilobytes. This value can
be at most 1024, which is
the default.

bufsize pct> trace set bufsize 1000

The type of events (MPI
events, process dispatch
events, and CPU idle
events) that are traced. By
default, MPI and process
dispatch events are traced.
Tracing process dispatch
events and CPU idle
events can result in larger
trace files, but the
additional information can
provide useful context for
the MPI information
collected.

event pct> trace set event mpi
pct> trace set event process
pct> trace set event idle

116 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|||
|
|

|

|
|
|

||
|

|
|
|

|
|
|
|

||

|
|
|
|
|
|
|
|
|
|
|
|
|
|

||
|
|

To specify: Use this clause of
the trace set
subcommand:

For example:

The maximum trace file
size in Megabytes. This
can be any value between
2 and 2048 inclusive. The
default is 20.

logsize pct> trace set logsize 25

Adding MPI Trace Probes to Processes: By adding MPI trace probes to
processes, you can trace such MPI events as collective communication,
point-to-point communication, and one-sided communication.

To add MPI trace probes, you’ll need to know the specific MPI probe type identifier
or name as returned by the trace show subcommand. To list the available MPI
probe type identifiers and names, specify the probetypes clause on the trace
show subcommand:
pct> trace show probetypes
MPI Id MPI Name Description
------ ----------- --------------------------------------
0 all all MPI events
1 blkcollcomm blocking collective communication
2 pttopt point-to-point communication
3 onesided one-sided communication
4 commgroup communication groups
5 topo topologies
6 collcomm non-blocking collective communications
7 env environmental
8 data data type
9 file file
10 info information
11 comm communicators
12 wait wait calls
13 test test calls
pct>

Once you have the probe type information, you can use the trace add
subcommand to add one or more probe types to one or more processes. You can
add the probes at the file level, in which case the MPI events for the entire file will
be traced, or at the function level. If that granularity is not small enough, and you
want to trace only a portion of a function, you can use special markers to force
tracing on and off at particular points.

By default, the trace add subcommand acts upon the current task group. Unless
you have specified another task group to be the current task group (as described in
“Grouping Tasks of a POE Application” on page 108), the current task group will be
the task group connected. The task group connected is created automatically by the
PCT when you either connect to or load an application (as described in “Connecting
to a Running Application” on page 111 and “Loading and Starting a New Application”
on page 110). The task group connected consists of all connected tasks in a POE
application. If you are instrumenting a serial application, you do not need to concern
yourself with task groups. If you are instrumenting a POE application, however, it is
useful to understand the concept of task groups as described in “Grouping Tasks of
a POE Application” on page 108.

Note: The set of tasks in which you will add the probes cannot include different
executables in an MPMD application. For example, if an MPMD application

Chapter 3. Analyzing program performance using the PE Benchmarker toolset 117

||
|
|

|

|
|
|
|
|

||

|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

consists of executables a.out and b.out, then this command cannot be
applied to a task group that contains both a.out and b.out tasks.

If you are tracing at the file level, you’ll need to specify the files using either the file
or fileid clause on the trace add subcommand. To do this, you’ll need the file
identifier or file name information as returned by the file subcommand. To list all
available source files in the current task group:
pct> file "*"
Tid File Id File Name Path
--- ------- --------- -------------
0 0 bar.c ../../lib/src
0 1 foo1.c ../../lib/src
0 2 foo2.c ../src
pct>

To add a certain type of MPI probe, you supply the trace add subcommand with
the MPI probe type and file information. You can specify the MPI probe type by
supplying the:

v MPI probe type identifier using the mpiid clause

v MPI probe type name using the mpiname clause

Similarly, you can specify the file information by supplying the:

v file identifier using the fileid clause

v file name using the file clause and a regular expression

For example:
pct> trace add mpiid 0 to fileid 0

pct> trace add mpiname all to file "bar.c"

You can also specify multiple MPI probe types or multiple files:
pct> trace add mpiid 1,2 to fileid 0,1

pct> trace add mpiname collcom,pttopt to file "bar.c","f*"

If you would like to trace at a function level rather than tracing an entire file, you
need to specify the function(s) using either the function or funcid clause. You’ll
need the function identifier or function name information as returned by the
function subcommand. To list all functions in the file bar.c:
pct> function file "bar.c" "*"
Tid File Id Function Id File Name Function Name
--- ------- ----------- --------- -------------
0 1 0 bar.c func0
0 1 1 bar.c func1
pct>

Note:

If you wish to instrument a particular function, but do not know which file the
function is located in, you can use the find subcommand. For example, to
search all files in task 0 for functions that match the regular expression
comp*:
pct> find task 0 function "comp*"
Tid File Id File Name Function Name
--- ------- --------- -------------

118 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|

|

|

|

|

|
|
|

|

|
|
|

|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

|
|
|

0 23 main.c compute
0 23 main.c compare
0 25 sort.c compare2
pct>

You can then specify the function on the trace add subcommand:
pct> trace add mpiid 0 to file "bar.c" function "func0"

You can also specify multiple functions:
pct> trace add mpiid 0 to file "bar.c" function "*"

pct> trace add mpiid 0 to file "bar.c" function "func0","func1"

Removing MPI Trace Probes From Processes: When you issue the trace add
subcommand to install MPI trace probes, the probes are given a unique probe
identifier. You can use the probe identifier on the trace remove subcommand to
remove the probes. To ascertain the probe identifier, use the trace show
subcommand with its probes clause as in:
pct> trace show probes
Probe Id Command
-------- --
0 trace add mpiid 0 to file "prod_cons.c" function "alarm_handler"
1 trace add mpiid 0 to file "prod_cons.c" function "consume"
pct>

To remove the probe set whose probe identifier is 0:
pct> trace remove probe 0

Adding User Markers to Processes: User markers are special types of probes
that you can install at specific instrumentation points in your application code. You
can:

v Mark events of interest (such as program function calls) using a simple marker. A
simple marker will appear in the trace record as a single point; its position gives
you a frame of reference when analyzing the trace record in a graphical
visualization tool like Jumpshot.

v Mark a state of interest using a begin state marker and an end state marker. A
state marked by begin and end state markers will appear in the trace record as a
region. Like the simple markers, this gives you a frame of reference when
analyzing the trace record in a graphical visualization tool like Jumpshot.

v Force tracing on or off using a trace on marker or a trace off marker.

To install a user marker, you’ll need to identify not only the file and function, but
also the instrumentation point at which you want the probe installed. To list
instrumentation points, issue the point subcommand.
pct> point task 0 file "bar.c"
Tid File Id Function Id Point Id Point Type Callee Name
--- ------- ----------- -------- ---------- ------------
0 54 0 0 0
0 54 0 1 2 printf
0 54 0 2 3 printf
0 54 0 3 2 MPI_Abort
0 54 0 4 3 MPI_Abort
0 54 0 5 1
0 54 1 0 0
0 54 1 1 2 printf
0 54 1 2 3 printf
0 54 1 3 2 printf
0 54 1 4 3 printf
0 54 1 5 2 MPI_Recv

Chapter 3. Analyzing program performance using the PE Benchmarker toolset 119

|
|
|
|

|

|

|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|

|

|
|
|

|
|
|
|

|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

0 54 1 6 3 MPI_Recv
0 54 1 7 2 consume_data
0 54 1 8 3 consume_data
0 54 1 9 2 printf
0 54 1 10 3 printf
0 54 1 11 1
pct>

To understand the point type number returned by the point command, issue the
show points command.
pct> show points
Point Type Point Name
---------- ----------
0 function entry
1 function exit
2 before callsite
3 after callsite
pct>

To: Use: For example:

mark a state
of interest.

the simplemarker clause on the trace add subcommand. pct> trace add simplemarker "simple"
to file "bar.c" funcid 0 pointid 0

mark a
region

the beginmarker and endmarker clauses on the trace
add subcommand. You must mark the beginning and end
of the range with the same ″marker name″ (a string that
will be used to identify the user state in the trace record).
You can only use a particular name for one begin
marker/end marker pair. The state will appear in the trace
record as a region.

You should place all markers after the target application’s
call to MPI_init (which initializes MPI), and before the call
to MPI_Finalize (which terminates MPI processing). For
more information in the MPI_init and MPI_Finalize calls,
refer to the IBM Parallel Environment for AIX: MPI
Programming Guide or the IBM Parallel Environment for
AIX: MPI Subroutine Reference.

When marking a region, you must ensure that the begin
and end state markers are placed so that if either marker is
reached during execution, the other marker will also be
reached. If you nest region markers, you must also ensure
that the regions are properly nested. In other words, the
inner region should be fully enclosed by the outer region. If
you do not follow these guidelines, and the begin and end
state markers are not correctly nested, you will get an error
when you run the uteconvert utility. For more information
on the uteconvert utility, refer to “Creating, Converting,
and Viewing Information Contained In, UTE Interval Files”
on page 126.

pct> trace add beginmarker "green" to
file "bar.c" funcid 1 pointid 0

pct> trace add endmarker "green" to
file "bar.c" funcid 1 pointid 1

force tracing
on or off

the traceon or traceoff clause on the trace add
subcommand.

pct> trace add traceoff to file
"bar.c" funcid 0 pointid 0

pct> trace add traceon to file
"bar.c" funcid 0 pointid 1

Removing User Markers From Processes: When you issue the trace add
subcommand to install a custom user marker, the marker is given a unique marker
identifier. You can use this marker identifier on the trace remove subcommand to

120 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

||||

|
|
||
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

remove the markers. To ascertain the marker identifier, use the trace show
subcommand with its markers clause as in:
pct> trace show markers
Marker Id Command
--------- -------
0 trace add simplemarker "simple" to file "bar.c" funcid 0 pointid 0
1 trace add beginmarker "green" to file "bar.c" funcid 1 pointid 0
2 trace add endmarker "green" to file "bar.c" funcid 1 pointid 1
pct>

To remove the marker whose identifier is 2:
> trace remove marker 2

Collecting Hardware and Operating System Profile Information
Using the PCT, you can collect hardware and operating system profiles for analysis
within the PVT.

The profile information collected is stored in netCDF (network Common Data Form)
format on each node running instrumented processes. The PVT can read netCDF
files and summarize the profile information in reports. For more information on using
the PVT to read netCDF files output by the PCT, refer to “Using the Profile
Visualization Tool” on page 131.

Before you can use any of the profile collection subcommands described in this
section, you must first specify that you are collecting hardware profile information
rather than MPI and user event traces. Refer to “Selecting the Type of Probe Data
To Be Collected” on page 115 for more information. Once you have indicated that
you’ll be collecting hardware profile information, you can select the output location
for the netCDF files generated by the PCT. To do this, you simply supply an output
directory and ″base name″ (file prefix) for the netCDF files. Refer to “Setting the
Output Location for the netCDF Files Generated” for more information.

Setting the Output Location for the netCDF Files Generated: The hardware
profile information is saved as a separate netCDF file on each node running
instrumented processes. Using the profile set path subcommand, you can specify
the output location and ″base name″ file prefix for these files. For example:
pct> profile set path "profile/output"

Adding Hardware Profile Probes to Processes: By adding hardware profile
probes to processes, you can collect hardware and operating system information
such as elapsed wall-clock time, process resource usage, and hardware counters.
To add hardware profile probes, you need to know the specific probe type identifier
or name as returned by the profile show subcommand. To list available probe type
identifiers and names, specify the probetypes clause on the profile show
subcommand.

For example:
pct> profile show probetypes
Prof Id Prof Name Description
------- --------- ----------------
0 wclock wall clock
1 rusage resource usage
2 hwcount hardware counter
pct>

For hardware counters, you can also display a list of the specific hardware counter
information you can collect. The list of available hardware counter groups will differ
depending on whether the current or supplied task group:

Chapter 3. Analyzing program performance using the PE Benchmarker toolset 121

|
|

|
|
|
|
|
|
|

|

|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|

v has tasks running only on 604e CPUs

v has tasks running only on 630 CPUs

If the current or supplied task group has tasks running on mixed CPUs, then no
hardware counters are available, and so none will be listed.

To list available hardware counter groups, specify the probetype hwcount clauses
on the profile show subcommand:
pct> profile show probetype hwcount
Prof Type Name Description
--------- ------- ---------------------------------
0 FPU FPU, FXU, and LSU operations
1 Branch Branch operations
2 L1_TLB L1 cache and TLB operations
3 L2 Prefetch and L2 cache operations
4 Fpop Floating-point operations
5 xFPU FPU, FXU, LSU, and BPU operations
pct>

The hardware counter groups you see listed are, by default, the hardware counter
groups we have created. For more information on the counters included in each
group, and for information on creating your own counter groups, refer to
“Appendix E. Understanding and Creating PCT Hardware Counter Groups” on
page 225.

Once you have the probe type and hardware counter information, you can use the
profile add subcommand to add one or more probe types to one or more
processes. You can add the probes at the file level, in which case profile
information for the entire file will be produced, or at the function level.

By default, the profile add subcommand acts upon the current task group. Unless
you have specified another task group to be the current task group (as described in
“Grouping Tasks of a POE Application” on page 108), the current task group will be
the task group connected. The task group connected is created automatically by the
PCT when you either connect to or load an application (as described in “Connecting
to a Running Application” on page 111 and “Loading and Starting a New Application”
on page 110). The task group connected consists of all connected tasks in a POE
application. If you are instrumenting a serial application, you do not need to concern
yourself with task groups. If you are instrumenting a POE application, however, it is
useful to understand the concept of task groups as described in “Grouping Tasks of
a POE Application” on page 108.

Note: The set of tasks in which you will add the probes cannot include different
executables in an MPMD application. For example, if an MPMD application
consists of executables a.out and b.out, then this command cannot be
applied to a task group that contains both a.out and b.out tasks.

If you are collecting profile information at the file level, you’ll need to specify the
files using either the file or fileid clause on the profile add subcommand. To do
this, you’ll need the file identifier or file name information as returned by the file
subcommand. To list all available source files in the current task group:
pct> file "*"
Tid File Id File Name Path
--- ------- --------- -------------
0 0 bar.c ../../lib/src
0 1 foo1.c ../../lib/src
0 2 foo2.c ../src
pct>

122 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

To add a certain type of profile probe, you can supply the profile add subcommand
with the profile probe type and option information, as well as the file information.
You can specify:

v the profile probe type by supplying the:

– profile probe type identifier using the profid clause

– profile probe type name using the profname clause

v the hardware profile group using the groupid or groupname clause

v the file information by suppling the:

– file identifier using the fileid clause

– file name using the file clause and a regular expression

For example:
pct> profile add profname wclock to fileid 0

pct> profile add profid 0 to file "bar.c"

pct> profile add profname hwcount groupid 2 to fileid 3

You can also specify multiple profile probe types or multiple files:
pct> profile add profname wclock profname hwcount groupid 2 to fileid 3,4

If you would like to collect profile information at the function level (instead of
collecting profile information for an entire file), you’ll need to specify the function(s)
using either the function or funcid clause. You’ll need the function identifier or
function name information as returned by the function subcommand. To list all the
functions in the file bar.c:
pct> function file "bar.c" "*"
Tid File Id Function Id File Name Function Name
--- ------- ----------- --------- -------------
0 1 0 bar.c func0
0 1 1 bar.c func1
pct>

You can specify the function on the profile add subcommand using its identifier or
name:
pct> profile add profname wclock to file "bar.c" function "func0"

pct> profile add profname wclock to file "bar.c" funcid 0

You can also specify multiple functions:
pct> profile add profname wclock to file "bar.c" funcid 0,1

pct> profile add profname wclock to file "bar.c" function "*"

pct> profile add profname wclock to file "bar.c" function "func0","func1"

Removing Hardware Profile Probes From Processes: When you issue the
profile add subcommand to install profile probes, the probes are given a unique
probe identifier. You can use this probe identifier on the profile remove
subcommand to remove the probes. To ascertain the probe identifier, use the
profile show subcommand with its probes clause as in:
pct> profile show probes
Probe Id Command
-------- ---
0 profile add profid 0 to file "prod_cons.c" function "alarm_handler"
1 profile add profid 0 to file "prod_cons.c" function "consume"
pct>

Chapter 3. Analyzing program performance using the PE Benchmarker toolset 123

|
|
|

|

|

|

|

|

|

|

|

|
|
|
|
|

|

|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

To remove the probe set whose identifier is 0:
pct> profile remove probe 0

Terminating Connected Processes
The PCT enables you to terminate execution of connected processes by issuing the
destroy subcommand. You might, for example, wish to terminate execution of your
target application after you have finished examining it. By default, the destroy
subcommand acts upon the current task group. Unless you have specified another
task group to be the current task group (as described in “Grouping Tasks of a POE
Application” on page 108), the current task group will be the task group connected.
The task group connected is created automatically by the PCT when you either
connect to or load an application (as described in “Connecting to a Running
Application” on page 111 and “Loading and Starting a New Application” on
page 110). The task group connected consists of all connected tasks in a POE
application. If you are instrumenting a serial application, you do not need to concern
yourself with task groups. If you are instrumenting a POE application, however, it is
useful to understand the concept of task groups as described in “Grouping Tasks of
a POE Application” on page 108.

Note: When working with a POE application, be aware that terminating any
process of the application will cause POE to terminate all of the application’s
processes. This termination of all processes is a function of POE, not of the
PCT. For more information, refer to the manual IBM Parallel Environment for
AIX: Operation and Use, Volume 1, Using the Parallel Operating
Environment.

To terminate execution of all tasks in the current task group:
pct> destroy

To terminate execution of tasks in a specific task group (in this case, the task group
connected), use the group clause on the destroy subcommand.
pct> destroy group connected

To terminate a specific set of tasks in a POE application, use the task clause on
the destroy subcommand. To determine how many tasks are available, you can
use the show group subcommand to list the tasks in the task group all:
pct> show group all
Tid Program Name Host Cpu Type State
--- ------------------------ ---------------- -------- ------
0 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded
1 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded
2 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded
3 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded
.
.
.
pct> destroy task 1,3

You can also, optionally, terminate execution of all connected tasks when exiting the
PCT. To do this, use the exit command with its destroy clause (as described in
“Exiting the Performance Collection Tool” on page 125).

Disconnecting From the Application
Once you are through examining a particular application, or particular tasks in an
application, you can disconnect from the application or application tasks by issuing
the disconnect subcommand. Once a process is disconnected, the PCT will no
longer be able to control execution of, or instrument, the process unless it

124 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|

|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

reconnects to the process. By default, the disconnect subcommand acts upon the
current task group. Unless you have specified another task group to be the current
task group (as described in “Grouping Tasks of a POE Application” on page 108),
the current task group will be the task group connected. The task group connected
is created automatically by the PCT when you either connect to or load an
application (as described in “Connecting to a Running Application” on page 111 and
“Loading and Starting a New Application” on page 110). The task group connected
consists of all connected tasks in a POE application. If you are instrumenting a
serial application, you do not need to concern yourself with task groups. If you are
instrumenting a POE application, however, it is useful to understand the concept of
task groups as described in “Grouping Tasks of a POE Application” on page 108.

To disconnect all tasks in the current task group:
pct> disconnect

To disconnect tasks in a specific task group (in this case, the task group
connected), use the group clause on the disconnect subcommand.
pct> disconnect group connected

To disconnect a specific set of tasks in a POE application, use the task clause on
the disconnect subcommand. To determine how many tasks are available, you can
use the show group subcommand to list the tasks in the task group all:
pct> show group all
Tid Program Name Host Cpu Type State
--- ------------------------ ---------------- -------- ------
0 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded
1 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded
2 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded
3 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded.
.
.
pct> disconnect task 1,3

Exiting the Performance Collection Tool
To exit the PCT and return to your AIX command prompt, issue the exit
subcommand:
pct> exit

If you loaded the target application, it will be terminated when PCT exits. If you
merely connected to the target application, you must explicitly instruct the PCT to
terminate processes. To terminate execution of all connected processes as you exit
the PCT, include the destroy clause on the exit subcommand.
pct> exit destroy

Creating and Running PCT Script Files
Using the command-line interface of the PCT, you are able to run a series of
commands that are stored in a file. This file, called a ″PCT script file″ is a simple
text file that lists a sequence of PCT commands that you want to run. Because PCT
script files are reusable, they are ideal for situations where you have a set of
commands you want to run during multiple PCT sessions. For example, you might
want to create a PCT script file that loads and prepares an application so that you
can then perform a variety of tasks on the prepared application.

To create a PCT script file, use any ASCII text editor. In the file, place one PCT
command per line. You can add comment lines to the file using the # (pound sign)
character. For example, here is a simple PCT script file.

Chapter 3. Analyzing program performance using the PE Benchmarker toolset 125

|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|

This example uses the 'chaotic' application from the DPCL samples.
The script loads a four-way chaotic application, inserts probes,
starts the application, and then waits for the application to complete
load poe exec /home/user/chaotic poeargs "-procs 4"
select trace
trace set path "/scratch/trace_out"
trace add mpiid 0 to file "chaotic.f"
start
wait

In the sample PCT script file shown above, note the use of the wait subcommand.
You need to use the wait subcommand in PCT script files to prevent the PCT from
exiting before it has collected probe data. The wait subcommand blocks the PCT’s
execution so that it can wait for asynchronous events (such as a task terminating)
to occur. When one of these asynchronous events occurs, the PCT resumes
execution and returns the event that occurred. Be aware that the wait subcommand
is intended for use only within PCT script files; it is not intended for interactive
command-line sessions.

To run the script file, you can either use the -s option of the pct command when
starting the tool (as described in “Starting the Performance Collection Tool In
Command-Line Mode” on page 107), or you can use the run subcommand of the
pct command. For example, to run the PCT script file myscript.cmd when starting
the tool, you would enter the following at the AIX command prompt:
pct -c -s myscript.cmd

Alternatively, you could run the myscript.cmd script file using the run subcommand.
For example:
pct> run "myscript.cmd"

Creating, Converting, and Viewing Information Contained In, UTE
Interval Files

When you collect MPI and user event traces using the PCT (as described in “Using
the Performance Collection Tool” on page 100), the collected information is saved,
on each machine running instrumented processes, as a standard AIX event trace
file. In order to view the information contained in these standard AIX trace files, you
will first need to convert them into UTE (Unified Trace Environment) interval files.
While an AIX event trace file has a time stamp indicating the point in time when an
event occurred, UTE interval files take this information to also determine how long
an event lasts. Because they include this duration information, UTE interval files are
easier to visualize than traditional AIX event trace files. The UTE utilities are:

v The uteconvert utility which coverts AIX event trace files into UTE interval trace
files.

v The utemerge utility which merges multiple UTE interval files into a single UTE
interval file.

v The utestats utility which generates statistics tables from UTE interval files.

v The slogmerge utility which converts and merges UTE interval files into a single
SLOG file for analysis within Argonne National Laboratory’s Jumpshot tool.

126 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|

|

|
|

|

|
|
|
|
|
|
|
|
|

|
|

|
|

|

|
|

|

The preceding figure illustrates the UTE utilities you can use to either generate
statistics tables from UTE interval files or view statistics graphically using Argonne
National Laboratory’s Jumpshot tool. Regardless of whether you want to view the
statistics in simple tables or graphically in Jumpshot, the first thing you’ll need to do
is use the uteconvert utility to create UTE interval files from the AIX trace files
(«a¬). (See “Converting AIX Trace Files Into UTE Interval Trace Files” on page 128
for more information.) Then, if you want to view the statistics in simple tables («b¬),
you can use the utestats utility. You can optionally merge multiple UTE files into a
single UTE file using the utemerge utility before using the utestats utility to
generate the statistics tables. (See “Generating Statistics Tables From UTE Interval
Trace Files” on page 128 for more information.) If you instead want to view the
information contained in the UTE interval files graphically («c¬), you can convert
them into SLOG files using the slogmerge utility. The SLOG files are readable by
Argonne National Laboratory’s Jumpshot Tool. (See “Converting UTE Interval Files
Into SLOG Files Required By Argonne National Laboratory’s Jumpshot Tool” on
page 130 for more information.)

Note: The UTE utilities are intended only for the AIX event trace files generated
when you collect MPI and user event traces with the PCT. If you instead
collect hardware and operating system profiles, the information is output by
the PCT as netCDF (network Common Data Form) files and these UTE
utilities are not necessary. Instead, the netCDF files can be read directly into
the PVT as described in “Using the Profile Visualization Tool” on page 131.

The following sections provide an overview of the UTE utilities. Note, however, that
this section does not attempt to describe all the options available when using these
utilities. For complete reference information on any of the utilities described in this
section, refer to their man pages contained in “Appendix A. Parallel environment
tools commands” on page 139.

AIX Trace

Files

UTE Interval

Files

uteconvert

uteconvert

uteconvert

uteconvert

uteconvert

uteconvert

UTE Interval

Files

utestats

utestats

utestats
utemerge

Merged

UTE

File

UTE Interval

Files

SLOG

Files

Statistics Tables Generated

By utestats Utility

Jumpshot

(Note: Jumpshot is a public domain tool

developed by Argonne National Laboratory,

and is NOT part of the PE Benchmarker Toolset)

a

b

c

slogmerge

slogmerge
Merged

SLOG

File

Figure 37. Unified Trace Environment (UTE) Utilities

Chapter 3. Analyzing program performance using the PE Benchmarker toolset 127

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

Converting AIX Trace Files Into UTE Interval Trace Files
Regardless of whether you want to view the statistics you have collected in simple
tables, or graphically in Jumpshot, the first thing you’ll need to do is use the
uteconvert utility to create UTE interval files from the AIX trace files generated by
the PCT. When you collect MPI and user event traces, the collected information is
saved, on each machine running instrumented processes, as a standard AIX event
trace file. The names of these individual trace files will consist of a common ″base
name″ that you specified using the PCT, followed by a node-specific suffix supplied
by the tool itself. Using the uteconvert utility, you can convert either a single AIX
trace file into a UTE interval file, or a set of AIX trace files with the same prefix into
a set of UTE interval files.

To convert a single AIX trace file into a UTE interval file, simply pass the
uteconvert utility the name of the trace file located in the current directory. For
example, to convert the AIX trace file mytrace into a UTE interval trace file, enter:
uteconvert mytrace

Using the -o flag, you can optionally specify the name of the output UTE interval
file. For example, to specify that the output file should be named outute.
uteconvert -o outute mytrace

To convert a set of AIX trace files into a set of UTE interval files, simply specify the
number of files using the -n option, and supply the common ″base name″ prefix
shared by the files. For example, to convert five trace files with the prefix mytraces
into UTE interval files, copy the trace files to a common directory and enter:
uteconvert -n 5 mytraces

You can optionally use the –o option to specify a file name prefix for the resulting
UTE interval files.
uteconvert -n 5 -o outute mytraces

When you use the -n option, make sure you do not have any old AIX trace files
from previous executions of the program still in the directory. The uteconvert utility
will process the first n trace files it finds that match the base name prefix.

For complete reference information on the uteconvert utility, refer to its man page
in “Appendix A. Parallel environment tools commands” on page 139. If you want to
view the statistics information contained in the UTE file(s) in simple tables, refer to
“Generating Statistics Tables From UTE Interval Trace Files”. If you want to view
the statistics information contained in the UTE file(s) graphically, refer to
“Converting UTE Interval Files Into SLOG Files Required By Argonne National
Laboratory’s Jumpshot Tool” on page 130.

Generating Statistics Tables From UTE Interval Trace Files
Once you have created UTE interval trace files (as described in “Converting AIX
Trace Files Into UTE Interval Trace Files”), you can generate statistical tables from
them using the utestats utility. In addition to giving you a simple alternative to
graphical analysis, the utestats utility can help you identify which traces you want
to view in a graphical visualization tool like Jumpshot. This is useful, because you
are often unable to view all process threads in a graphical visualization tool.
Jumpshot, for example, supports only 64 threads. Using the utestats utility, you can
determine which threads are of interest. In addition, if you do not wish to use a
graphical visualization tool, you can analyze traces extensively using the utestats
utility alone.

128 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|

|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|

|

|
|
|
|

|

|
|

|

|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

By default, six two-dimensional tables are generated. These tables are:

v Time Bin vs. Node

v Thread vs. Event Type

v Event Type vs. Thread

v Node vs. Event Type

v Event Type vs. Node

v Node vs. Processor

The computed statistic for all tables is the sum or the duration. A Node vs.
Processor table would look like the following (where tabs have been replaced by
spaces to make the column alignment clearer). The unit of measurement is
seconds, so, for example, the accumulated duration of all interval records for CPU 1
of node 0 was 2.258315 seconds.
node/cpu 0 1

0 2.823739 2.258315
1 0.873746 4.241253
2 0.956515 4.322891
3 0.853188 4.334650

You can generate these statistics tables for a single UTE interval file or multiple
UTE interval files. You can also generate these statistics tables for a merged UTE
interval file. A merged UTE interval file is one that consists of multiple UTE interval
files that have been merged into one file by the utemerge utility.

For example, to generate the statistics tables for the UTE interval file mytrace.ute,
you would enter:
utestats mytrace.ute

By default, the statistics tables will be printed to standard output. You can, however,
redirect them to a file using the -o option on the utestats command. For example,
to redirect the statistics tables output by the utestats utility to the file stattables, you
would enter:
utestats -o stattables mytrace.ute

As already stated, you can also specify multiple UTE interval files from which the
statistics should be generated.
utestats mytrace.ute mytrace2.ute mytrace3.ute

Rather than specify multiple UTE interval trace file names on the utestats
command, you could instead use the utemerge utility to first merge the multiple
UTE interval trace files into a single UTE interval trace file. To do this, you use the
-n option on the utemerge command to indicate the number of files you want to
merge, and supply the common ″base name″ prefix shared by the files. For
example:
utemerge -n 3 mytrace

The merged UTE interval file generated by the utemerge utility will, by default, be
named trcfile.ute. To specify your own output file name, use the -o option.
utemerge -n 3 -o mergedtrc.ute mytrace

When you use the -n option, make sure you do not have any old UTE interval files
from previous executions of the program still in the directory. The utemerge utility
will process the first n interval files it finds that match the base name prefix.

Chapter 3. Analyzing program performance using the PE Benchmarker toolset 129

|

|

|

|

|

|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

|

|
|
|
|

|

|
|

|

|
|
|
|
|
|

|

|
|

|

|
|
|

You can then generate statistics for the merged UTE interval file using the utestats
command.
utestats mergedtrc.ute

For complete reference information on the utestats and utemerge utilities, refer to
their man pages in “Appendix A. Parallel environment tools commands” on
page 139.

Note: Argonne National Laboratory’s Jumpshot Tool also includes a statistics view
feature that displays the same information as the utestats command
generates. Jumpshot also has the ability to display statistics information
graphically. The Jumpshot Tool is described next in “Converting UTE Interval
Files Into SLOG Files Required By Argonne National Laboratory’s Jumpshot
Tool”.

Converting UTE Interval Files Into SLOG Files Required By Argonne
National Laboratory’s Jumpshot Tool

If you would like to view the traces collected by the PCT graphically, you can use
the Jumpshot tool developed by Argonne National Laboratory. While Jumpshot is a
public domain tool and not part of the PE Benchmarker Toolset, we do provide a
utility — slogmerge — for converting UTE interval files into the SLOG files required
by Jumpshot. You can use the slogmerge utility to:

v convert a single UTE interval file into a single SLOG file.

v merge multiple UTE interval files into a single SLOG file.

If you are dealing with a massively parallel job, it is unlikely that you will be able to
display all the process threads in Jumpshot. In fact, Jumpshot supports only 64
threads. Rather than merge all the trace files generated from such a job, you will
instead want to merge selected trace files. To determine which files to merge, you
can first use the utestats utility (as described in “Generating Statistics Tables From
UTE Interval Trace Files” on page 128) to determine the characteristics of the files.
By analyzing the files first using the utestats utility, you can determine which files
contain the interesting information that you want to merge and view in Jumpshot.

To convert a single UTE interval file into a single SLOG file, pass the slogmerge
command the name of the file located in the current directory. For example:
slogmerge mytrace.ute

By default, the SLOG file output by the slogmerge utility will be trcfile.slog. Using
the -o option on the slogmerge command, however, you can specify an output file
name. For example:
slogmerge -o mergedtrc.slog mytrace.ute

To merge multiple UTE interval files into a single SLOG file, use the -n option to
indicate the number of files to merge and pass the slogmerge utility the common
″base name″ prefix of the files. For example, to merge 3 files whose prefix is
mytrace, enter:
slogmerge -n 3 mergedtrc.slog mytrace

When you use the -n option, make sure you do not have any old UTE interval files
from previous executions of the program still in the directory. The slogmerge utility
will process the first n interval files it finds that match the base name prefix.

130 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|

|

|
|
|

|
|
|
|
|
|

|

|

|
|
|
|
|

|

|

|
|
|
|
|
|
|
|

|
|

|

|
|
|

|

|
|
|
|

|

|
|
|

For complete reference information on the slogmerge utility, refer to its man page
in “Appendix A. Parallel environment tools commands” on page 139.

Using the Profile Visualization Tool
The PVT is a post-mortem analysis tool. It is designed to process profile data files
generated by the PCT used in application profiling. For more information on the
PCT, refer to “Using the Performance Collection Tool” on page 100. After processing
profile data, you can view the results in the PVT’s graphical user interface display.
You can also generate report and summary files. The PVT provides a command-line
interface to process individual profile files directly into a summary file without
initializing the graphic display. The command-line interface also enables you to
generate textual profile reports. This section begins with a discussion of the PVT’s
graphical user interface, followed by a description of the command-line interface.

Using the Profile Visualization Tool’s Graphical User Interface
The PVT provides a graphical user interface that enables you to process profile
data files and view the results. The options available in the graphical user interface
correspond to the commands available in the PVT’s command-line interface. For
more information on the command-line interface, refer to “Using the Profile
Visualization Tool’s Command Line Interface” on page 136.

Profile Visualization Tool (Graphical User Interface) Overview
The PVT’s graphical user interface allows you to process and view profile data. You
can load one or more files for processing and view the results in a variety of ways.
After initializing the graphical user interface, you can choose the appropriate
options:

If: Then:

You wish to load files for processing. Select File → Load... .

Doing this opens the Load Files panel. The
Load Files panel will enable you to specify
what files to load into the tool for processing.
You can specify one or more individual
profile files, or a summary profile file.

You wish to control the way profile data is
presented.

Select the View option.

Doing this opens the View menu. The View
menu will enable you to specify how profile
data is presented in the Main Display
window. You can specify how to sort data, as
well as show function call count and
resource usage.

You wish to view selected objects. Select the Object option.

Doing this opens the Object menu. The
Object menu will enable you to view
information such as source code, profile
data, and statistics reports for selected
objects.

You wish to search for a text string. Select File → Find...

Doing this opens the Find panel. The Find
panel will enable you to specify the text
string for which you want to search.

Chapter 3. Analyzing program performance using the PE Benchmarker toolset 131

|
|

|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|

|||

||

|
|
|
|
|

|
|
|

|
|
|
|
|
|

||

|
|
|
|
|

||

|
|
|

You wish to generate reports of profile data. Select the Report option.

Doing this opens the Report menu. The
Report menu will enable you to select and
view a variety of reports, including function
call count, CPU usage, and memory usage.

You wish to save summary data to a file. Select File → Save Statistic Summary...

Doing this opens the Save Statistic Summary
panel. This panel will enable you to accept a
user-specified file name. The statistic
summary data of the input profile file or files
will be written to the file.

You wish to export profile data to a file. Select File → Export...

Doing this opens the Export panel. This
panel will enable you to accept a
user-specified file name. The profile data that
is currently loaded will be written to the file.

You wish to set user preferences. Select File → Preferences...

Doing this opens the Preferences panel. At
this time, this panel will enable you to access
only one option: source code search paths.
There is a text field available that allows you
to specify where the source code files reside.

You wish to exit the PVT. Select File → Exit...

Doing this closes the Main Display window
and exits the PVT.

The following sections describe the graphical user interface in greater detail.

Starting the Profile Visualization Tool
You can start the PVT in either graphical-user-interface (GUI) mode or
command-line mode. For instructions on starting the PVT in command-line mode,
refer to “Using the Profile Visualization Tool’s Command Line Interface” on
page 136. To start the PVT in graphical-user-interface mode:

Enter the pvt command at the AIX command prompt.
$ pvt

Doing this starts the PVT in graphical-user-interface mode and opens its first
window – the Main Display.

To start the PVT in graphical-user-interface mode with input profile data loaded and
showing in the Main Display window, enter:
$ pvt one_or_more_file_names

The following figure shows an example of the Main Display window with input
profile data loaded.

132 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

||

|
|
|
|

||

|
|
|
|
|

||

|
|
|
|

||

|
|
|
|
|

||

|
|
|

|

|
|
|
|
|

|

|

|
|

|
|

|

|
|
|

The Main Display window shows a hierarchical list of all the functions being profiled.
The window is divided into two panes, the left one for viewing source code structure
and the right one for viewing profile data. Each pane has a corresponding menu:
the Source View menu and the Data View menu. Both the Source View and Data
View menus are grayed out if no input file is loaded. The two panes share the same
vertical scroll bar and are scrolled together. You can resize the panes horizontally to
change their relative proportion in the Main Display window.

The source code structure pane uses ASCII text to show the identifier of each
displayed object. The profile data pane represents a selected profile data field,
which uses a bar chart to show the profile data associated with each object. The
data value is displayed in front of the bar. When you select an object in the source
code structure pane, an object menu opens that provides some actions associated
with the selected object. You left-click to select an object, and right-click to bring up
the selected object’s object menu. When you select an object, the Object menu in
the Main Display window will become available also, providing the same functions
as the popup object menu.

If you load a summary profile file to start the GUI, process objects are labeled as
summary process object in order to distinguish them from the process objects
available in an individual profile file. Each function object has a set of statistics
records associated with each profile data field.

Following are explanations of the Source View and Data View menus.

Viewing Source Code Structure: The Source View is a drop-down menu with
two options: a Thread-Centric View and a Function-Centric View . The same
options are available under the View drop-down menu in the Main Display window.
See “Viewing program variables” on page 24 for more information. If the input file

Chapter 3. Analyzing program performance using the PE Benchmarker toolset 133

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|

you are loading to start the GUI is a summary file, there will be no thread
information in the file. The structure displayed will be the same no matter which
view is used.

Viewing Selected Profile Data: The Data View is a drop-down menu that enables
you to change the type of data to be shown in the Main Display window. The Data
View menu options include the following categories:

v Function Call Count

v Wall Clock Time

v Resource Usage

v Hardware Counters .

You will find similar options available in the View drop-down menu. When a
particular data type is unavailable in any of the input data files, its corresponding
menu option in the View menu is grayed out. The Data View drop-down menu only
shows the options that have corresponding values in the input data files. When a
set of files is loaded, Function Call Count is the default field in the Data View
menu.

Accessing the Profile Visualization Tool’s online help system
The PVT’s graphical user interface has been designed to be intuitive and easy to
use. However, if you do have any trouble, you can refer to the PVT’s online help
system. To access the tool’s online help, select Help → Contents off the main
window’s menu bar. Many dialogs of the tool also provide Help buttons or menu
items for starting the help system.

134 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|
|

|
|
|

|

|

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|

If you open the help from one of the PVT’s dialogs, a help topic describing that
dialog is displayed. If you open the help from the main window, a task overview
topic is displayed.

The PVT help contains topics for each of the major tasks you can perform with the
PVT. The left hand pane of the window enables you to navigate the help system to
display the needed help topic in the right hand pane. There are three ways to
navigate the help system — using the contents tab, using the index tab, or using
the search tab:

Chapter 3. Analyzing program performance using the PE Benchmarker toolset 135

|

|
|
|
|

|
|
|
|
|
|

v the contents tab is displayed by default. Simply click on any entry in the contents
tab to display the help topic.

v the index tab shows an index of the entire help system. Simply click on any entry
in the index to display its associated help topic. To search the index, type a string
in the Find field and press <enter> . The first index entry containing the string is
highlighted. Press <enter> again to search for the next occurrence of the string
in the index.

v the search tab enables you to search the help for all occurrences of a text string.
Simply type the string in the Find field and press <enter> . A list of all help topics
containing the string is displayed. The topics are listed in descending order
according to the number of occurrences of the string. The help topic with the
most occurrences of the string is displayed by default.

Using the Profile Visualization Tool’s Command Line Interface
The PVT provides a command-line interface that enables you to process profile files
directly without initializing the graphical user interface. The subcommands available
in the command-line interface correspond to the options available in the graphical
user interface. For more information on the graphical user interface, refer to “Using
the Profile Visualization Tool’s Graphical User Interface” on page 131.

Profile Visualization Tool (Command Line Interface) Overview
The PVT’s command-line interface allows you to process profile data directly
without using the graphical user interface. After initializing the command-line
interface, you can enter the appropriate subcommands that enable you to:

v Load files for processing

v Create a summary file of all the loaded data

v Generate textual reports of profile data

v Export profile data to a file.

The following sections describe the command-line interface in greater detail.

The contents tab shows the

help’s table of contents. Click

on any entry in the table of

contents to display that help

topic.

The index tab shows the

help’s index. Click on any

entry in the index to display

that help topic. You can

use the Find field to locate

index entries.

The search tab enables

you to search the help

for all occurrences of

a particular text string.

Enter the text string in

the Find field.

136 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|

|
|
|

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|

|
|
|
|

|

|

|

|

|

Starting the Profile Visualization Tool in Command-Line Mode
To start the PVT in command-line mode, enter:
pvt -c

Doing this starts a command-line session without associated profile data. To start a
command-line session with associated profile data, enter:
pvt -c one_or_more_file_names

Once you start a command-line session, the command line prompt changes to pvt>
and remains this way until you enter the exit command to end the command-line
session.

The following sections describe the command-line mode subcommands.

Loading Files
You can load a set of profile data files into the session with the load command.
Enter:
load one_or_more_file_names

If a set of data already exists, then the existing data is discarded and the newly
loaded data becomes the current data to be used in future actions.

Creating a Summary File
You can create a summary file of all the loaded data with the sum command. Enter:
sum summary_file_name

The merged summary data is written to the file that you specify in the command,
with a suffix of .cdf being appended to the specified file name.

Generating Reports
You can generate textual reports of profile data using the report command. You can
specify several different options with the report command, depending on what type
of output you want. To show a list of available report types, enter:
report list

The result will look something like:

v [0] call_count: function call count report

v [1] wclock: wall clock timer report

v [2] ru_cpu: CPU usage reports

v [3] ru_mem: memory usage report

v [4] ru_paging: paging activities reports

v [5] ru_cswitch: context switch activities reports

v [6] pmc_cycle: instructions per cycle hardware counter reports

v [7] pmc_fpu: floating-point hardware counter reports

v [8] pmc_fxu: fixed-point hardware counter reports

v [9] pmc_branch: branch hardware counter reports

v [10] pmc_lsu: load and store hardware counter reports

v [11] pmc_cache: cache hardware counter reports

v [12] pmc_misc: miscellaneous hardware counter reports

To generate all the available reports to a file, enter:
report output_file_name

Chapter 3. Analyzing program performance using the PE Benchmarker toolset 137

|
|

|

|
|

|

|
|
|

|

|
|
|

|

|
|

|
|

|

|
|

|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

To generate reports by report name to a file, enter:
report "one_or_more_report_names" output_file_name

For example:
report "wclock,ru_cpu" output

To generate reports by report id to a file, enter:
report "one_or_more_report_ids" output_file_name

For example:
report "1,2" output

The report names or report ids in double quotes must be separated by a comma,
with no blank space in between. No matter how many reports are selected in one
report command, all the reports are output to a single file specified in the report
command.

Exporting Files
You can export profile data to a specified file using the export command. Enter:
export output_file_name

A suffix .txt will be appended to the specified file name.

The currently loaded profile data is written to the user-specified file in plain text
format, so the data can be loaded easily into a spreadsheet tool like Lotus® 1-2-3®.
The data that is loaded into the tool can be grouped into the following types of
records:

v Profile-session record associated with each process (that is, profile session)

v Individual function or thread records

v Function statistics records.

Exiting the Profile Visualization Tool
You can end a command-line session with the exit command. Enter:
exit

138 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|

|

|

|

|

|

|

|

|
|
|
|

|
|

|

|

|
|
|
|

|

|

|

|
|

|

|

Appendix A. Parallel environment tools commands

This appendix contains the manual pages for the PE tools commands discussed
throughout this book. Each manual page is organized into the sections listed below.
The sections always appear in the same order, but some appear in all manual
pages while others are optional.

NAME Provides the name of the command described in the manual page, and a
brief description of its purpose.

SYNOPSIS
Includes a diagram that summarizes the command syntax, and provides a
brief synopsis of its use and function. If you are unfamiliar with the
typographic conventions used in the syntax diagrams, see “Conventions
and terminology used in this book” on page xiv.

FLAGS
Lists and describes any required and optional flags for the command.

DESCRIPTION
Describes the command more fully than the NAME and SYNOPSIS
sections.

ENVIRONMENT VARIABLES
Lists and describes any applicable environment variables.

EXAMPLES
Provides examples of ways in which the command is typically used.

FILES
Lists and describes any files related to the command.

RELATED INFORMATION
Lists commands, functions, file formats, and special files that are employed
by the command, that have a purpose related to the command, or that are
otherwise of interest within the context of the command.

© Copyright IBM Corp. 2000, 2001 139

|

pct

NAME
pct – Invokes the Performance Collection Tool (PCT) in either its
graphical-user-interface or command-line mode.

SYNOPSIS

pct [-c [-s script_file]]

The pct command starts the PCT in either its graphical-user-interface mode, or, if
the -c flag is specified, its command-line mode.

FLAGS
-c Specifies that the PCT should be started in command-line mode. Refer to

“Subcommands of the pct command” on page 141 for information on the
subcommands you can issue once the PCT is running in this mode.

-s script_file
When running in command-line mode, instructs the PCT to read its commands
from the script file specified. When running in graphical user interface mode,
you cannot use this option.

DESCRIPTION
The PCT is a highly scalable performance monitoring tool built on dynamic
instrumentation technology — the Dynamic Probe Class Library (DPCL). Using the
PCT, you can collect:

v MPI and user event traces for eventual analysis by either:

– Jumpshot (a public-domain tool developed at Argonne National Lab).

or

– the utestats utility provided as part of the PE Benchmarker Toolset.

Since the MPI and user trace information will be output as standard AIX trace
files, we have also supplied, as part of the PE Benchmarker tool set, several
utilities for converting the AIX trace files created by the PCT into a format
readable by Jumpshot and the utestats utility.

v Hardware and operating system profiles for playback within the Performance
Visualization Tool (as invoked by the pvt command).

The PCT can be run in either its graphical-user-interface mode, or, if the -c flag is
specified, its command-line mode. The PCT’s graphical user interface is built on top
of its command-line interface; in other words, your manipulations of the graphical
user interface are translated by the tool into pct subcommands. These
subcommands are issued, and the information returned is used to update the
graphical user interface. The pct subcommands that result from your interface
interactions are displayed in an information area of the PCT’s Main Window.

When running in command-line mode, you can optionally have the PCT read its
commands from a script file. You can specify the script file using the -s option when
issuing the pct command, or you can use the run subcommand.

The pct command’s subcommands (for controlling the PCT in command-line mode)
are listed alphabetically under “Subcommands of the pct command” on page 141.

pct

140 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|

|

|
|

|

|

|
|

|

||
|
|

|
|
|
|

|

|
|
|

|

|

|

|

|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|

|
|

EXAMPLES
To start the PCT in graphical-user-interface mode:
pct

To start the PCT in command-line mode:
pct -c

To start the PCT in command-line mode, and read commands from the script file
myscript.cmd.
pct -c -s myscript.cmd

RELATED INFORMATION
Commands: uteconvert (1), pvt (1), slogmerge (1), utemerge (1), utestats (1)

Subcommands of the pct command

comment subcommand (of the pct command)

[comment-string]

The comment subcommand is intended for use within script files you write, and is
not intended for interactive command-line sessions. Essentially, the # (pound sign)
character instructs the PCT to ignore the rest of the line.

comment-string
Is any comment you want to add to the file.

For example, the following PCT script file contains three comment lines to explain
the purpose of the script:
This example uses the 'chaotic' application from the DPCL samples.
The script loads a four-way chaotic application, inserts probes,
starts the application, and then waits for the application to complete
load poe exec /home/user/chaotic poeargs "-procs 4"
select trace
trace set path "/scratch/trace_out"
trace add mpiid 0 to file "chaotic.f"
start
wait

connect subcommand (of the pct command)

connect [{pid process_id | poe pid poe_process_id} | task task_list |
group task_group_name]

The connect subcommand connects the PCT to an existing application. Using this
subcommand, you can connect to a single application process, or the controlling,
″home node″ process in a POE application. Once you are connected to a
controlling POE home node process, you can reissue this subcommand to connect
to one or more of the POE application’s tasks.

pid process_id
Specifies the process ID of a single application process to connect.

poe pid poe_process_id
Indicates that you are connecting a POE process, and specifies the process
ID of the POE home node process (the executing instance of the poe

pct

Appendix A. Parallel environment tools commands 141

|

|

|

|

|

|
|

|

|

|

|

|

|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|

|
|

|
|
|

command). Only the controlling POE process is connected. To connect to
one or more of the POE application’s tasks, reissue the connect
subcommand.

task task_list
Specifies a list of POE tasks to connect. The tasks in the POE application
can be specified by listing individual values separated by commas (1,3,8,9),
by giving a range of tasks using a colon to separate the ends of the range
(12:15 refer to tasks 12, 13, 14, and 15), by giving a range and increment
value using colons to separate the range and increment values (20:26:2
refers to tasks 20, 22, 24, and 26), or by using a combination of these
(12:18,22,30).

group task_group_name
Specifies the name of a task group. To connect to all tasks in a POE
application, you can specify the task group all, which will have been created
by the PCT when you connected to the controlling, home node, POE
process. Refer to the group subcommand for information on creating task
groups.

For example, to connect to the application process whose AIX process ID is 12345:
pct> connect pid 12345

To connect to the POE ″home node″ process whose AIX process ID is 12345:
pct> connect poe pid 12345

The preceding example connects to just the controlling, home node, process in a
POE application. To now connect to all of the tasks in the POE application:
pct> connect group all

destroy subcommand (of the pct command)

destroy [task task_list | group task_group_name]

The destroy subcommand terminates execution of one or more connected
processes. By default, the tasks in the current task group (as previously defined by
the group subcommand) are the ones terminated. You can override this default,
however, by specifying a task_list or task_group_name when you issue the destroy
subcommand.

When working with a POE application, be aware that terminating any process of the
application will cause POE to terminate all of the application’s processes. This
termination of all processes is a function of POE, not of the PCT. For more
information, refer to IBM Parallel Environment for AIX: Operation and Use, Volume
1, Using the Parallel Operating Environment.

task task_list
Specifies the connected tasks to be terminated. The tasks in the POE
application can be specified by listing individual values separated by
commas (1,3,8,9), by giving a range of tasks using a colon to separate the
ends of the range (12:15 refer to tasks 12, 13, 14, and 15), by giving a
range and increment value using colons to separate the range and
increment values (20:26:2 refers to tasks 20, 22, 24, and 26), or by using a
combination of these (12:18,22,30).

pct

142 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|

|

|

|
|

|

|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

group task_group_name
Specifies the name of a task group. Refer to the group subcommand for
information on creating task groups.

For example, to terminate execution of the tasks in the current task group:
pct> destroy

To terminate task 8:
pct> destroy task 8

To terminate the tasks in task group connected:
pct> destroy group connected

disconnect subcommand (of the pct command)

disconnect [task task_list | group task_group_name]

The disconnect subcommand disconnects the PCT from one or more connected
processes. Disconnecting from a process removes any performance collection
probes from the process. Disconnecting from a process does not terminate the
process; the process will continue to run. Once a process is disconnected, the PCT
will no longer be able to control execution of, or instrument, the process. By default,
the tasks in the current task group (as previously defined by the group
subcommand) are the ones that are disconnected. You can override this default,
however, by specifying a task list or task group name when you issue the
disconnect subcommand.

task task_list
Specifies the connected POE tasks to be disconnected. The tasks in the
POE application can be specified by listing individual values separated by
commas (1,3,8,9), by giving a range of tasks using a colon to separate the
ends of the range (12:15 refers to tasks 12, 13, 14, and 15), by giving a
range and increment value using colons to separate the range and
increment values (20:26:2 refers to tasks 20, 22, 24, and 26), or by using a
combination of these (12:18,22,30).

group task_group_name
Specifies the name of a task group. Refer to the group subcommand for
information on creating task groups.

For example, to disconnect from the tasks in the current task group:
pct> disconnect

To disconnect from task 8:
pct> disconnect task 8

To disconnect from the tasks in task group connected:
pct> disconnect group connected

exit subcommand (of the pct command)

exit [destroy]

The exit subcommand exits the PCT. If you loaded the target application, its
process(es) will also be terminated. If you merely connected to the target

pct

Appendix A. Parallel environment tools commands 143

|
|
|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

|
|

application, the process(es) will continue to run unless you use the destroy clause
to explicitly instruct the PCT to kill the connected processes. Since terminating any
process of the POE application will cause POE to terminate all of the POE
application’s processes, the destroy clause effectively terminates the entire POE
application.

For example, to exit the PCT, but allow all of its connected processes to continue
running:
pct> exit

To exit the PCT and terminate the connected target application processes:
pct> exit destroy

file subcommand (of the pct command)

file [task task_list | group task_group_name] ″regular_expression″

The file subcommand lists, for one or more tasks, any associated source file names
that match a regular expression that you supply. By default, this subcommand
applies to the current task group (as previously defined by the group
subcommand). You can override this default, however, by specifying a task list or
task group name when you issue the file subcommand.

The files are listed by this subcommand as a table with column headings for the
task identifier, file identifier, file name, and, if available, the path.

The file identifiers are determined by sorting the files alphabetically and numbering
them starting from 0. The path will be shown only if the file path information was
supplied when you compiled a file.

task task_list
Specifies the connected POE tasks whose source file names you want to
list. The tasks in the POE application can be specified by listing individual
values separated by commas (1,3,8,9), by giving a range of tasks using a
colon to separate the ends of the range (12:15 refers to tasks 12, 13, 14,
and 15), by giving a range and increment value using colons to separate
the range and increment values (20:26:2 refers to tasks 20, 22, 24, and 26),
or by using a combination of these (12:18,22,30).

group task_group_name
Specifies the name of a task group. Refer to the group subcommand for
information on creating task groups.

″regular_expression″
An AIX regular expression (file-name substitution pattern) enclosed in
quotation marks that identifies the files to list. The file subcommand will
filter the list of file names using this regular expression; only file names that
match this regular expression pattern will be listed.

For example, to list all the files in the current task group:
pct> file "*"
Tid File Id File Name Path
--- ------- --------- -------------
0 0 bar.c ../../lib/src
0 1 foo1.c ../../lib/src
0 2 foo2.c ../src
pct>

pct

144 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|
|
|
|

|
|

|

|

|

|

|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

To list only the files in task 0 that begin with the letter ″f″
pct> file task 0 "f*"
Tid File Id File Name Path
--- ------- --------- -------------
0 1 foo1.c ../../lib/src
0 2 foo2.c ../src
pct>

find subcommand (of the pct command)

find [task task_list | group task_group_name]
function ″regular_expression_to_match_function_name″

The find subcommand lists all function names that match a regular expression
pattern that you supply. This subcommand is intended for situations when you wish
to instrument a particular function, but do not know which file contains the function.

The function names found are listed by this subcommand as a table with column
headings for task identifier, file identifier, file name, and function name.

task task_list
Specifies the connected POE tasks whose source files you want to search.
The tasks in the POE application can be specified by listing individual
values separated by commas (1,3,8,9), by giving a range of tasks using a
colon to separate the ends of the range (12:15 refers to tasks 12, 13, 14,
and 15), by giving a range and increment value using colons to separate
the range and increment values (20:26:2 refers to tasks 20, 22, 24, and 26),
or by using a combination of these (12:18,22,30).

group task_group_name
Specifies the name of a task group. Refer to the group subcommand for
information on creating task groups.

function ″regular_expression_to_match_function_name″
An AIX regular expression (file-name substitution pattern) enclosed in
quotation marks that identifies the functions to locate. Matching is
performed using rules of AIX file-name pattern matching. The find
subcommand will filter the list of function names using this regular
expression; only function names that match this regular expression pattern
will be listed.

For example, to list all the functions in task 0 that match the regular expression
comp*:
pct> find task 0 function "comp*"
Tid File Id File Name Function Name
--- ------- --------- -------------
0 23 main.c compute
0 23 main.c compare
0 25 sort.c compare2
pct>

function subcommand (of the pct command)

function [task task_list | group task_group_name]
{file ″regular_expression″[,″regular_expression″] | fileid file_identifier[,file_identifier]}...
″regular_expression_to_match_function_name″

pct

Appendix A. Parallel environment tools commands 145

|

|
|
|
|
|
|

|

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|

|
|
|

The function subcommand lists, for one or more tasks, the names of the functions
contained in a source file that match a regular expression search pattern you
supply. The file whose functions are listed can be specified as a file identifier or as
a regular expression that matches the file name. The file information can be
ascertained by the file subcommand, or, if you are unsure which file the function is
located in, the find subcommand. By default, this subcommand applies to the
current task group (as previously defined by the group subcommand). You can
override this default, however, by specifying a task list or task group name when
you issue the function subcommand.

The function names are listed by this subcommand as a table with column headings
for task identifier, file identifier, function identifier, file name, and function name.

The function identifiers are determined by sorting the functions contained in a file
alphabetically starting from 0. Each file’s functions are numbered sequentially
starting from 0.

task task_list
Specifies the connected POE tasks containing the source files whose
functions you want to list. The tasks in the POE application can be specified
by listing individual values separated by commas (1,3,8,9), by giving a
range of tasks using a colon to separate the ends of the range (12:15 refers
to tasks 12, 13, 14, and 15), by giving a range and increment value using
colons to separate the range and increment values (20:26:2 refers to tasks
20, 22, 24, and 26), or by using a combination of these (12:18,22,30).

group task_group_name
Specifies the name of a task group. Refer to the group subcommand for
information on creating task groups.

file ″regular_expression″[,″regular_expression″]
Specifies, using one or more regular expression patterns, the file(s) whose
functions you want to list. The regular expression patterns must be
contained in quotation marks.

fileid file_identifier[,file_identifier]
Specifies, using one or more file identifiers as returned by the file
subcommand, the file(s) whose functions you want to list.

″regular_expression_to_match_function_name″
A regular expression enclosed in quotation marks that identifies the function
names to list. Matching is performed using rules of AIX file-name pattern
matching. The function subcommand will filter the list of function names
using this expression; only function names (for the tasks/file indicated) that
match the regular expression will be listed.

For example, to list all the functions in the file ″bar.c″ in task 0:
pct> function task 0 file "bar.c" "*"
Tid File Id Function Id File Name Function Name
--- ------- ----------- --------- -------------
0 1 0 bar.c func0
0 1 1 bar.c func1
pct>

To list all the functions in the file ″bar.c″ (using the file identifier) in task 0:

pct

146 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|

|

pct> function task 0 fileid 1 "*"
Tid File Id Function Id File Name Function Name
--- ------- ----------- --------- -------------
0 1 0 bar.c func0
0 1 1 bar.c func1
pct>

To list, for task 0, all of the functions in files beginning with ″b″ or ″d″:
pct> function task 0 file "b*", "d*" "*"
Tid File Id Function Id File Name Function Name
--- ------- ----------- --------- -------------
0 3 0 bar.c func0
0 3 1 bar.c func1
0 3 2 bar2.c func_xyz
0 4 0 bar2.c calc
0 4 1 bar2.c do_math
0 4 2 bar2.c sum
pct>

group subcommand (of the pct command)

group default task_group_name

group add task_group_name task_list

group delete task_group_name [task_list]

The group subcommand can perform three distinct actions related to task groups:

v Using the default action of the group command:

group default task_group_name

you can set the command context on a particular task group. When you do this,
the task group you specify becomes the current task group; certain other
subcommands that you issue (such as the file , function , and point
subcommands) will, by default, apply only to the tasks in the current task group.

v Using the add action of the group subcommand:

group add task_group_name task_list

you can create a new task group, or add tasks to an existing task group.

v Using the delete action of the group subcommand:

group delete task_group_name [task_list]

you can delete, or delete selected tasks from, a task group. If a task list is
specified, these tasks are removed from the task group; otherwise, the entire
task group is deleted.

In addition to any task groups you create using the group subcommand, note that
there are two task groups that are created automatically by the PCT when you
issue either the load or connect subcommands. These automatically-created task
groups are named all and connected. The all task group contains all tasks in the
current application, while the connected task group contains the set of tasks to
which the PCT is connected.

pct

Appendix A. Parallel environment tools commands 147

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|

|

|

|
|
|
|

|

|

|

|

|

|
|
|

|
|
|
|
|
|

task_group_name
refers to the name of the task group that, depending on the particular
group subcommand action you are executing, you want to:

v make the default task group

v create or add tasks to

v delete or remove tasks from

task_list
Refers to the list of tasks that, depending on the particular group
subcommand action you are executing, you want to either add to, or delete
from, the task group. The tasks can be specified by listing individual values
separated by commas (1,3,8,9), by giving a range of tasks using a colon to
separate the ends of the range (12:15 refers to tasks 12, 13, 14, and 15),
by giving a range and increment value using colons to separate the range
and increment values (20:26:2 refers to tasks 20, 22, 24, and 26), or by
using a combination of these (12:18,22,30).

For example, to create a task group master consisting of task 0, and a task group
workers consisting of tasks 1 through 20.
pct> group add master 0
pct> group add workers 1:20

To add tasks 21 through 30 to the task group workers:
pct> group add workers 21:30

To make the group workers the default task group:
pct> group default workers

To remove tasks 21 through 30 from the task group workers.
pct> group delete workers 21:30

To delete the task group workers:
pct> group delete workers

help subcommand (of the pct command)

help [command_name]

The help subcommand can either list all of the PCT’s subcommands, or else return
the syntax of a particular subcommand.

command_name
refers to the name of the PCT subcommand you want help on.

For example, to get a listing of all of the PCT’s subcommands:
pct> help

To get the syntax of the load subcommand:
pct> help load

list subcommand (of the pct command)

list {[task task_list | group task_group_name]
[file ″regular_expression″ [,″regular_expression″]... |

pct

148 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|
|

|

|

|

|
|
|
|
|
|
|
|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

|
|

|

|

|

|

|

|
|

fileid file_identifier[,file_identifier]...] [line line_number_range]}

list next

The list subcommand returns the contents of a file. The first time you issue this
subcommand, you should specify a file using the file or fileid clause. Doing this will
list the entire file’s contents. To list only a portion of the file’s contents, specify a line
number range using the line clause. To minimize typing, the PCT records the
number of the last source code line displayed; issuing the list next subcommand
will display the next few lines of the source code. By default, this form of the
subcommand applies to the current task group (as previously defined by the group
subcommand). You can override this default, however, by specifying a task list or
task group name when you issue the list subcommand.

task task_list
Specifies the connected POE tasks containing the source files whose
contents you want to list. The tasks in the POE application can be specified
by listing individual values separated by commas (1,3,8,9), by giving a
range of tasks using a colon to separate the ends of the range (12:15 refers
to tasks 12, 13, 14, and 15), by giving a range and increment value using
colons to separate the range and increment values (20:26:2 refers to tasks
20, 22, 24, and 26), or by using a combination of these (12:18,22,30).

group task_group_name
Specifies the name of a task group. Refer to the group subcommand for
information on creating task groups.

file ″regular expression″ [,″regular expression″]...
Specifies, using one or more regular expressions, the file whose contents
you want to list. Only the first file that matches the regular expression(s) will
be listed. If this file cannot be located, an error will be returned, regardless
of whether a subsequent file match could have been made.

fileid file_identifier[,file_identifier]...
Specifies, using one or more file identifiers as returned by the file
subcommand, the file(s) whose contents you want to list.

line line_number_range
The line number range of the source code you want to list. Use a colon to
separate the ends of the range (for example 1:20).

next displays the next few lines of source code after the range previously
returned by the list subcommand.

For example, to list lines 1 through 20 of the source file bar.c:
pct> list file "bar.c" line 1:20

To then list the next few lines in bar.c:
pct> list next

load subcommand (of the pct command)

load {{[poe] exec absolute_path_to_executable } | {poe
[mpmdcmd path_to_poe_commands_file] [poeargs ″poe_arguments_string″]}
[args ″program_arguments_string″] [stdout standard_out_file_name]
[stderr standard_error_file_name] [stdin standard_input_file_name]

pct

Appendix A. Parallel environment tools commands 149

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|

||
|

|

|

|

|

|

|
|
|
|

The load subcommand loads a serial or POE application for execution. Once an
application is loaded, you can instrument it with probes, or control its execution
using the start , suspend , resume , and destroy subcommands. The load
subcommand is intended for applications that are not already executing; to connect
to applications that are already executing, use the connect subcommand. The poe
clause indicates that the application is a POE application; if not specified, the load
subcommand assumes you are loading a serial application. The load subcommand
loads the application into memory in a ″stopped state″ with execution suspended at
its first executable instruction. You can start execution of the application using the
start subcommand.

poe Specifies that you are loading a POE program.

exec absolute_path_to_executable
Specifies the full path to the executable file. If you are loading a POE
application, you must also include the keyword poe on the command line.

mpmdcmd path_to_poe_commands_file
Specifies that the POE program you’re loading follows the Multiple Program
Multiple Data (MPMD) model and indicates the path to the POE commands
file listing the executable programs to run. For more information on POE
commands files, refer to the manual IBM Parallel Environment for AIX:
Operation and Use, Volume 1.

poeargs ″poe_arguments_string″
Specifies command-line arguments that are passed to the poe command to
control various aspects of the Parallel Operating Environment. For a
complete listing of the POE arguments you can supply, refer to the manual
IBM Parallel Environment for AIX: Operation and Use, Volume 1. The POE
arguments should be provided as a string delimited by double quotation
marks. Embedded quotation marks can be included in the string if each
mark is preceded by an escape character (\). Embedded escape characters
may also be included if they are preceded by an additional escape
character.

args ″program_arguments_string″
Specifies command-line arguments that are passed to the application. Note
that these are not POE arguments, which are instead specified by using the
poeargs clause. The program arguments should be provided as a string
delimited by double quotation marks. Embedded quotation marks can be
included in the string if each mark is preceded by an escape character (\).
Embedded escape characters may also be included if they are preceded by
an additional escape character.

stdout standard_out_file_name
Redirects the target application’s standard output to the file specified.

stderr standard_error_file_name
Redirects the target application’s standard error to the file specified.

stdin standard_input_file_name
Reads the target application’s standard input from a file.

For example, the following command loads the serial executable foo and passes it
the argument string ″a b c″:
pct> load exec /u/example/bin/foo args "a b c"

The following command loads the POE executable parallel_foo and passes it POE
arguments:
pct> load poe exec /u/example/bin/parallel_foo poeargs "-procs 4 -hfile /tmp/host.list"

pct

150 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|
|
|
|
|
|
|
|
|

||

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

|

|
|

|

The following command loads an MPMD POE program. The executable files to load
are listed in the POE commands file /u/example/bin/foo.cmds:
pct> load poe mpmdcmd /u/example/bin/foo.cmds poeargs "-procs 3 -hfile /tmp/host.list"

point subcommand (of the pct command)

point [task task_list | group task_group_name]
{file ″regular_expression″[,″regular_expression″]... |
fileid file_identifier[,file_identifier]...}
[function ″regular_expression″[,″regular_expression″]... |
funcid function_identifier[,function_identifier]...]

Lists the instrumentation points (at the file or function level) where custom user
markers can be added by the trace add subcommand. You only need to identify
instrumentation points when installing custom user markers using the trace add
subcommand. You do not need the instrumentation point information if installing
MPI trace probes using the trace add subcommand or profile probes using the
profile add subcommand. By default, this subcommand will list the instrumentation
points for the tasks in the current task group (as previously defined by the group
subcommand). You can override this default, however, by specifying a task list or
task group name when you issue the point subcommand. The file or fileid clause
specifies the file(s) whose instrumentation points you want listed. Using the
function clause, you can specify one or more functions whose instrumentation
points you want listed.

The instrumentation points are listed by this subcommand as a table with headings
for task identifier, file identifier, function identifier, point identifier, point type, and
callee name.

The point identifiers are determined by numbering the points, starting from 0,
according to their location in each function. The first instrumentation point in the
function is given the identifier 0, the second is given the identifier 1, and so on.
Each function’s instrumentation points are numbered separately starting from 0.

task task_list
Specifies the connected POE tasks whose instrumentation points you want
to list. The tasks in the POE application can be specified by listing individual
values separated by commas (1,3,8,9), by giving a range of tasks using a
colon to separate the ends of the range (12:15 refers to tasks 12, 13, 14,
and 15), by giving a range and increment value using colons to separate
the range and increment values (20:26:2 refers to tasks 20, 22, 24, and 26),
or by using a combination of these (12:18,22,30).

group task_group_name
Specifies the name of a task group. Refer to the group subcommand for
information on creating task groups.

file ″regular_expression″[,″regular_expression″]...
Specifies, using one or more regular expressions (file name substitution
patterns), the file(s) whose instrumentation points you want to list. The
regular expression(s) must be contained in quotation marks.

fileid file_identifier[,file_identifier]...
specifies, using one or more file identifiers as returned by the file
subcommand, the file(s) whose instrumentation points you want to list.

pct

Appendix A. Parallel environment tools commands 151

|
|

|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

function ″regular_expression″[,″regular_expression″]...
Specifies, using one or more regular expressions, the function(s) whose
instrumentation points you want to list. This regular expression must be
contained in quotation marks.

funcid function_identifier[,function_identifier]...
Specifies, using one or more function identifiers as returned by the function
subcommand, the function(s) whose instrumentation points you want to list.

For example, to list all the instrumentation points in task 0 for the file bar.c:
pct> point task 0 file "bar.c"
Tid File Id Function Id Point Id Point Type Callee Name
--- ------- ----------- -------- ---------- ------------
0 54 0 0 0
0 54 0 1 2 printf
0 54 0 2 3 printf
0 54 0 3 2 MPI_Abort
0 54 0 4 3 MPI_Abort
0 54 0 5 1
0 54 1 0 0
0 54 1 1 2 printf
0 54 1 2 3 printf
0 54 1 3 2 printf
0 54 1 4 3 printf
0 54 1 5 2 MPI_Recv
0 54 1 6 3 MPI_Recv
0 54 1 7 2 consume_data
0 54 1 8 3 consume_data
0 54 1 9 2 printf
0 54 1 10 3 printf
0 54 1 11 1
pct>

profile add subcommand (of the pct command)

profile add [task task_list | group task_group_name]
{{profname profile_type_name | profid profile_type_identifier}
[groupid group_identifier | groupname group_name]}...
to {file ″regular_expression″[,″regular_expression″]... |
fileid file_identifier[,file_identifier]...}
[function ″regular_expression″[,″regular_expression″]...|
funcid function_identifier[,function_identifier...]]

The profile add subcommand adds one or more probes to collect hardware and
operating system profile information. You cannot use this subcommand, or any of
the profile subcommands, unless you have specified that you are collecting profile
data. To specify that you are collecting profile data, issue the select subcommand
with its profile clause:
select profile

If you add multiple profile probes, be aware that they are considered a single set of
probes. When removing profile probes using the profile remove subcommand, you
will not be able to remove individual probes. Instead, you’ll have to remove the
entire set of probes.

By default, this subcommand will add the probe(s) to the tasks in the current task
group (as previously defined by the group subcommand). You can override this
default, however, by specifying a task list or task group name when you issue the
profile add subcommand. Be aware, however, that the set of tasks cannot include

pct

152 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|

|
|
|
|

different executables in an MPMD application. For example, if an MPMD application
consists of executables a.out and b.out, then this command cannot be applied to a
task group that contains both a.out and b.out tasks.

task task_list
Specifies the connected POE tasks to which you want to add the profile
probes. The tasks in the POE application can be specified by listing
individual values separated by commas (1,3,8,9), by giving a range of tasks
using a colon to separate the ends of the range (12:15 refers to tasks 12,
13, 14, and 15), by giving a range and increment value using colons to
separate the range and increment values (20:26:2 refers to tasks 20, 22,
24, and 26), or by using a combination of these (12:18,22,30).

group task_group_name
Specifies the name of a task group. Refer to the group subcommand for
information on creating task groups.

profname profile_type_name
Specifies, using a probe type name, a profile probe type to add. To list the
profile probe type names, use the profile show subcommand (with its
probetypes clause specified):
pct> profile show probetypes

profid profile_type_identifier
Specifies, using a probe type identifier, a profile probe type to add. To list
the profile probe type identifiers, use the profile show subcommand (with
its probetypes clause specified):
pct> profile show probetypes

groupid group_identifier
If you are collecting hardware counter information, a profile group identifier
indicating the specific hardware counter information you want to collect. To
get a list of the profile groups available for your hardware, use the
command:
pct> profile show probetype hwcount

groupname group_name
If you are collecting hardware counter information, a profile group name
indicating the specific hardware counter information you want to collect. To
get a list of the profile groups available for your hardware, use the
command:
pct> profile show probetype hwcount

file ″regular_expression″[,″regular_expression″]...
Specifies, using one or more regular expressions (file name substitution
patterns), the file(s) you wish to instrument with profile probes. The regular
expressions must be enclosed in quotation marks.

fileid file_identifier[,file_identifier]...
Specifies, using one or more file identifiers as returned by the file
subcommand, the file(s) you wish to instrument with profile probes.

function ″regular_expression″[,″regular_expression″]...
Specifies, using one or more regular expressions, the functions you wish to
instrument with the profile probes. The regular expression must be enclosed
in quotation marks.

funcid function_identifier[,function_identifier]...
Specifies, using one or more function identifiers as returned by the function
subcommand, the functions you wish to instrument with the profile probes.

pct

Appendix A. Parallel environment tools commands 153

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|

|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

For example, to add a profile probe to collect wall clock data for the current task
group:
pct> profile add profname wclock to fileid 5 funcid 3

To add a profile probe to collect wall clock data, and hardware data using counter
group 2:
pct> profile add profname wclock profname hwcount groupid 2 to fileid 3

profile remove subcommand (of the pct command)

profile remove probe probe_index

The profile remove subcommand removes the profile probe set specified by the
supplied probe_index. A profile probe set consists of one or more probes as
previously installed by the profile add subcommand. An installed profile probe’s
probe_index can be ascertained by the profile show subcommand (with its probes
clause) as in:
pct> profile show probes

probe probe_index
Specifies, using a probe index, the profile probe set to be removed. The
probe index can be ascertained by issuing the profile show subcommand
with its probes clause.

For example, to remove the profile probe set whose index is 3:
pct> profile remove probe 3

profile set path subcommand (of the pct command)

profile set path ″path_name/output_file_base_name″

The profile set path subcommand specifies the output location and base name for
the profile data files generated by profile probes that you install using the profile
add subcommand.

″path_name/output_file_base_name″
specifies a relative or full path to the desired location for the profile output
files, followed by the output file base name. The base name is needed
because the data collected by the PCT will be saved as a file on each host
machine where a connected process with probes is running. The file name
will consist of the base name you supply followed by a node-specific suffix
supplied by the PCT. If a relative path is specified, note that the location will
be relative to the directory where you started the PCT.

For example, to specify the relative path profile as the location for profile output files
and output as the base name:
pct> profile set path "profile/output"

profile show subcommand (of the pct command)

profile show {probes | probetypes | probetype probe_type_name | path }

The profile show subcommand lists, depending on the clause you specify, either
the currently installed profile probes, the list of profile probe types that you can
install, the options for a probetype, or the profile file output location.

pct

154 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|

|

|
|

|

|

|

|
|
|
|
|

|

|
|
|
|

|

|

|

|

|
|
|

|
|
|
|
|
|
|
|

|
|

|

|

|

|
|
|

probes
Specifies that the profile show subcommand should list the currently
installed profile probes (including the probe index). The probe index
information is needed when removing a profile probe using the profile
remove subcommand.

probetypes
Specifies that the profile show subcommand should list the available probe
types you can add using the profile add subcommand.

probetype probe_type_name
Specifies that the subcommand should list the options for the specified
probe type. Currently, only the hardware counter probe type has options.

path Specifies that you want the profile show subcommand to return the profile
file output location and base name as set by the profile set path
subcommand.

For example, to list the installed profile probes:
pct> profile show probes

To list available profile probe types:
pct> profile show probetypes
Prof Id Prof Name Description
------- --------- ----------------
0 wclock wall clock
1 rusage resource usage
2 hwcount hardware counter
pct>

resume subcommand (of the pct command)

resume [task task_list | group task_group_name]

The resume subcommand resumes execution of one or more processes that have
previously been suspended by the suspend subcommand. By default, the tasks in
the current task group (as previously defined by the group subcommand) are the
ones that have their execution resumed. You can override this default, however, by
specifying a task list or task group name when you issue the resume subcommand.

task task_list
Specifies the connected POE tasks that you want to resume executing. The
tasks in the POE application can be specified by listing individual values
separated by commas (1,3,8,9), by giving a range of tasks using a colon to
separate the ends of the range (12:15 refers to tasks 12, 13, 14, and 15),
by giving a range and increment value using colons to separate the range
and increment values (20:26:2 refers to tasks 20, 22, 24, and 26), or by
using a combination of these (12:18,22,30).

group task_group_name
Specifies the name of a task group. Refer to the group subcommand for
information on creating task groups.

For example, to resume execution of all tasks in the current task group:
pct> resume

To resume execution of tasks 0 through 20:
pct> resume task 0:20

pct

Appendix A. Parallel environment tools commands 155

|
|
|
|
|

|
|
|

|
|
|

||
|
|

|

|

|

|
|
|
|
|
|
|

|

|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|

|

|

|

To resume execution of the tasks in task group mygroup:
pct> resume group mygroup

run subcommand (of the pct command)

run ″pct_script_file″

The run subcommand executes a series of PCT commands that are stored in a
″PCT script file″. A PCT script file is an ASCII file that lists a sequence of PCT
subcommands. Each PCT subcommand is placed on a separate line in the PCT
script file. Lines beginning with a # (pound sign) character are comments and will
not be executed by the PCT.

″pct_script_file″
Specifies the name of the PCT script file whose subcommands you want to
execute. The file name must be enclosed in quotation marks.

For example, to execute the PCT subcommands contained in the PCT script file
myscript.cmd:
pct> run "myscript.cmd"

select subcommand (of the pct command)

select {trace | profile }

The select subcommand enables you to select the type of probe data you will be
collecting.

trace Specifies that you intend to collect MPI or custom user event traces for
eventual analysis using Jumpshot or the utestats utility.

profile
Specifies that you intend to collect hardware and operating system profiles
for analysis using the Profile Visualization Tool.

For example, if you will be adding trace probes (using the trace add subcommand)
for collecting MPI or custom user event data:
pct> select trace

If, on the other hand, you will be adding profile probes (using the profile add
subcommand) for collecting hardware and operating system profiles:
pct> select profile

set subcommand (of the pct command)

set sourcepath [relative] ″path_list″

The set subcommand enables you to set the path used when displaying the
contents of a file using the list subcommand. The initial value for the source path is
the directory in which the tool was started.

relative
Specifies that, if relative path information is included as part of the file name
supplied to the list subcommand, the relative path should be used together
with the directories listed in the pathlist.

pct

156 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|

|

|

|

|
|
|
|
|

|
|
|

|
|

|

|

|

|
|

||
|

|
|
|

|
|

|

|
|

|

|

|

|
|
|

|
|
|
|

For example, say one of the source files in the application is named
″../../myapp/src/compute.c″ and the source path is
″/tmp:/usr/tmp:/home/mydir/examples/yourapp″. If the relative keyword is
used when setting the source path, the PCT searches the following
directories when the list /../../myapp/src/compute.c subcommand is
issued.
/tmp/../../myapp/src/
/usr/tmp/../../myapp/src/
/home/mydir/examples/yourapp/../../myapp/src/

If the relative keyword is not used when setting the source path, however,
the following directories are searched:
/tmp/
/usr/tmp/
/home/mydir/examples/yourapp/

″path_list″
A colon-delimited list that specifies the path the list subcommand will use to
search for source files.

show subcommand (of the pct command)

show { events | group task_group_name |
groups | points | ps | sourcepath |
tools }

The show subcommand returns, depending on the form of the subcommand you
use, various information about the target application and the PCT.

v Using the form show events returns a list of the possible events that, if you
place the PCT in an event loop using the wait subcommand, can break the PCT
out of the loop. Be aware that the wait subcommand is intended only for use
within scripts you write, and is not intended for interactive command-line
sessions.

v Using the form:

show group task_group_name

returns, for each task in the specified task group, the task identifier, the program
name, the name of the host machine on which the task is running, the CPU type,
and the task state.

v Using the form:

show groups

returns a list of task groups. This includes any task groups created by default
(the task groups all and connected), and any task groups you created using the
group subcommand. An ampersand character (@) is displayed to the right of the
default task group.

v Using the form:

show points

returns a list of the available instrumentation point types. This enables you to
understand the numeric point type returned by the point subcommand.

v Using the form:

pct

Appendix A. Parallel environment tools commands 157

|
|
|
|
|
|

|
|
|

|
|

|
|
|

|
|
|

|

|
|
|

|
|

|
|
|
|
|

|

|

|
|
|

|

|

|
|
|
|

|

|

|
|

|

show ps

returns a list of the processes you own on the node where you started the PCT.
This information is needed when connecting to an application using the connect
subcommand.

v Using the form:

show sourcepath

returns a list of directories searched when displaying the contents of a file using
the list subcommand. You can set the source path using the set subcommand.

v Using the form:

show tools

returns a list of the types of information you can collect using the PCT (for this
release, ″trace″ and ″profile″). This information is needed when selecting the type
of data you will be collecting using the select subcommand.

For example, to show the tasks in the current task group:
pct> show group

To show the tasks in the task group ″connected″:
pct> show group connected

To show the processes that you own on the host machine:
pct> show ps

start subcommand (of the pct command)

start

The start subcommand starts execution of an application you have loaded using
the load subcommand. (The load subcommand loads an application into memory in
a ″stopped state″ with execution suspended at the first executable instruction.)

For example, to start execution of the currently-loaded application:
pct> start

stdin subcommand (of the pct command)

stdin [{″string″ | eof }]

The stdin subcommand sends the supplied string as standard input to the currently
loaded application. If no string is supplied, the stdin subcommand will send a
newline character to the application. If the eof option is supplied, the stdin
subcommand will send an end-of-file character to the application.

Be aware that this subcommand is intended only for applications that you have
loaded using the load subcommand. If you have instead connected to an
application using the connect subcommand, you cannot send standard input text
using the stdin subcommand.

pct

158 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|

|
|
|

|

|

|
|

|

|

|
|
|

|

|

|

|

|

|

|

|

|
|
|

|

|

|

|

|
|
|
|

|
|
|
|

Also be aware that you can, when loading an application using the load
subcommand, indicate that the application should read standard input from a file
specified by the stdin option. If the stdin option is used when loading an
application with the load subcommand, note that the stdin subcommand cannot be
used.

″string″
Specifies a text string to send to standard input. The string should be
enclosed in quotes, and embedded formatting characters (such as \n) are
permitted. If no string is supplied, the stdin subcommand will send a
newline character to the application.

eof sends an end-of-file character to the input stream reading this input data.

For example:
pct> stdin "now is the time \nfor all good men"

suspend subcommand (of the pct command)

suspend [task task_list | group task_group_name]

The suspend subcommand suspends execution of one or more processes. By
default, the tasks in the current task group (as previously defined by the group
subcommand) are the ones that are suspended. You can override the default,
however, by specifying a task list or task group name when you issue the suspend
subcommand. You can resume execution of tasks suspended by this subcommand
by issuing the resume subcommand.

task task_list
Specifies the connected POE tasks that you want to suspend. The tasks in
the POE application can be specified by listing individual values separated
by commas (1,3,8,9), by giving a range of tasks using a colon to separate
the ends of the range (12:15 refers to tasks 12, 13, 14, and 15), by giving a
range and increment value using colons to separate the range and
increment values (20:26:2 refers to tasks 20, 22, 24, and 26), or by using a
combination of these (12:18,22,30).

group task_group_name
Specifies the name of a task group. Refer to the group subcommand for
information on creating task groups.

For example, to suspend execution of all tasks in the current task group:
pct> suspend

To suspend execution of tasks 0 through 20:
pct> suspend task 0:20

To suspend execution of the tasks in task group ″mygroup″:
pct> suspend group mygroup

trace add subcommand (of the pct command)

trace add [task task_list | group task_group_name]
{mpiid probetype_number_list | mpiname probe_name_list} to
{file ″regular_expression″[,″regular_expression″]... |
fileid file_identifier[,file_identifier]... }
[function ″regular_expression″[,″regular_expression″]... |

pct

Appendix A. Parallel environment tools commands 159

|
|
|
|
|

|
|
|
|
|

||

|

|

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|

|

|

|

|

|

|

|
|
|
|
|

funcid function_identifier[,function_identifier]...]

trace add [task task_list | group task_group_name]
{simplemarker ″marker_name″ |
{{beginmarker | endmarker } ″marker_name″}
| {traceon | traceoff }} to {file ″regular_expression″[,″regular_expression″]... |
fileid file_identifier[,file_identifier]... }
{function ″regular_expression″[,″regular_expression″]... |
funcid function_identifier[,function_identifier]...} pointid point_identifier

The trace add subcommand enables you to add the following types of probes to
one or more tasks. You can add:

v MPI trace probes. If you add multiple MPI trace probes, be aware that they are
considered a single set of probes. When removing MPI trace probes using the
trace remove subcommand, you will not be able to remove selected probes.
Instead, you’ll have to remove the entire set of probes.

v simple user markers to trace events of interest

v begin user markers and end user markers to trace intervals of interest

v user markers to force tracing on and off

You cannot use this subcommand, or any of the trace subcommands, unless you
have specified that you are collecting trace data. To specify that you are collecting
trace data, issue the select subcommand with its trace clause:
pct> select trace

You also need to specify the output location and a ″base name″ prefix for the trace
files. To do this, use the trace set path command. For example:
pct> trace set path "/home/timf/tracefiles/mytrace"

By default, this subcommand will add the probes to the tasks in the current task
group (as previously defined by the group subcommand). You can override this
default, however, by specifying a task list or task group name when you issue the
trace add subcommand. Be aware, however, that the set of tasks cannot include
different executables in an MPMD application. For example, if an MPMD application
consists of executables a.out and b.out, then this command cannot be applied to a
task group that contains both a.out and b.out tasks.

task task_list
Specifies the connected POE tasks to which you want to add the trace
probes or user markers. The tasks in the POE application can be specified
by listing individual values separated by commas (1,3,8,9), by giving a
range of tasks using a colon to separate the ends of the range (12:15 refers
to tasks 12, 13, 14, and 15), by giving a range and increment value using
colons to separate the range and increment values (20:26:2 refers to tasks
20, 22, 24, and 26), or by using a combination of these (12:18,22,30).

group task_group_name
Specifies the name of a task group. Refer to the group subcommand for
information on creating task groups.

mpiid probetype_number_list
A probe identifier (or a list of comma-separated probe identifiers) indicating
the type of MPI data (collective communication, point-to-point
communication, one-sided operations, and so on) that you want to collect.
To get a list of the probe identifiers, issue the trace show subcommand
with its probetypes clause as in:

pct

160 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|

|

|

|
|
|

|

|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

pct> trace show probetypes

mpiname probe_name_list
A probe name (or a list of comma-separated probe names) indicating the
type of MPI data (collective communication, point-to-point communication,
one-sided operations, and so on) that you want to collect. To get a list of
the probe names, issue the trace show subcommand with its probetypes
clause as in:
pct> trace show probetypes

simplemarker ″marker_name″
Indicates that the probe is a simple marker being placed in the target
application to trace a particular event of interest. A simple marker appears
in the trace record as a single point.

{beginmarker | endmarker} ″marker_name″
Specifies that the probe is a user marker that marks either the beginning or
ending of a named user state. You need to mark both the beginning and
ending of the range with the same ″marker_name″ (a string that will be
used to identify the user state in the trace record). You can only use a
particular marker name for one begin marker/end marker pair. The state will
appear in the trace record as a region.

{traceon | traceoff}
Specifies that the probe is a user marker that will either force tracing on or
off. This provides a finer degree of trace control than is otherwise available
when merely specifying the file and function to trace.

file ″regular_expression″[,″regular_expression″]...
Specifies, using one or more regular expressions (file name substitution
patterns), the file(s) you wish to instrument. The regular expression must be
contained in quotation marks.

fileid file_identifier[,file_identifier]...
Specifies, using one or more file identifiers as returned by the file
subcommand, the files you wish to instrument.

function ″regular_expression″[,″regular_expression″]...
Specifies, using one or more regular expressions, the function(s) you want
to instrument.

funcid function_identifier[,function_identifier]...
Specifies, using one or more function identifiers as returned by the function
subcommand, the function you want to instrument.

pointid point_identifier
Specifies, using a point identifier, the instrumentation point at which to add
the user markers.

For example, to trace all MPI events in the file ″bar.c″:
pct> trace add mpiname all to file "bar.c"

To add a begin state marker named ″green″ to the second point of the first function
of file ″foo.c″:
pct> trace add beginmarker "green" to file "foo.c" funcid 0 pointid 1

trace remove subcommand (of the pct command)

trace remove {marker marker_id | probe probe_index}

pct

Appendix A. Parallel environment tools commands 161

|

|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|

|

|
|

|

|

|

The trace remove subcommand enables you to remove a custom user marker or a
trace probe set.

marker marker_id
Specifies the marker identifier of the custom user marker you want to
remove. To ascertain the marker identifier, use the trace show
subcommand with its markers clause.
pct> trace show markers

probe probe_index
Specifies, using a probe index, the trace probe set you wish to remove. A
trace probe set consists of one or more probes previously installed by the
trace add subcommand. To ascertain the trace probe set you wish to
remove, use the trace show subcommand with its probes clause as in:
pct> trace show probes

For example, to remove the trace probe whose probe identifier is ″2″:
pct> trace remove probe 2

trace set subcommand (of the pct command)

trace set { path ″path_name/output_file_base_name″ | [bufsize buffer_size]
[{event {mpi | process | idle } | {event [mpi,] [process,] [idle]}]
[logsize maximum_log_size]}

The trace set subcommand enables you to specify various settings for event trace
collection. You cannot use this subcommand, or any of the trace subcommands,
unless you have specified that you are collecting trace data. To specify that you are
collecting trace data, issue the select subcommand with its trace clause:
select trace

The settings you make with this subcommand will stay in effect until you issue the
select subcommand.

path ″path_name/output_file_base_name″
Specifies a relative or full path name to the desired location for trace files
followed by the output file base name. The base name is needed because
the data collected by the PCT will be stored as a file on each host machine
where a connected process with probes is running, The file name will
consist of the base name you supply followed by a node specific suffix
supplied by the PCT.

bufsize buffer_size
Specifies the AIX trace buffer size in Kilobytes. This value can be at most
1024, which is also the default value.

[{event {mpi | process | idle} | {event [mpi,] [process,] [idle]}]
Specifies the type of events (MPI events, process dispatch events, and
CPU idle events) that are traced. By default, MPI events and process
dispatch events are traced. Tracing process dispatch events and CPU idle
events can result in larger trace files, but the additional information can
provide useful context for the MPI information collected.

If you want to specify more than one event type, use a comma to separate
the event type names.

logsize maximum_log_size
Specifies the maximum trace file size in Megabytes. The default is 20 M.

pct

162 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|

|
|
|
|

|

|
|
|
|
|

|

|

|

|

|
|
|

|
|
|
|

|

|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|

|
|

For example, to specify the directory tracefiles/mytrace as the output directory for
the trace files:
pct> trace set path "tracefiles/mytrace"

To specify the buffer size to be 900 K:
pct> trace set bufsize 900

To specify the maximum trace file size to be 25 M:
pct> trace set logsize 25

To specify that CPU idle events should be collected:
pct> trace set event idle

To specify that MPI and CPU idle events should be collected:
pct> trace set event mpi, idle

trace show subcommand (of the pct command)

trace show {[task task_list | group task_group_name] {markers | probes } |
probetypes | path }

The trace show subcommand lists, depending on the clause you specify, either:

v the currently installed trace probes:

trace show [task task_list | group task_group_name] probes

v the currently installed user markers:

trace show [task task_list | group task_group_name] markers

v the list of available probe types you can add using the trace add subcommand:

trace show probetypes

v the trace file output location and base name (as set by the trace set path
subcommand):

trace show path

When listing the currently installed trace probes or user markers, the action is
performed for the tasks in the current task group (as previously defined by the
group subcommand). You can override this default, however, by specifying a task
list or task group name when you issue the trace show subcommand.

task task_list
Specifies the connected POE tasks whose trace probes or user markers
you want to list. The tasks in the POE application can be specified by listing
individual values separated by commas (1,3,8,9), by giving a range of tasks
using a colon to separate the ends of the range (12:15 refers to tasks 12,
13, 14, and 15), by giving a range and increment value using colons to
separate the range and increment values (20:26:2 refers to tasks 20, 22,
24, and 26), or by using a combination of these (12:18,22,30).

group task_group_name
Specifies the name of a task group. Refer to the group subcommand for
information on creating task groups.

pct

Appendix A. Parallel environment tools commands 163

|
|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|
|

|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

markers
Specifies that you want the trace show subcommand to list the currently
installed user markers.

probes
Specifies that you want the trace show subcommand to list the currently
installed trace probes.

probetypes
Specifies that you want the trace show subcommand to list the available
trace probe types you can add using the trace add subcommand.

path Specifies that you want the trace show subcommand to return the trace file
output location and base name as set by the trace set path subcommand.

For example, to list the trace probes installed in the tasks in the current task group:
pct> trace show probes

To list the user markers for the tasks in the task group ″workers″:
pct> trace show markers

To list the available probe types:
pct> trace show probetypes

wait subcommand (of the pct command)

wait

The wait subcommand blocks the PCT’s execution so that it can wait for
asynchronous system events (such as a task terminating) to occur. When one of
these asynchronous events occurs, the PCT resumes execution, and returns the
event that occurred. Be aware that this command is intended only for use within
scripts you write, and is not intended for interactive command-line sessions. If you
use it during an interactive command-line session, the only way to break out of the
loop is to press <control>-C which will kill the PCT.

To see a list of the possible events that can resume execution of the PCT, issue the
subcommand:
pct> show events

For example, the following example blocks execution of the PCT. Execution of the
PCT resumes when the target application terminates. The PCT returns the event
name ″app_term″:
pct> wait
app_term

pct

164 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|
|

|
|
|

|
|
|

||
|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|

|
|

|

|
|
|

|
|

|

pdbx

NAME
pdbx – Invokes the pdbx debugger, which is the command-line debugger built on
dbx .

SYNOPSIS

pdbx [program [program_options]] [poe options]
[-c command_file]
[-d nesting_depth]
[-I directory
[-I directory]...]
[-F]
[-x]

pdbx -a poe process id
[limited poe options]
[-c command_file]
[-d nesting_depth]
[-I directory
[-I directory]...]
[-F]
[-x]

pdbx -h

The pdbx command invokes the pdbx debugger. This tool is based on the dbx
debugger, but adds function specific to parallel programming.

FLAGS
Because pdbx runs in the Parallel Operating Environment, it accepts all the flags
supported by the poe command.

Note: poe uses the PATH environment variable to find the program, while pdbx
does not.

See the poe manual page in IBM Parallel Environment for AIX: Operation and Use,
Volume 1, Using the Parallel Operating Environment for a description of these
options. Additional pdbx flags are:

-a Attaches to a running poe job by specifying its process id. This must be
executed from the node where the poe job was initiated. When using the
debugger in attach mode there are some debugger command line arguments
that should not be used. In general, any arguments that control how the
partition is set up or specify application names and arguments should not be
used.

-c Reads startup commands from the specified commands_file.

-d
Sets the limit for the nesting of program blocks. The default nesting depth limit
is 25.

-F
This flag can be used to turn off lazy reading mode. Turning lazy reading mode

pdbx

Appendix A. Parallel environment tools commands 165

off forces the remote dbx sessions to read all symbol table information at
startup time. By default, lazy reading mode is on.

Lazy reading mode is useful when debugging large executable files, or when
paging space is low. With lazy reading mode on, only the required symbol table
information is read upon initialization of the remote dbx sessions. Because all
symbol table information is not read at dbx startup time when in lazy reading
mode, local variable and related type information will not be initially available for
functions defined in other files. The effect of this can be seen with the whereis
command, where instances of the specified local variable may not be found
until the other files containing these instances are somehow referenced.

-h
Writes the pdbx usage to STDERR then exits. This includes pdbx command
line syntax and a description of pdbx options.

-I (upper-case i)
Specifies a directory to be searched for an executable’s source files. This flag
must be specified multiple times to set multiple paths. (Once pdbx is running,
this list can be overridden on a group or single node basis with the use
subcommand.)

-x Prevents dbx from stripping _ (trailing underscore) characters from symbols
originating in Fortran source code. This flag enables dbx to distinguish between
symbols which are identical except for an underscore character, such as xxx
and xxx_.

DESCRIPTION
pdbx is the Parallel Environment’s command-line debugger for parallel programs. It
is based, and built, on the AIX debugging tool dbx .

pdbx supports most of the familiar dbx subcommands, as well as additional pdbx
subcommands.

To use pdbx for interactive debugging you first need to compile the program and
set up the execution environment as you would to invoke a parallel program with
the poe command. Your program should be compiled with the -g flag in order to
produce an object file with symbol table references. It is also advisable to not use
the optimization option, -O. Using the debugger on optimized code may produce
inconsistent and erroneous results. For more information on the -g and -O compiler
options, refer to their use on other compiler commands such as cc and xlf . These
compiler commands are described in AIX 5L Version 5.1 Commands Reference

pdbx maintains dbx’s command-line interface and subcommands. When you
invoke pdbx , the pdbx command prompt displays to mark the start of a pdbx
session.

When using pdbx , you should keep in mind that pdbx subcommands can either be
context sensitive or context insensitive. In pdbx , context refers to a setting that
controls which task(s) receive the subcommands entered at the pdbx command
prompt. A default command context is provided which contains all tasks in your
partition. You can, however, set the command context on a single task or a group of
tasks you define. Context sensitive subcommands, when entered, only affect those
tasks in the current command context. Context insensitive subcommands are not
affected by the command context setting.

pdbx

166 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

If you are already familiar with dbx , you should be aware that some dbx
subcommands behave somewhat differently in pdbx . Be aware that:

v all the dbx subcommands are context sensitive in pdbx . If you use the stop
subcommand, for example, it will only set breakpoints for the tasks in the current
context. Tasks outside the current context are not affected.

v redirection from dbx subcommands is not supported.

v you cannot use the subcommands clear , detach , edit , multproc , prompt , run ,
rerun , screen , and the sh subcommand with no arguments.

v since pdbx runs in the Parallel Operating Environment, output from the parallel
tasks may not be ordered. You can force task ordering, however, by setting the
output mode to ordered using the MP_STDOUTMODE environment variable or
the -stdoutmode flag when invoking your program with pdbx .

When a task hangs (there is no pdbx prompt) you can press <Ctrl-c> to acquire
control. This displays the pdbx subset prompt pdbx-subset([group | task]), and
provides a subset of pdbx functionality:

v Changing the current context

v Displaying information about groups/tasks

v Interrupting the application

v Showing breakpoint/tracepoint status

v Getting help

v Exiting the debugger.

You can change the subset of tasks to which context sensitive commands are
directed. Also, you can understand more about the current state of the application,
and gain control of your application at any time, not just at user-defined
breakpoints.

At the pdbx subset prompt, all input you type at the command line is intercepted by
pdbx . All commands are interpreted and operated on by the home node. No data is
passed to the remote nodes and STDIN is not given to the application. Most
commands at the pdbx subset prompt produce information about the application
and then produce another pdbx subset prompt. The exceptions are the halt , back ,
on , and quit commands. For more information, see “Context switch when blocked”
on page 16.

ENVIRONMENT VARIABLES
Because the pdbx command runs in the Parallel Operating Environment, it interacts
with the same environment variables associated with the poe command. See the
poe manual page in IBM Parallel Environment for AIX: Operation and Use, Volume
1, Using the Parallel Operating Environment for a description of these environment
variables. As indicated by the syntax statements, you are also able to specify poe
command line options when invoking pdbx . Using these options will override the
setting of the corresponding environment variable, as is the case when invoking a
parallel program with the poe command. Additional variables are:

HOME
During pdbx initialization, pdbx uses this environment variable to search for
two special initialization files. First, pdbx searches for .pdbxinit in the user’s
current directory. If the file is not found, pdbx checks the file
$HOME/.pdbxinit.

SHELL
The sh subcommand in dbx , which is available through pdbx , uses this

pdbx

Appendix A. Parallel environment tools commands 167

environment variable to determine which shell to use. If this environment
variable is not set, the default is the sh shell.

MP_DBXPROMPTMOD
The dbx prompt \n(dbx) is used by pdbx as an indicator denoting that a
dbx subcommand has completed. This environment variable can be used
to modify the prompt. Any value assigned to MP_DBXPROMPTMOD will
have a “.” prepended and then be inserted in the \n(dbx) prompt between
the “x” and the “)”. This environment variable is needed in rare situations
when the string \n(dbx) is present in the output of the application being
debugged. For example, if MP_DBXPROMPTMOD is set to unique157, the
prompt would be \n(dbx.unique157).

MP_DEBUG_INITIAL_STOP
This environment variable redefines the initial stop point in pdbx (overriding
the stop in main). It can be set to sourcefile:linenumber, where sourcefile is
a file containing source code of the program to be executed. Typically, the
source file name ends with the .c, .C, or f suffix. Linenumber is a line
number in this file. This line must contain executable code, not data
declarations or Fortran FORMAT statements. It cannot be a comment,
blank, or continuation line.

If no linenumber is specified (and the colon is omitted), the sourcefile field
is taken to be a function or subroutine name, and a “stop in” is performed
on entry to the function.

If MP_DEBUG_INITIAL_STOP is undefined, the default stop location will be
the first executable line in the function main. For Fortran source programs,
it will be the first executable line in the main program.

EXAMPLES
To start pdbx , first set up the execution environment as you would for the poe
command, and then enter:
pdbx

After initialization, you should see the prompt:
pdbx(all)

FILES
.pdbxinit (Initial commands for pdbx in ./ or $HOME)

.pdbxinit.process_id.task_id (Initial commands for the individual dbx tasks)

For more information on .pdbxinit see Table 3 on page 5 and “Reading
subcommands from a command file” on page 29.

Note: The following temporary files are created during the execution of pdbx in
attach mode:

v /tmp/.pdbx.<poe-pid>.host.list - a temporary host list file containing
information needed to attach to tasks on remote nodes.

v /tmp/.pdbx.<pdbx-pid>.menu - a temporary file to hold the attach task
menu. Both of these files are removed before the debugger exits.

RELATED INFORMATION
Commands: dbx (1), mpcc (1), mpcc_r (1), mpCC (1), mpCC_r (1), mpxlf (1),
mpxlf_r (1), poe (1)

pdbx

168 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Subcommands of the pdbx command

alias subcommand (of the pdbx command)

alias [alias_name [alias_string]]

The alias subcommand creates aliases for pdbx subcommands. The alias_name
parameter is the alias being created. The alias_string is the pdbx subcommand for
which you wish you define an alias, and is a single pdbx subcommand. If used
without parameters, the alias subcommand displays all current aliases. If only
alias_name is specified, it lists the alias name and the alias string that is assigned
to it. This subcommand is context insensitive.

A number of default aliases are provided by pdbx . They are:
t where
j status
st stop
s step
x registers
q quit
p print
n next
m map
l list
h help
d delete
c cont
th thread
mu mutex
cv condition
attr attribute

Apart from these, aliases are only known during the current pdbx session. They are
not saved between pdbx sessions, and are lost upon exiting pdbx .

Note: One method for reusing aliases is to define them in .pdbxinit to allow them to
be created for each pdbx execution. The default aliases are available after
the partition has been loaded.

Aliases can also be removed using the unalias subcommand for the pdbx
command.

1. If you have two task groups defined in your pdbx session called “master” and
“workers”, and you wish to define aliases to easily qualify each, enter:
alias mas on master
alias w on workers

This will allow you to switch the command context between the master and
workers groups by typing:
mas

to switch context to the “master” group, or:
w

to switch context to the “workers” group.

pdbx

Appendix A. Parallel environment tools commands 169

2. To display the string that has been defined for the alias “p”, enter:
alias p

3. To list all aliases currently defined, enter:
alias

Related to this subcommand is the pdbx unalias subcommand.

assign subcommand (of the pdbx command)

assign <variable> = <expression>

The assign subcommand assigns the value of an expression to a variable.

1. To assign a value of 5 to the x variable:
pdbx(all) assign x = 5

2. To assign the value of the y variable to the x variable:
pdbx(all) assign x = y

3. To assign the character value ‘z’ to the z variable:
pdbx(all) assign z = 'z'

4. To assign the boolean value false to the logical type variable B:
pdbx(all) assign B = false

5. To assign the “Hello World” string to a character pointer Y:
pdbx(all) assign Y = "Hello World"

6. To disable type checking, activate the set variable $unsafeassign:
pdbx(all) set $unsafeassign

attach subcommand (of the pdbx command)

attach all
attach <task_list>

The attach subcommand is used to attach the debugger to some or all the tasks of
a given poe job.

Individual tasks are separated by spaces. A range of tasks may be separated by a
dash or a colon. For example, the command attac h 2 4 5-7 would mean to attach
to tasks 2,4,5,6, and 7.

attribute subcommand (of the pdbx command)

attribute
attribute [<attribute_number> ...]

The attribute subcommand displays information about the user thread, mutex, or
condition attributes objects defined by the attribute_number parameters. If no
parameters are specified, all attributes objects are listed.

For each attributes object listed, the following information is displayed:

attr Indicates the symbolic name of the attributes object, in the form
$aattribute_number.

obj_addr
Indicates the address of the attributes object.

pdbx

170 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

type Indicates the type of the attributes object; this can be thr , mutex , or cond
for user threads, mutexes, and condition variables respectively.

state Indicates the state of the attributes object. This can be valid or invalid.

stack Indicates the stacksize attribute of a thread attributes object.

scope
Indicates the scope attribute of a thread attributes object. This determines
the contention scope of the thread, and defines the set of threads with
which it must contend for processing resources. The value can be sys or
pro for system or process contention scope.

prio Indicates the priority attribute of a thread attributes object.

sched
Indicates the schedpolicy attribute of a thread attributes object. This
attribute controls scheduling policy, and can be fifo (first in first out), rr
(round robin), or other.

p-shar
Indicates the process-shared attribute of a mutex or condition attribute
object. A mutex or condition is process-shared if it can be accessed by
threads belonging to different processes. The value can be yes or no.

protocol
Indicates the protocol attribute of a mutex. This attribute determines the
effect of holding the mutex on a thread’s priority. The value can be no_prio,
prio, or protect.

Related to this subcommand are the condition mutex and thread subcommands.

back subcommand (of the pdbx command)

back

The back command returns you to a pdbx prompt when you were already at a
pdbx subset prompt. You can use the command if you want the application to
continue as it was before <Ctrl-c> was issued. Also, you can use it at the pdbx
subset prompt if all of the nodes are checked into “debug ready” state, and you
want to do full pdbx processing.

The back command is only valid at the pdbx subset prompt.

call subcommand (of the pdbx command)

call <procedure> (<parameters>)

The call subcommand runs a procedure specified by the procedure parameter. The
return code is not printed. If any parameters are specified, they are passed to the
procedure being run.

The program stack will be returned to its previous state after the procedure
specified by call completes. Any side effect of the procedure, such as global
variable updates, will remain.

Related to this subcommand is the print subcommand.

pdbx

Appendix A. Parallel environment tools commands 171

case subcommand (of the pdbx command)

case [default | mixed | lower | upper]

The case subcommand changes how pdbx interprets symbols. The default
handling of symbols is based on the current language. If the current language is C,
C++, or undefined, the symbols are not folded. If the current language is Fortran,
the symbols are folded to lowercase. Use this command if a symbol needs to be
interpreted in a way not consistent with the current language.

Entering the case subcommand with no parameters displays the current case
mode. The parameters include:

default
Varies with the current language.

mixed
Causes symbols to be interpreted as they actually appear.

lower Causes symbols to be interpreted as lowercase.

upper
Causes symbols to be interpreted as uppercase.

catch subcommand (of the pdbx command)

catch
catch <signal_number>
catch <signal_name>

The catch subcommand with no arguments prints all signals currently being caught.
If a signal is specified, pdbx will trap the signal before it is sent to the program.
This is useful when the program being debugged has signal handlers.

When the program encounters a signal that is being caught to the debugger, a
message stating which signal was detected is shown, and the pdbx prompt is
displayed. To have the program continue and process the signal, issue the cont
subcommand with the signal option. Other execution control commands and the
cont subcommand without the signal option will cause the program to behave as if
it had never encountered the signal.

A signal may be specified by number or name. Signal names are by default case
insensitive and the “SIG” prefix is optional.

By default all signals are caught except SIGHUP, SIGKILL, SIGPIPE, SIGALRM,
SIGCHLD, SIGIO and SIGVIRT. When debugging a threaded application (including
those compiled with mpcc_r , mpCC_r or mpxlf_r), all signals are caught except
SIGHUP, SIGKILL, SIGALRM, SIGCHLD, SIGIO and SIGVIRT.

Related to this subcommand are the ignore and cont subcommands.

condition subcommand (of the pdbx command)

condition
condition [<condition_number> ...]
condition [wait | nowait]

pdbx

172 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

The condition subcommand displays the current state of all known conditions in
the process. Condition variables to be listed can be specified through the
<condition_number> parameters, or all condition variables will be listed. Users can
also choose to display only condition variables with or without waiters by using the
wait or nowait options.

The information listed for each condition is as follows:

cv Indicates the symbolic name of the condition variable, in the form
$ccondition_number.

obj_addr
Indicates the memory address of the condition variable.

num_wait
Indicates the number of threads waiting on the condition variable.

waiters
Lists the user threads which are waiting on the condition variable.

Related to this subcommand are the attribute mutex and thread subcommands.

cont subcommand (of the pdbx command)

cont
cont <signal_number>
cont <signal_name>

The cont subcommand allows execution to continue from where the program last
stopped, until either the program finishes or another breakpoint is reached. If a
signal is specified, it is given to the program, and the process continues as though
it received the signal. If a signal is not specified, the process continues as though it
had not been stopped.

Related to this subcommand are the catch , ignore , step , stepi , next , and nexti
subcommands.

dbx subcommand (of the pdbx command)

dbx dbx_subcommand

The dbx subcommand is context sensitive and will pass the specified
dbx_subcommand directly to the dbx running on each task in the current context
with no pdbx intervention. The specified dbx_subcommand can be any valid dbx
subcommand.

Note: The pdbx command uses dbx to access tasks on individual nodes. In many
cases, pdbx saves and requires its own state information about the tasks.
Some dbx commands will circumvent the ability of pdbx to maintain
accurate state information about the tasks being debugged. Therefore, use
the dbx subcommand with caution. In general, dbx subcommands used to
display information will have no adverse side effects. The subcommands
clear , detach , edit , multproc , prompt , run , rerun , screen , and the sh
subcommand with no arguments are currently unsupported under pdbx and
should not be used.

To display the events that the dbx running as task 1 recognizes, enter:

pdbx

Appendix A. Parallel environment tools commands 173

on 1 dbx status

Related to this subcommand is the dbx command.

delete subcommand (of the pdbx command)

delete [event_list] | [*] | [all]

The delete subcommand removes events (breakpoints and tracepoints) of the
specified event numbers. An event list can be specified in the following manner. To
indicate a range of events, enter the first and last event numbers, separated by a
colon or dash. To indicate individual events, enter the numbers, separated by a
space or comma. You can specify “ * ”, which deletes all events that were created
in the current context. You can also specify “all”, which deletes all events,
regardless of context.

The event number is the one associated with the breakpoint or tracepoint. This
number is displayed by the stop and trace subcommands when an event is built.
Event numbers can also be displayed using the status subcommand.

The output of the status command shows the context from which the event was
created. Event numbers are unique to the context in which they were set. Keep in
mind that, in order to remove an event, the context must be on the appropriate task
or task group.

Assume the command context is set on task 1 and the output of the status
subcommand is:
1:[0] stop in celsius
all:[0] stop at "foo.c":19
all:[1] trace "foo.c":21

To delete all these events, you would do one of the following:
on 1
delete 0
on all
delete 0,1

OR

on 1
delete 0
on all
delete *

OR

delete all

Related to this subcommand are the pdbx status , stop , and trace subcommands.

detach subcommand (of the pdbx command)

detach

The detach subcommand detaches pdbx from all tasks that were attached. This
subcommand causes the debugger to exit but leaves the poe application running.

pdbx

174 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

dhelp subcommand (of the pdbx command)

dhelp
dhelp <dbx_command>

The dhelp command with no arguments displays a list of dbx commands about
which detailed information is available.

If you type dhelp with an argument, information will be displayed about that
command.

Note: The partition must be loaded before you can use this command, because it
invokes the dbx help command. It is also required that a task be in “debug
ready” state to process this command.

Related to this subcommand is the pdbx help subcommand.

display memory subcommand (of the pdbx command)

<address> / [<mode>]
<address> , <address> / [<mode>]
<address> / [<count>] [<mode>]

The display memory subcommand, which does not have a keyword to initiate the
command, displays a portion of memory controlled by the address(es), count(s) and
mode(s) specified.

If an address is specified, the display contents of memory at that address is printed.
If more than one address or count locations are specified, display contents of
memory starting at the first <address> up to the second <address> or until <count>
items are printed. If the address is “.”, the address following the one most recently
printed is used. The mode specifies how memory is to be printed. If it is omitted the
previous mode specified is used. The initial mode is “X”.

The following modes are supported:

i print the machine instruction

d print a short word in decimal

D print a long word in decimal

o print a short word in octal

O print a long word in octal

x print a short word in hexadecimal

X print a long word in hexadecimal

b print a byte in octal

c print a byte as a character

h print a byte in hexadecimal

s print a string (terminated by a null byte)

f print a single precision real number

g print a double precision real number

pdbx

Appendix A. Parallel environment tools commands 175

q print a quad precision real number

lld print an 8 byte signed decimal number

llu print an 8 byte unsigned decimal number

llx print an 8 byte unsigned hexadecimal number

llo print an 8 byte unsigned octal number

down subcommand (of the pdbx command)

down [count]

The down subcommand moves the current function down the stack the number of
levels specified by count. The current function is used for resolving names. The
default for the count parameter is one.

The up and down subcommands can be used to navigate through the call stack.
Using these subcommands to change the current function also causes the current
file and local variables to be updated to the chosen stack level.

Related to this subcommand are the up , print , dump , func , file , and where
commands.

dump subcommand (of the pdbx command)

dump
dump <procedure>
dump .
dump <module name>

The dump subcommand prints the names and values of variables in a given
procedure, or the current one if nothing is specified. If the procedure given is “.”,
then all active variables are printed. If a module name is given, all variables in the
module are printed.

Related to this subcommand are the up , down , print , and where subcommands.

file subcommand (of the pdbx command)

file [file]

The file subcommand changes the current source file to the file specified by the file
parameter. It does not write to that file. The file parameter can specify a full path
name to the file. If the parameter does not specify a path, the pdbx program tries to
find the file by searching the use path. If the parameter is not specified, the file
subcommand displays the name of the current source file. The file subcommand
also displays the full or relative path name of the file if the path is known.

Related to this subcommand is the func subcommand.

func subcommand (of the pdbx command)

func [procedure]

pdbx

176 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

The func command changes the current function to the procedure or function
specified by the procedure parameter. If the procedure parameter is not specified,
the default current function is displayed. Changing the current function implicitly
changes the current source file to the file containing the new function. The current
scope used for name resolution is also changed.

Related to this subcommand is the file subcommand.

goto subcommand (of the pdbx command)

goto <line_number>
goto “<filename>” : <line_number>

The goto subcommand causes the specified source line to be run next. Normally,
the source line must be in the same function as the current source line. To override
this restriction, use the set subcommand with the $unsafegoto flag.

gotoi subcommand (of the pdbx command)

gotoi address

The gotoi subcommand changes the program counter address to the address
specified by the address parameter.

group subcommand (of the pdbx command)

group add group_name task_list
group delete group_name [task_list]
group change old_group_name new_group_name
group list [group_name]

The group subcommand groups individual tasks under a common name for easier
setting of command context. It can add or delete a group, add or delete tasks from
a group, change the name of a group, list the tasks in a group, or list all groups.
This subcommand is context insensitive.

Provide a group name that is no longer than 32 characters which starts with an
alphabetic character, and is followed by any alphanumeric character combination.

To indicate a range of tasks, enter the first and last task numbers, separated by a
colon or dash. To indicate individual tasks, enter the numbers, separated by a
space or comma. Individual task identifiers and ranges can also be combined in
creating the desired task_list.

Note: Group names “all”, “none”, and “attached” are reserved group names. They
are used by the debugger and cannot be used in the group add or group
delete commands. However, the group “all” or “attached” can be renamed
using the group change command, if it currently exists in the debugging
session.

The add action adds one or more tasks to a new or existing task group. The
task_list specified is a list of task identifiers to be included in the new or existing
group.

pdbx

Appendix A. Parallel environment tools commands 177

The delete action deletes an existing task group, or deletes one or more tasks from
an existing task group. The task_list, if specified, is a list of task identifiers to be
deleted from the new or existing group.

The change action changes the name of a task group from old_group_name to
new_group_name.

The list action displays the task members for the group_name specified, or for all
task groups. The task identifiers will be followed by a one-letter status indicator.

N Not loaded the remote task has not yet been loaded with an
executable.

S Starting the remote task is being loaded with an executable.
D Debug ready the remote task is stopped and debug commands can

be issued.
R Running the remote task is in control and executing the

program.
X Exited the remote task has completed execution.
U Unhooked the remote task is executing without debugger

intervention.
E Error the remote task is in an unknown state.

Consider an application running as five tasks numbered 0 through 4.

1. To create a task group “first” containing task 0, enter:
group add first 0

The pdbx debugger responds with:
1 task was added to group "first".

2. To create a task group “rest” containing tasks 1 through 4, enter:
group add rest 1:4

The pdbx debugger responds with:
4 tasks were added to group "rest".

3. To change the name of the default group “all” to “johnny”, enter:
group change all johnny

The pdbx debugger responds with:
Group "all" has been renamed to "johnny"

4. To list all of the groups and the tasks they contain, enter:
group list

The pdbx debugger responds with:
johnny 0:D 1:D 2:D 3:D 4:D
first 0:D
rest 1:D 2:D 3:D 4:D

5. To delete the group “first”, enter:
group delete first

To delete members 1, 2 and 3 from group “rest”, enter:
group delete rest 1 2 3

or
group delete rest 1-3

pdbx

178 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

The pdbx debugger responds with:
Task: 1 was successfully deleted from group "rest".
Task: 2 was successfully deleted from group "rest".
Task: 3 was successfully deleted from group "rest".

6. To list all of the groups and the tasks they contain, enter:
group list

The pdbx debugger responds with:
allTasks 0:R 1:D 2:D 3:U 4:U 5:D 6:D

7:D 8:D 9:D 10:D 11:D
evenTasks 0:R 2:D 4:U 6:D 8:D 10:R
oddTasks 1:D 3:U 5:D 7:D 9:D 11:R
master 0:R
workers 1:D 2:D 3:U 4:U 5:D 6:D 7:D

8:D 9:D 10:R 11:R

Related to this subcommand is the pdbx on subcommand.

halt subcommand (of the pdbx command)

halt [all]

By using the halt command, you interrupt all tasks in the current context that are
running. This allows the debugger to gain control of the application at whatever
point the running tasks happen to be in the application. To a dbx user, this is the
same as using <Ctrl-c> . This command works at the pdbx prompt and pdbx
subset prompt. If you specify “all” with the command, all running tasks, regardless
of context, are interrupted.

Note: At a pdbx prompt, the halt command never has any effect without “all”
specified. This is because by definition, at a pdbx prompt, none of the tasks
in the current context are in “running” state.

The halt all command at the pdbx prompt affects tasks outside of the current
context. Messages at the prompt show the task numbers that are and are not
interrupted, but the pdbx prompt returns immediately because the state of the tasks
in the current context is unchanged.

When using halt at the pdbx subset prompt, the pdbx prompt occurs when all
tasks in the current context have returned to “debug ready” state. If some of the
tasks in the current context are running, a message is presented.

Related to this subcommand are the pdbx tasks and group list subcommands.

help subcommand (of the pdbx command)

help - display subjects
help <subject> - display details

The help command with no arguments displays a list of pdbx commands and
topics about which detailed information is available.

If you type help with one of the help commands or topics as the argument,
information will be displayed about that subject.

Related to this subcommand is the pdbx dhelp subcommand

pdbx

Appendix A. Parallel environment tools commands 179

hook subcommand (of the pdbx command)

hook

The hook subcommand allows you to reestablish control over all tasks in the
current command context that have been unhooked using the unhook
subcommand. This subcommand is context sensitive.

1. To reestablish control over task 2 if it has been unhooked, enter:
on 2 hook

or
on 2
hook

2. To reestablish control over all unhooked tasks in the task group “rest”, enter:
on rest hook

or
on rest
hook

Listing the members of the task group “all” using the list action of the group
subcommand will allow you to check which tasks are hooked and which are
unhooked. Enter:
group list all

The pdbx debugger will display a list similar to the following:
0:D 1:U 2:D 3:D

Tasks marked with the letter D next to them are debug ready, hooked tasks. In this
case, tasks 0, 2, and 3 are debug ready. Tasks marked with the letter U are
unhooked. In this case, task 1 is unhooked.

Related to this subcommand are the dbx detach subcommand and the pdbx
unhook subcommand.

ignore subcommand (of the pdbx command)

ignore
ignore <signal_number>
ignore <signal_name>

The ignore subcommand with no arguments prints all signals currently being
ignored. If a signal is specified, pdbx stops trapping the signal before it is sent to
the program.

A signal may be specified by number or name. Signal names are by default case
insensitive and the “SIG” prefix is optional.

All signals except SIGHUP, SIGKILL, SIGPIPE, SIGALRM, SIGCHLD, SIGIO, and
SIGVIRT are trapped by default. When debugging a threaded application (including
those compiled with mpcc_r , mpCC_r , or mpxlf_r), all signals except SIGHUP,
SIGKILL, SIGALRM, SIGCHLD, SIGIO, and SIGVIRT are trapped by default.

The pdbx debugger cannot ignore the SIGTRAP signal if it comes from a process
outside of the program being debugged.

pdbx

180 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Related to this subcommand is the catch subcommand.

list subcommand (of the pdbx command)

list [procedure | sourceline-expression[, sourceline-expression]]

The list subcommand displays a specified number of lines of the source file. The
number of lines displayed is specified in one of two ways:

Tip: Use on <task> list , or specify the ordered standard output option.

v By specifying a procedure using the procedure parameter.

In this case, the list subcommand displays lines starting a few lines before the
beginning of the specified procedure and until the list window is filled.

v By specifying a starting and ending source line number using the
sourceline-expression parameter.

The sourceline-expression parameter should consist of a valid line number
followed by an optional + (plus sign), or − (minus sign), and an integer. In
addition, a sourceline of $ (dollar sign) can be used to denote the current line
number. A sourceline of @ (at sign) can be used to denote the next line number
to be listed.

All lines from the first line number specified to the second line number specified,
inclusive, are then displayed, provided these lines fit in the list window.

If the second source line is omitted, 10 lines are printed, beginning with the line
number specified in the sourceline parameter.

If the list subcommand is used without parameters, the default number of lines is
printed, beginning with the current source line. The default is 10.

To change the number of lines to list by default, set the special debug program
variable, $listwindow, to the number of lines you want. Initially, $listwindow is set
to 10.

To list the lines 1 through 10 in the current file, enter:
list 1,10

To list 10, or $listwindow, lines around the main procedure, enter:
list main

To list 11 lines around the current line, enter:
list $-5,$+5

To list the next source line to be executed, issue:
pdbx(all) list $
0: 4 char johnny = 'h';
1: 4 char johnny = 'h';

To just show 1 task, since both are at the same source line:
pdbx(all) on 0 list $
0: 4 char johnny = 'h';

To create an alias to list just task 0:
pdbx(all) alias l0 on 0 list

To list line 5:
pdbx(all) l0 5
0: 5 char jessie = 'd';

pdbx

Appendix A. Parallel environment tools commands 181

To list lines around the procedure sub:
pdbx(all) l0 sub
0: 21
0: 22 /* return ptr to sum of parms, calc and sub1 */
0: 23 int *sub(char *s, int a, int k)
0: 24 {
0: 25 int *tmp;
0: 26 int it = 0;
0: 27 int i, j;
0: 28
0: 29 /* test calc */
0: 30 i = 1;
0: 31 j = i*2;

To change the next line to be listed to line 25:
pdbx(all) move 25

To list the next line to be listed minus two:
pdbx(all) l0 @-2
0: 23 int *sub(char *s, int a, int k)

Related to this subcommand is the dbx list subcommand.

listi subcommand (of the pdbx command)

listi [procedure | at SourceLine |
address [,address]]

The listi subcommand displays a specified set of instructions from the current
program counter, depending on whether you specify procedure, source line, or
address.

The listi subcommand with the procedure parameter lists instructions from the
beginning of the specified procedure until the list window is filled.

Using the at SourceLine flag with the listi subcommand displays instructions
beginning at the specified source line and continuing until the list window is filled.
The SourceLine variable can be specified as an integer, or as a file name string
followed by a : (colon) and an integer.

Specifying a beginning and ending address with the listi subcommand, using the
address parameters, displays all instructions between the two addresses.

If the listi subcommand is used without flags or parameters, the next $listwindow
instructions are displayed. To change the current size of the list window, use the
set $listwindow =Value command.

load subcommand (of the pdbx command)

load program [program_options]

The load subcommand loads the specified application program to be debugged on
the task(s) in the current context. You can optionally specify program_options to be
passed to the application program. pdbx will look for the program in the current
directory unless a relative or absolute pathname is specified. The load
subcommand is context sensitive. All tasks in the partition must have an application
program loaded before other context sensitive subcommands can be issued. This

pdbx

182 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

subcommand enables you to individually or selectively load programs. If you wish to
load the same program on all tasks in the partition, the name of the program can be
passed as an argument to the pdbx command at startup.

To load the program “mpprob1” on all tasks in the current context, enter:
load mpprob1

map subcommand (of the pdbx command)

map

The map subcommand displays characteristics for each loaded portion of the
application. This information includes the name, text origin, text length, data origin,
and data length for each loaded module.

mutex subcommand (of the pdbx command)

mutex
mutex [<number> ...]
mutex [lock | unlock]

The mutex subcommand displays the current status of all known mutual exclusion
locks in the process. Mutexes to be listed can be specified through the <number>
parameter, or all mutexes will be listed. Users can also choose to display only
locked or unlocked mutexes by using the lock or unlock options.

The information listed for each mutex is as follows:

mutex
Indicates the symbolic name of the mutex, in the form $mmutex_number.

type Indicates the type of the mutex: non-rec (nonrecursive), recursi (recursive)
or fast.

obj_addr
Indicates the memory address of the mutex.

lock Indicates the lock state of the mutex: yes if the mutex is locked, no if not.

owner
If the mutex is locked, indicates the symbolic name of the user thread which
holds the mutex.

Related to this subcommand are the attribute condition and thread
subcommands.

next subcommand (of the pdbx command)

next [number]

The next subcommand runs the application program up to the next source line. The
number parameter specifies the number of times the subcommand runs. If the
number parameter is not specified, next runs once only.

The difference between this and the step subcommand is that if the line contains a
call to a procedure or function, step will stop at the beginning of that block, while
next will not.

pdbx

Appendix A. Parallel environment tools commands 183

If you use the next subcommand in a multi-threaded application program, all the
user threads run during the operation, but the program continues execution until the
running thread reaches the specified source line. By default, breakpoints for all
threads are ignored during the next command. This behavior can be changed using
the $catchbp set variable. If you wish to step the running thread only, use the set
command to set the variable $hold_next. Setting this variable may result in
deadlock, since the running thread may wait for a lock held by one of the blocked
threads.

Related to this subcommmand are the nexti , step , stepi , return , cont , and set
subcommands.

nexti subcommand (of the pdbx command)

nexti [number]

The nexti subcommand runs the application program up to the next instruction. The
number parameter specifies the number of times the subcommand will run. If the
number parameter is not specified, nexti runs once only.

The difference between this and the stepi subcommand is that if the line contains a
call to a procedure or function, stepi will stop at the beginning of that block, while
nexti will not.

If you use the nexti subcommand in a multi-threaded application program, all the
user threads run during the operation, but the program continues execution until the
running thread reaches the specified machine instruction. If you wish to step the
running thread only, use the set command to set the variable $hold_next. Setting
this variable may result in deadlock since the running thread may wait for a lock
held by one of the blocked threads.

Related to this subcommand are the next , step , stepi , return , cont , and set
subcommands.

on subcommand (of the pdbx command)

on {group_name | task_id} [subcommand]

The on subcommand sets the current command context used to direct subsequent
subcommands at a specific task or group of tasks. The context can be set on a task
group (by specifying a group_name) or on a single task (by specifying a task_id).

When a context sensitive subcommand is specified, it is directed to the given
context without changing the current command context. Thus, specifying the
optional subcommand enables you to temporarily deviate from the command
context.

Note: The pdbx prompt will be presented after all of the tasks in the temporary
context have completed the specified command. It is possible using <Ctrl-c>
followed by the back or the on command to issue further pdbx commands
in the original context.

By using the on and group subcommands, the number of subcommands issued
and the amount of debug data displayed can be tailored to manageable amounts.

pdbx

184 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

When you switch context using on context_name, and the new context has at least
one task in the running state, a message is displayed stating that at least one task
is in the running state. Thus, no pdbx prompt is displayed until all tasks in this
context are in the debug ready state.

When you switch to a context where all states are in the debug ready state, the
pdbx prompt is displayed immediately.

At the pdbx subset prompt, on context_name causes one of the following to
happen: either a pdbx prompt is displayed; or a message is displayed indicating the
reason why the pdbx prompt will be displayed at a later time. This is generally
because one of the tasks is in running state. See “Context switch when blocked” on
page 16 for more information on the pdbx subset prompt.

At a pdbx prompt, you cannot use on context_name pdbx_command if any of the
tasks in the specified context are running.

Assume you have an application running as 15 tasks, and the output of the group
list subcommand lists the existing task groups as:
all 0:D 1:U 2:D 3:D 4:D 5:D 6:U 7:D

8:D 9:D 10:R 11:R 12:R 13:U 14:U
johnny 0:D
jessica 2:D 3:D 8:D
un 1:U 6:U 13:U 14:U
run 10:R 11:R 12:R
deb 2:D 3:D 4:D 5:D 8:D 9:D

1. To add a breakpoint for task 0, enter:
on johnny stop at 31

The pdbx debugger responds with:
johnny:[0] stop at "ring.f":31

2. To add breakpoints for all of the tasks in the task group “jessica”, enter:
on jessica stop in ring

The pdbx debugger responds with:
jessica:[0] stop in ring

3. To switch the current context to the task group “johnny”, enter:
on johnny

The pdbx debugger responds with the prompt:
pdbx(johnny)

4. To add a conditional breakpoint for all tasks in the current context, enter:
stop at 48 if len < 1

The pdbx debugger responds with:
johnny:[1] stop at "ring.f":48 if len < 1

5. To view the events that have been set on the task group “jessica”, enter:
on jessica status

The pdbx debugger responds with:
jessica:[0] stop in ring

6. To add a tracepoint for task 2, enter:
on 2

pdbx

Appendix A. Parallel environment tools commands 185

The pdbx debugger responds with the prompt:
pdbx(2)

Then, enter:
trace 57

The pdbx debugger responds with:
2:[0] trace "ring.f":57

7. To view all of the events that have been set, enter:
status all

The pdbx debugger responds with:
2:[0] trace "ring.f":57
johnny:[0] stop at "ring.f":48
johnny:[1] stop at "ring.f":56 if len < 1
jessica:[0] stop in ring

Related to this subcommand is the pdbx group subcommand.

print subcommand (of the pdbx command)

print expression ...
print procedure ([parameters])

The print subcommand does either of the following:

v Prints the value of a list of expressions, specified by the expression parameters.

v Executes a procedure, specified by the procedure parameter, and prints the
return value of that procedure. Parameters that are included are passed to the
procedure.

To display the value of x and the value of y shifted left two bits, enter:
print x, y << 2

To display the value returned by calling the sbrk routine with an argument of 0,
enter:
print sbrk(0)

To display the sixth through the eighth elements of the Fortran character string
a_string, enter:
print &a_string + 5, &a_string + 7/c

Related to this subcommand are the dbx assign and call subcommands, and the
pdbx set subcommand.

quit subcommand (of the pdbx command)

quit

The quit subcommand terminates all program tasks, and ends the pdbx debugging
session. The quit subcommand is context insensitive and has no parameters.

Quitting a debug session in attach mode causes the debugger and all the members
of the original poe application partition to exit.

pdbx

186 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

To exit the pdbx debug program, enter:
quit

registers subcommand (of the pdbx command)

registers

The registers subcommand displays the values of general purpose registers,
system control registers, floating-point registers, and the current instruction register.

Registers can be displayed or assigned to individually by using the following
predefined register names:

$r0 through $r31
for the general purpose registers.

$fr0 through $fr31
for the floating point registers.

$sp, $iar, $cr, $link
for, respectively, the stack pointer, program counter, condition register, and
link register.

By default, the floating-point registers are not displayed. To display the floating-point
registers, use the unset $noflregs command.

Notes:

1. The register value may be set to the 0xdeadbeef hexadecimal value. The
0xdeadbeef hexadecimal value is an initialization value assigned to general
purpose registers at process initialization.

2. The registers command cannot display registers if the current thread is in
kernel mode.

return subcommand (of the pdbx command)

return [procedure]

The return subcommand causes the program to execute until a return to the
procedure, specified by the procedure parameter, is reached. If the procedure
parameter is not specified, execution ceases when the current procedure returns.

search subcommand (of the pdbx command)

/<regular_expression>[/]
?<regular_expression>[?]

The search forward (/) or search backward (?) subcommands allow you to search in
the current source file for the given <regular_expression>. Both forms of search
wrap around. The previous regular expression is used if no regular expression is
given to the current command.

Related to this subcommand is the regcmp subroutine.

pdbx

Appendix A. Parallel environment tools commands 187

set subcommand (of the pdbx command)

set [variable]
set [variable=expression]

The set subcommand defines a value for the set variable. The value is specified by
the expression parameter. The set variable is specified by the variable parameter.
The name of the variable should not conflict with names in the program being
debugged. A variable is expanded to the corresponding expression within other
commands. If the set subcommand is used without arguments, the currently set
variables are displayed.

Related to this subcommand is the unset subcommand.

sh subcommand (of the pdbx command)

sh <command>

The sh subcommand passes the command specified by the command parameter to
the shell on the remote task(s) for execution. The SHELL environment variable
determines which shell is used. The default is the Bourne shell (sh).

Note: The sh subcommand with no arguments is not supported.

To run the ls command on all tasks in the current context, enter:
sh ls

To display contents of the foo.dat data file on task 1, enter:
on 1 cat foo.dat

skip subcommand (of the pdbx command)

skip [number]

The skip subcommand continues execution of the program from the current
stopping point, ignoring the next breakpoint. If a number variable is supplied, skip
ignores that next amount of breakpoints.

Related to this subcommand is the cont subcommand.

source subcommand (of the pdbx command)

source commands_file

The source subcommand reads pdbx subcommands from the specified
commands_file. The commands_file should reside on the node where pdbx was
issued and can contain any commands that are valid on the pdbx command line.
The source subcommand is context insensitive.

To read pdbx subcommands from a file named “jessica”, enter:
source jessica

Related to this subcommand is the dbx source subcommand.

pdbx

188 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

status subcommand (of the pdbx command)

status
status all

A list of pdbx events (breakpoints and tracepoints) can be displayed by using the
status subcommand. You can specify “all” after this command to list all events
(breakpoints and tracepoints) that have been set in all groups and tasks. This is
valid at the pdbx prompt and the pdbx subset prompt.

Because the status command without “all” specified is context sensitive, it will not
display status for events outside the context.

Assume the following commands have been issued, setting various breakpoints and
tracepoints.
on all
stop at 19
trace 21
on 0
trace foo at 21
on 1
stop in func

To display a list of breakpoints and tracepoints for tasks in the current “task 1”
context, enter:
status

The pdbx debugger responds with lines of status like:
1:[0] stop in func
all:[0] stop at "foo.c":19
all:[1] trace "foo.c":21

Notice that the status from the “task 0” context does not get displayed since the
context is on “task 1”. Also notice that event 0 is unique for the “task 1” context and
the “group all” context.

To see an example of status all , enter:
status all

The pdbx debugger responds with:
0:[0] trace foo at "foo.c":21
1:[0] stop in func
all:[0] stop at "foo.c":19
all:[1] trace "foo.c":21

Related to this subcommand are the pdbx stop , trace , and delete subcommands.

step subcommand (of the pdbx command)

step [number]

The step subcommand runs source lines of the program. You specify the number of
lines to be executed with the number parameter. If this parameter is omitted, the
default is a value of 1.

pdbx

Appendix A. Parallel environment tools commands 189

The difference between this and the next subcommand is that if the line contains a
call to a procedure or function, step will enter that procedure or function, while next
will not.

If you use the step subcommand on a multi-threaded program, all the user threads
run during the operation, but the program continues execution until the interrupted
thread reaches the specified source line. By default, breakpoints for all threads are
ignored during the step command. This behavior can be changed using the
$catchbp set variable.

If you wish to step the interrupted thread only, use the set subcommand to set the
variable $hold_next. Setting this variable may result in debugger induced deadlock,
since the interrupted thread may wait for a lock held by one of the threads blocked
by $hold_next.

Note: Use the $stepignore variable of the set subcommand to control the behavior
of the step subcommand. The $stepignore variable enables step to step
over large routines for which no debugging information is available.

Related to this subcommand are the stepi , next , nexti , return , cont , and set
commands.

stepi subcommand (of the pdbx command)

stepi [Number]

The stepi subcommand runs instructions of the program. You specify the number of
instructions to be executed with the number parameter. If the parameter is omitted,
the default is 1.

If used on a multi-threaded program, the stepi subcommand steps the interrupted
thread only. All other user threads remain stopped.

Related to this subcommand are the step , next , nexti , return , cont , and set
subcommands.

stop subcommand (of the pdbx command)

stop if <condition>
stop at <source_line_number> [if <condition>]
stop in <procedure> [if <condition>]
stop <variable> [if <condition>]
stop <variable> at <source_line_number>
[if <condition>]
stop <variable> in <procedure> [if <condition>]

Specifying stop at <source_line_number> causes the breakpoint to be triggered
each time that source line is reached.

Specifying stop in <procedure> causes the breakpoint to be triggered each time
the program counter reaches the first executable source line in the procedure
(function, subroutine).

pdbx

190 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Using the <variable> argument to stop causes the breakpoint to be triggered when
the contents of the variable changes. This form of breakpoint can be very time
consuming. For better results, when possible, further qualify these breakpoints with
a source_line or procedure argument.

Specify the <condition> argument using the syntax described by “Specifying
expressions” on page 29.

The stop subcommand sets stopping places called “breakpoints” for tasks in the
current context. Use it to mark these stopping places, and then run the program.
When the tasks reach a breakpoint, execution stops and the state of the program
can then be examined. The stop subcommand is context sensitive.

Use the status subcommand to display a list of breakpoints that have been set for
tasks in the current context. Use the delete subcommand to remove breakpoints.

Specifying stop at <source_line_number> causes the breakpoint to be triggered
each time that source line is reached.

Specifying stop in <procedure> causes the breakpoint to be triggered each time
the program counter reaches the first executable source line in the procedure
(function, subroutine).

Using the <variable> argument to stop causes the breakpoint to be triggered when
the contents of the variable changes. This form of breakpoint can be very time
consuming. For better results, when possible, further qualify these breakpoints with
a source_line or procedure argument.

Specify the <condition> argument using the syntax described by “Specifying
expressions” on page 29.

Notes:

1. The pdbx debugger will not attempt to set a breakpoint at a line number when
in a group context if the group members (tasks) have different current source
files.

2. When specifying variable names as arguments to the stop subcommand, fully
qualified names should be used. This should be done because, when a stop
subcommand is issued, a parallel application could be in a different function on
each node. This may result in ambiguity in variable name resolution. Use the
which subcommand to get the fully qualified name for a variable.

To set a breakpoint at line 19 of a program, enter:
stop at 19

The pdbx debugger responds with a message like:
all:[0] stop at "foo.c":19

Related to this subcommand are the dbx stop and which subcommands, and the
pdbx trace , status , and delete subcommands.

tasks subcommand (of the pdbx command)

tasks [long]

pdbx

Appendix A. Parallel environment tools commands 191

With the tasks subcommand, you display information about all the tasks in the
partition. Task state information is always displayed. If you specify “long” after the
command, it also displays the name, ip address, and job manager number
associated with the task.

Following is an example of output produced by the tasks and tasks long
command.
pdbx(others) tasks
0:D 1:D 2:U 3:U 4:R 5:D 6:D 7:R

pdbx(others) tasks long
0:Debug ready pe04.kgn.ibm.com 9.117.8.68 -1
1:Debug ready pe03.kgn.ibm.com 9.117.8.39 -1
2:Unhooked pe02.kgn.ibm.com 9.117.11.56 -1
3:Unhooked augustus.kgn.ibm.com 9.117.7.77 -1
4:Running pe04.kgn.ibm.com 9.117.8.68 -1
5:Debug ready pe03.kgn.ibm.com 9.117.8.39 -1
6:Debug ready pe02.kgn.ibm.com 9.117.11.56 -1
7:Running augustus.kgn.ibm.com 9.117.7.77 -1

Related to this subcommand is the pdbx group subcommand.

thread subcommand (of the pdbx command)

thread
thread [<number>...]
thread [info] [<number> ...]
thread [run | wait | susp | term]
thread [hold | unhold] [<number> ...]
thread [current] [<number>]

The thread subcommand displays the current status of all known threads in the
process. Threads to be displayed can be specified through the <number>
parameters, or all threads will be listed. Threads can also be selected by states
using the run , wait , susp , term, or current options. The info option can be used
to display full information about a thread. The hold and unhold options affect
whether the thread is dispatchable when further execution control commands are
issued. A thread that has been held will not be given any execution time until the
unhold option is issued. The thread subcommand displays a column indicating
whether a thread is held or not. No further execution will occur if the interrupted
thread is held.

The information displayed by the thread subcommand is as follows:

thread
Indicates the symbolic name of the user thread, in the form
$tthread_number.

state-k
Indicates the state of the kernel thread (if the user thread is attached to a
kernel thread). This can be run, wait, susp, or term, for running, waiting,
suspended, or terminated.

wchan
Indicates the event on which the kernel thread is waiting or sleeping (if the
user thread is attached to a kernel thread).

pdbx

192 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

state-u
Indicates the state of the user thread. Possible states are running, blocked,
or terminated.

k-tid Indicates the kernel thread identifier (if the user thread is attached to a
kernel thread).

mode Indicates the mode (kernel or user) in which the user thread is stopped (if
the user thread is attached to a kernel thread).

held Indicates whether the user thread has been held.

scope
Indicates the contention scope of the user thread; this can be sys or pro for
system or process contention scope.

function
Indicates the name of the user thread function.

The displayed thread (“>”) is the thread that is used by other pdbx commands that
are thread specific such as:

down
dump
file
func
list
listi
print
registers
up
where

The displayed thread defaults to be the interrupted thread after each execution
control command. The displayed thread can be changed using the current option.

The interrupted thread (“*”) is the thread that stopped first and because it stopped,
in turn caused all of the other threads to stop. The interrupted thread is treated
specially by subsequent step , next , and nexti commands. For these stepping
commands, the interrupted thread is stepped, while all other (unheld) threads are
allowed to continue.

To force only the interrupted thread to execute during execution control commands,
set the $hold_next set variable. Note that this can create a debugger induced
deadlock if the interrupted thread blocks on one of the other threads.

Note that the pdbx documentation uses “interrupted thread” in the same way the
dbx documentation uses “running thread”. Also, the pdbx documentation uses
“displayed thread” in the same way the dbx documentation uses “current thread”.

Related to this subcommand are the attribute condition and mutex
subcommands.

trace subcommand (of the pdbx command)

trace [in <procedure>] [if <condition>]
trace <source_line_number> [if <condition>]
trace <procedure>

pdbx

Appendix A. Parallel environment tools commands 193

[in <procedure>]
[if <condition>]
trace <variable> [in <procedure>]
[if <condition>]
trace <expression> at <source_line_number>
[if <condition>]

Specifying trace with no arguments causes trace information to be displayed for
every source line in your program.

Specifying trace <source_line_number> causes the tracepoint to be triggered each
time that source line is reached.

Specifying trace [in <procedure>] causes the tracepoint to be triggered each time
your program executes a source line within the procedure (function, subroutine).

Using the <variable> argument to trace causes the tracepoint to be triggered when
the contents of the variable changes. This form of tracepoint can be very time
consuming. For better results, when possible, further qualify these tracepoints with
a source_line or procedure argument.

Specify the <condition> argument using the syntax described by “Specifying
expressions” on page 29.

The trace subcommand sets tracepoints for tasks in the current context. These
tracepoints will cause tracing information for the specified procedure, function,
sourceline, expression or variable to be displayed when the program runs. The
trace subcommand is context sensitive.

Use the status subcommand to display a list of tracepoints that have been set in
the current context. Use the delete subcommand to remove tracepoints.

Specifying trace with no arguments causes trace information to be displayed for
every source line in your program.

Specifying trace <source_line_number> causes the tracepoint to be triggered each
time that source line is reached.

Specifying trace [in <procedure>] causes the tracepoint to be triggered each time
your program executes a source line within the procedure (function, subroutine).

Using the <variable> argument to trace causes the tracepoint to be triggered when
the contents of the variable changes. This form of tracepoint can be very time
consuming. For better results, when possible, further qualify these tracepoints with
a source_line or procedure argument.

Specify the <condition> argument using the syntax described by “Specifying
expressions” on page 29.

Notes:

1. The pdbx debugger will not attempt to set a tracepoint at a line number when
in a group context if the group members (tasks) have different current source
files.

2. When specifying variable names as arguments to the trace subcommand, fully
qualified names should be used. This should be done because, when a trace
subcommand is issued, a parallel application could be in a different function on

pdbx

194 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

each node. This may result in ambiguity in variable name resolution. Use the
which subcommand to get the fully qualified name for a variable.

To set a tracepoint for the variable ″foo″ at line 21 of a program, enter:
trace foo at 21

The pdbx debugger responds with a message like:
all:[1] trace foo at "bar.c":21

Related to this subcommand are the dbx trace and which subcommands, and the
pdbx stop , status , and delete subcommands.

unalias subcommand (of the pdbx command)

unalias alias_name

The unalias subcommand removes pdbx command aliases. The alias_name
specified is any valid alias that has been defined within your current pdbx session.
The unalias subcommand is context insensitive.

To remove the alias “p”, enter:
unalias p

Related to this subcommand is the pdbx alias subcommand.

unhook subcommand (of the pdbx command)

unhook

The unhook subcommand enables you to unhook tasks. Unhooking allows tasks to
run without intervention from the pdbx debugger. You can later reestablish control
over unhooked tasks using the hook subcommand. The unhook subcommand is
similar to the detach subcommand in dbx . It is context sensitive and has no
parameters.

1. To unhook task 2, enter:
on 2 unhook

or
on 2
unhook

2. To unhook all the tasks in the task group “rest”, enter:
on rest unhook

or
on rest
unhook

Listing the members of the task group “all” using the list action of the group
subcommand will allow you to check which tasks are hooked, and which are
unhooked. Enter:
group list all

The pdbx debugger will display a list similar to the following:
0:D 1:U 2:D 3:D

pdbx

Appendix A. Parallel environment tools commands 195

Tasks marked with the letter U next to them are unhooked tasks. In this case, task
1 is unhooked. Tasks marked with the letter D are debug ready, hooked tasks. In
this case, tasks 0, 2, and 3 are hooked.

Related to this subcommand is the dbx detach subcommand and the pdbx hook
subcommand.

unset subcommand (of the pdbx command)

unset name

The unset subcommand removes the set variable associated with the specified
name.

Related to this subcommand is the set subcommand.

up subcommand (of the pdbx command)

up [count]

The up subcommand moves the current function up the stack the number of levels
you specify with the count parameter. The current function is used for resolving
names. The default for the count parameter is 1.

The up and down subcommands can be used to navigate through the call stack.
Using these subcommands to change the current function also causes the current
file and local variables to be updated to the chosen stack level.

Related to this subcommand are the down , print , dump , func , file , and where
subcommands.

use subcommand (of the pdbx command)

use [directory ...]

The use subcommand sets the list of directories to be searched when the pdbx
debugger looks for source files. If the subcommand is specified without arguments,
the current list of directories to be searched is displayed.

The @ (at sign) is a special symbol that directs pdbx to look at the full path name
information in the object file, if it exists. If you have a relative directory called @ to
search, you should use ./@ in the search path.

The use subcommand uses the + (plus sign) to add more directories to the list of
directories to be searched. If you have a directory named +, specify the full path
name for the directory (for example, ./+ or /tmp/+).

Related to this subcommand are the file and list subcommands.

whatis subcommand (of the pdbx command)

whatis <name>

pdbx

196 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

The whatis subcommand displays the declaration of what you specify as the name
parameter. The name parameter can designate a variable, procedure, or function
name, optionally qualified with a block name.

Related to this subcommand are the whereis and which subcommands.

where subcommand (of the pdbx command)

where

The where subcommand displays a list of active procedures and functions. For
example:
pdbx(all) where
init_trees(), line 23 in "funcs5.c"
colors(depth = 30, str = "This is it"), line 61 in "funcs5.c"
newmain(), line 59 in "funcs2.c"
f6(), line 25 in "funcs2.c"
main(argc = 1, argv = 0x2ff21c58), line 125 in "funcs.c"

Related to this subcommand are the dbx up and down subcommands.

whereis subcommand (of the pdbx command)

whereis identifier

The whereis subcommand displays the full qualifications of all the symbols whose
names match the specified identifier. The order in which the symbols print is not
significant.

Related to this subcommand are the whatis and which commands.

which subcommand (of the pdbx command)

which identifier

The which subcommand displays the full qualification of the given identifier. The full
qualification consists of a list of the outer blocks with which the identifier is
associated.

Related to this subcommand are the whatis and whereis subcommands.

pdbx

Appendix A. Parallel environment tools commands 197

|

pvt

NAME
pvt – Invokes the Profile Visualization Tool (PVT) in either its graphical-user-
interface or command-line mode.

SYNOPSIS

pvt [-c [one_or_more_file_names]]

The pvt command starts the PVT in either its graphical-user-interface mode, or, if
the -c flag is specified, its command-line mode. In either mode, you can specify one
or more file names to start the PVT with profile data showing.

FLAGS
-c Specifies that the PVT should be started in command-line mode. Refer to

“Using the Profile Visualization Tool’s Command Line Interface” on page 136 for
information on the subcommands you can issue once the PVT is running in this
mode.

DESCRIPTION
The PVT is a post-mortem analysis tool. It is designed to process profile data files
generated by the PCT used in application profiling. You can run the PVT in either its
graphical-user-interface mode, or, if the -cmd flag is specified, its command-line
mode. After processing profile data, you can view the results in the PVT’s graphical
user interface display, outputted to report files, or saved to a summary file. The PVT
provides a command-line interface to process individual profile files directly into a
summary file without initializing the graphic display. The command-line interface
also enables you to generate textual profile reports.

The pvt command’s subcommands (for controlling the PVT in command-line mode)
are listed alphabetically under “Subcommands of the pvt command” on page 199.

EXAMPLES
To start the PVT in graphical-user-interface mode showing an empty graphical user
interface:
pvt

To start the PVT in graphical-user-interface mode with profile data showing:
pvt one_or_ more_file_names

To start the PVT in command-line mode:
pvt -c

To start the PVT in command-line mode with profile data showing:
pvt -c one_or_more_file_names

RELATED INFORMATION
Commands: pct (1)

pvt

198 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|

|

|
|

|

|

|
|
|

|

||
|
|
|

|

|
|
|
|
|
|
|
|

|
|

|

|
|

|

|

|

|

|

|

|

|

|

Subcommands of the pvt command

exit subcommand (of the pvt command)

exit

The exit subcommand ends the command line session.

export subcommand (of the pvt command)

export output_file_name

The export subcommand allows you to export profile data to a specified file. The
suffix .txt will be appended to the specified file name.

The currently loaded profile data is written to the user-specified file in plain text
format, so the data can be loaded easily into a spreadsheet tool, like Lotus 1–2–3.
The data that is loaded into the tool can be grouped into the following types of
records:

v Profile-session records associated with each process

v Individual function or thread records

v Function statistics records.

load subcommand (of the pvt command)

load one_or_more_file_names

The load subcommand loads a set of profile data files into the session. If a set of
data already exists, then the existing data is discarded and the newly loaded data
becomes the current data to be used in future actions.

report subcommand (of the pvt command)

report [list | output_file_name | ″one_or_more_report_names″ output_file_name |
″one_or_more_report_ids″ output_file_name]

The report subcommand generates textual reports on the profile data. To show a list
of available report types, enter:
report list

The result of the command will look something like:

v [0] call_count: function call count report

v [1] wclock: wall clock timer report

v [2] ru_cpu: CPU usage reports

v [3] ru_mem: memory usage report

v [4] ru_paging: paging activities reports

v [5] ru_cswitch: context switch activities reports

v [6] pmc_cycle: instructions per cycle hardware counter reports

v [7] pmc_fpu: floating point hardware counter reports

v [8] pmc_fxu: fixed-point hardware counter reports

v [9] pmc_branch: branch hardware counter reports

pvt

Appendix A. Parallel environment tools commands 199

|

|

|

|

|

|

|
|

|
|
|
|

|

|

|

|

|

|
|
|

|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

v [10] pmc_lsu: load and store hardware counter reports

v [11] pmc_cache: cache hardware counter reports

v [12] pmc_misc: miscellaneous hardware counter reports

To generate all the available reports to a file, enter:
report output_file_name

To generate reports by report name, enter:
report "one_or_more_report_names" output_file_name

For example:
report "wclock,ru_cpu" output

To generate reports by report id, enter:
report "one_or_more_report_ids" output_file_name

For example:
report "1,2" output

The report names or report ids in double quotes must be separated by a comma
with no blank space in between. No matter how many reports are selected in one
report command, all the reports are outputted to a single file specified in the report
command.

sum subcommand (of the pvt command)

sum summary_file_name

The sum subcommand creates a summary file of all the loaded data. The merged
summary data is written to the file specified in the command.

pvt

200 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|

|

|

|
|

slogmerge

NAME
slogmerge – Merges multiple UTE interval files into a single SLOG file.

SYNOPSIS
slogmerge [-?] [-n number_of_files] [-c number_of_bytes_per_frame]
[-o output_file_name] [-s range] [-m number_of_available_markers]
[-r factor] [-g] input_file_name_prefix

The slogmerge command merges multiple UTE interval trace files (whose names
begin with the input_file_name_prefix) into a single SLOG file. The
input_file_name_prefix must be the last item on the command line.

FLAGS
-? Prints out the usage information for the slogmerge command instead of

performing the actual merge.

-n number_of_files
Specifies the number of input UTE interval files to be merged. The default value
is 1.

-c number_of_bytes_per_frame
Specifies the number of bytes per frame. The default is 128K bytes.

-o output_file_name
Specifies the name for the output file — the merged SLOG file. The slogmerge
utility will create a file with a .slog extension. If you do not specify an output file
name, the default value is trcfile.slog in the current directory.

-s range
Specifies a list of MPI tasks to be merged. The task IDs in the list can be
separated by either a comma (,) or a hyphen (-). If used, the hyphen represents
a range of tasks. For example, -s 0,2,4,5-7 indicates that the user wants to
merge threads with MPI task IDs 0, 2, 4, 5, 6, and 7. By default, all
tasks/threads in all UTE interval files will be merged.

-m number_of_available_markers
Specifies the number of spaces to reserve for user markers in the SLOG
interval table. The number of available markers should not be less than the
actual number of uniquely named user markers in the UTE trace file, or the
slogmerge utility will quit. The default number of available markers is 20.

-r factor
specifies the factor by which spaces for ″pseudo records″ are reserved. The
number of reserved slots for pseudo records is the number of threads in the
trace file times the factor. If not specified, the default is 2.

Pseudo records are SLOG-specific interval records that are duplicates of certain
internal records for visualization purposes. The number of pseudo records could
be fairly high, depending on the number of nested states and their time span,
and the number of internal records crossing SLOG frame boundaries in the
trace. If the number of created pseudo records is more than the reserved slots
during the merge process, the slogmerge utility will quit. If this happens, you
should specify a larger number for this option to reserve more slots for pseudo
records.

slogmerge

Appendix A. Parallel environment tools commands 201

|
|

|

|

|

|
|
|

|
|
|

|

||
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

-g Merge interval files without using global clock records. This is needed when
processing interval files generated on nodes with no SP switch.

DESCRIPTION
The slogmerge command merges multiple UTE interval trace files into a single
SLOG file. A number (as indicated by the -n option) of UTE files beginning with the
input_file_name_prefix will be merged into an output file. The name of this output
file is the one specified by the -o option, or, if the -o option is not specified, the file
trcfile.ute in the current directory by default. The input_file_name_prefix must be the
last item in the command line.

ENVIRONMENT VARIABLES
UTEPROFILE

Specifies the name of the file description profile. If not set, the file
/usr/lpp/ppe.perf/etc/profile.ute is the default description profile. This variable
is intended for use by IBM support personnel.

EXAMPLES
To merge 5 UTE interval trace files that begin with the prefix mytrace into a single
SLOG file:
slogmerge -n 5 mytrace

The above example will create an SLOG file with the default output file name
trcfile.ute. To specify your own output file name, use the -o option.
slogmerge -n 5 -o mergedtrc.ute mytrace

To additionally specify that only the MPI tasks 2, 4, and 6 through 9 should be
merged into the SLOG file, use the -s option.
slogmerge -n 5 -o mergedtrc.ute -s 2,4,6-9 mytrace

FILES
profile.ute default description profile

RELATED INFORMATION
Commands: uteconvert (1), utemerge (1), utestats (1)

slogmerge

202 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

||
|

|

|
|
|
|
|
|

|

|
|
|
|

|

|
|

|

|
|

|

|
|

|

|

|

|

|

uteconvert

NAME
uteconvert – Converts AIX event trace files into UTE internal trace files.

SYNOPSIS

uteconvert [-?] [-n number_of_files]
[-o {output_file_name | output_file_name_prefix}] [-r]
{input_file_name | input_file_name_prefix}

The uteconvert command converts one or more AIX event trace files into one or
more UTE interval trace files. The input_file_name (for converting a single AIX
event trace file) or input_file_name_prefix (for converting multiple AIX event trace
files) must be the last item on the command line.

FLAGS
-? Prints out usage information for the uteconvert command instead of converting

AIX trace files.

-n number_of_files
Specifies the number of AIX event trace files to be converted. If not specified,
the default is 1.

-o {output_file_name | output_file_name_prefix}
If the -n option specifies the number of files as 1 (the default), the -o option
specifies the name of the resulting UTE interval file.

If the -n option specifies the number of files as greater than 1, the -o option
specifies the file name prefix for the resulting UTE interval files. The names of
the output files are formed by concatenating the given prefix with a node
identifier, starting from 0.

-r removes AIX trace files after they have been processed.

DESCRIPTION
The uteconvert command converts one or more AIX event trace files into one or
more UTE interval trace files. If the -n option specifies the number of files to be
converted as 1 (the default), then you supply a single input_file_name to the
uteconvert subcommand. If instead, the -n option specifies the number of files to
be converted as greater than 1, then an input_file_name_prefix is supplied. The
input_file_name or input_file_name_prefix must be the last item on the command
line.

ENVIRONMENT VARIABLES
UTEPROFILE

Specifies the name of the file description profile. If not set, the file
profile.ute in the current directory is the default description profile. This
variable is intended for use by IBM support personnel.

EXAMPLES
To convert the AIX trace file mytrace into a UTE interval trace file:
uteconvert mytrace

uteconvert

Appendix A. Parallel environment tools commands 203

|
|

|

|

|

|
|
|

|
|
|
|

|

||
|

|
|
|

|
|
|

|
|
|
|

||

|

|
|
|
|
|
|
|

|

|
|
|
|

|

|

|

To convert five trace files with the prefix mytaces into UTE interval trace files:
uteconvert -n 5 mytraces

FILES
profile.ute default description profile.

RELATED INFORMATION
Commands: slogmerge (1), utemerge (1), utestats (1)

uteconvert

204 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|

|

|

|

|

|

utemerge

NAME
utemerge – Merges multiple UTE interval files into a single UTE interval file.

SYNOPSIS
utemerge [-?] [-n number_of_files] [-o output_file_name]
[-s range] [-g] input_file_name_prefix

The utemerge command merges multiple UTE interval trace files (whose names
begin with the input_file_name_prefix) into a single UTE file. The
input_file_name_prefix must be the last item on the command line.

FLAGS
-? Prints out the usage information for the utemerge command instead of

performing the actual merge.

-n number_of_files
Specifies the number of input UTE interval files to be merged. The default value
is 1.

-o output_file_name
Specifies the name for the output file — the merged UTE file. If not specified,
the default value is trcfile.ute in the current directory.

-s range
Specifies a list of MPI tasks to be merged. The task IDs in the list can be
separated by either a comma (,) or a hyphen (-). If used, the hyphen represents
a range of tasks. For example, -s 0,2,4,5-7 indicates that the user wants to
merge threads with MPI task IDs 0, 2, 4, 5, 6, and 7. By default, all
tasks/threads in all UTE interval files will be merged.

-g Merges interval files without using global clock results. This is needed when
processing interval files generated on nodes with no SP switch.

DESCRIPTION
The utemerge command merges multiple UTE interval trace files into a single UTE
interval trace file. A number (as indicated by the -n option) of UTE files beginning
with the input_file_name_prefix will be merged into an output file. The name of this
output file is the one specified by the -o option, or, if the -o option is not specified,
the file trcfile.ute in the current directory by default. The input_file_name_prefix must
be the last item in the command line.

ENVIRONMENT VARIABLES
UTEPROFILE

Specifies the name of the file description profile. If not set, the file
/usr/lpp/ppe.perf/etc/profile.ute is the default description profile. This variable
is intended for use by IBM support personnel.

EXAMPLES
To merge 5 UTE interval trace files that begin with the prefix mytrace into a single
UTE file:
utemerge -n 5 mytrace

utemerge

Appendix A. Parallel environment tools commands 205

|
|

|

|

|

|
|

|
|
|

|

||
|

|
|
|

|
|
|

|
|
|
|
|
|

||
|

|

|
|
|
|
|
|

|

|
|
|
|

|

|
|

|

The above example will create a UTE file with the default output file name
trcfile.ute. To specify your own output file name, use the -o option.
utemerge -n 5 -o mergedtrc.ute mytrace

To additionally specify that only the MPI tasks 2, 4, and 6 through 9 should be
merged into the UTE file, use the -s option.
utemerge -n 5 -o mergedtrc.ute -s 2,4,6-9 mytrace

FILES
profile.ute default description profile

RELATED INFORMATION
Commands: uteconvert (1), slogmerge (1), utestats (1)

utemerge

206 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|

|

|
|

|

|

|

|

|

utestats

NAME
utestats – Generates statistics tables from UTE interval files.

SYNOPSIS
utestats [-?] [-o output_file_name]
[-B number_of_bins] input_file [input_file]...

The utestats command generates statistics tables from one or more UTE interval
file. By default, six two-dimensional tables are generated. These tables are:

v Time Bin vs. Node

v Thread vs. Event Type

v Event Type vs. Thread

v Node vs. Event Type

v Event Type vs. Node

v Node vs. Processor

The computed statistic for all tables is the sum of the duration. By default, the
statistics tables will be written to standard output. You can optionally save the
statistics tables to a file using the -o flag.

FLAGS
-? Prints out the usage information for the utestats command instead of

generating statistics tables.

-o output_file_name
Specifies the name of a file to which the statistics tables will be saved. If not
specified, the statistics tables will be written to standard output.

-B number_of_bins
Specifies the number of bins in the Time vs. Node table. The default is 50.

DESCRIPTION
The utestats utility is able to take individual UTE interval files or a merged UTE
interval file as input. If a number of individual UTE interval files are specified, the
timestamps in each file will start at 0 without alignment with respect to global clock
values. If, instead, a merged UTE interval file is specified, the timestamps of
records from different nodes will already have been adjusted with respect to the
global clock value.

By default, six two-dimensional tables are generated. These tables are:

v Time Bin vs. Node

v Thread vs. Event Type

v Event Type vs. Thread (a row/column transposition of the Thread vs. Event Type
table)

v Node vs. Event Type

v Event Type vs. Node (a row/column transposition of the Node vs. Event Type
table)

v Node vs. Processor

utestats

Appendix A. Parallel environment tools commands 207

|
|

|

|

|

|
|

|
|

|

|

|

|

|

|

|
|
|

|

||
|

|
|
|

|
|

|

|
|
|
|
|
|

|

|

|

|
|

|

|
|

|

The computed statistic for all the tables is the sum or the duration. As you can see,
several tables are simply row/column transpositions of other tables. These
transposed tables are provided so that a program used to visualize the tables does
not have to transpose a table in order to show a transposed view.

The output of the utestats command is written in tab-separated-value format; each
line of output is a row of a table, and columns in a row are separated by a tab
character. Tables are separated by a Form Feed character (0x0c). This format is
used to make it easy to import a utestats output file into a spreadsheet program.

A Node vs. Processor table would look like the following (where the tabs have been
replaced by spaces to make the column alignment clearer).
node/cpu 0 1

0 2.823739 2.258315
1 0.873746 4.241253
2 0.956515 4.322891
3 0.853188 4.334650

The first value ″node/cpu″ is the name of the table. It consists of the row title
followed by a ″/″ followed by a column title. This table contains statistics aggregated
over interval records whose field values for ″node″ and ″cpu″ are the same. The
values ″node″ and ″cpu″ are the field names as stored in the UTE profile file. The
rest of the values in the first row are the column labels; these are the values that
appeared in the ″cpu″ field in at least one interval record.

With other rows, the first field is the row label; it is a value that appeared in the
node field in at least one interval record. The other fields in a row are the
accumulated duration of all interval records with the same (″node″, ″cpu″) pair of
values. For example, the accumulated duration of all interval records for ″cpu″ 1 of
″node″ 0 was 2.258315 seconds.

ENVIRONMENT VARIABLES
UTEPROFILE

Specifies the name of the file description profile. If not set, the file
profile.ute in the current directory is the default description profile. This
variable is intended for use by IBM support personnel.

EXAMPLES
To generate statistics tables for a single UTE interval file:
utestats mytrace.ute

The above example will write the statistics tables to standard output. To redirect the
output to a file, use the -o option.
utestats -o stattables mytrace.ute

You can also specify multiple UTE interval files from which statistics should be
generated.
utestats mytrace.ute mytrace2.ute mytrace3.ute

FILES
profile.ute default description profile

RELATED INFORMATION
Commands: uteconvert (1), utemerge (1)

utestats

208 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|

|

|

|

|
|

|

|
|

|

|

|

|

|

xprofiler

NAME
xprofiler – Invokes the Xprofiler, a GUI-based performance profiling tool.

SYNOPSIS
xprofiler [program] [-b] [-h]
[-s] [-z] [-a] [-c]
[-L pathname]
[[-e name]...]
[[-E name]...]
[[-f name]...]
[[-F name]...]
[-disp_max number_of_functions]
[[gmon.out]...]

The xprofiler command invokes the Xprofiler, a GUI-based performance profiling
tool.

FLAGS
-b Suppresses the printing of the field descriptions for the Flat Profile, Call Graph

Profile, and Function Index reports when they are written to a file with the Save
As option of the File menu.

-s Produces the gmon.sum profile data file, if multiple gmon.out files are specified
when Xprofiler is started. The gmon.sum file represents the sum of the profile
information in all the specified profile files. Note that if you specify a single
gmon.out file, the gmon.sum file contains the same data as the gmon.out file.

-z Includes functions that have both zero CPU usage and no call counts in the Flat
Profile, Call Graph profile, and Function Index reports. A function will not have a
call count if the file that contains its definition was not compiled with the -pg
option, which is common with system library files.

-a Adds alternative paths to search for source code and library files, or changes
the current path search order. When using this command line option, you can
use the “at” symbol (@) to represent the default file path, in order to specify
that other paths be searched before the default path.

-c Loads the specified configuration file. If the -c option is used on the command
line, the configuration file name specified with it will appear in the
Configuration File (-c): text field in the Load Files Dialog, and the Selection
field of the Load Configuration File Dialog. When both the -c and -disp_max
options are specified on the command line, the -disp_max option is ignored,
but the value that was specified with it will appear in the Initial Display
(-disp_max): field in the Load Files Dialog, the next time it is opened.

-disp_max
Sets the number of function boxes that Xprofiler initially displays in the function
call tree. The value supplied with this flag can be any integer between 0 and
5,000. Xprofiler displays the function boxes for the most CPU-intensive
functions through the number you specify. For instance, if you specify 50,
Xprofiler displays the function boxes for the 50 functions in your program that
consume the most CPU. After this, you can change the number of function
boxes that are displayed via the Filter menu options. This flag has no effect on
the content of any of the Xprofiler reports.

xprofiler

Appendix A. Parallel environment tools commands 209

-e De-emphasizes the general appearance of the function box(es) for the specified
function(s) in the function call tree, and limits the number of entries for these
function in the Call Graph Profile report. This also applies to the specified
function’s descendants, as long as they have not been called by non-specified
functions.

In the function call tree, the function box(es) for the specified function(s)
appears greyed-out. Its size and the content of the label remain the same. This
also applies to descendant functions, as long as they have not been called by
non-specified functions.

In the Call Graph Profile report, an entry for the specified function only appears
where it is a child of another function, or as a parent of a function that also has
at least one non-specified function as its parent. The information for this entry
remains unchanged. Entries for descendants of the specified function do not
appear unless they have been called by at least one non-specified function in
the program.

-E Changes the general appearance and label information of the function box(es)
for the specified function(s) in the function call tree. Also limits the number of
entries for these functions in the Call Graph Profile report, and changes the
CPU data associated with them. These results also apply to the specified
function’s descendants, as long as they have not been called by non-specified
functions in the program.

In the function call tree, the function box for the specified function appears
greyed-out, and its size and shape also changes so that it appears as a square
of the smallest allowable size. In addition, the CPU time shown in the function
box label, appears as 0 (zero). The same applies to function boxes for
descendant functions, as long as they have not been called by non-specified
functions. This option also causes the CPU time spent by the specified function
to be deducted from the left side CPU total in the label of the function box for
each of the specified function’s ancestors.

In the Call Graph Profile report, an entry for the specified function only appears
where it is a child of another function, or as a parent of a function that also has
at least one non-specified function as its parent. When this is the case, the time
in the self and descendants columns for this entry is set to 0 (zero). In addition,
the amount of time that was in the descendants column for the specified
function is subtracted from the time listed under the descendants column for the
profiled function. As a result, be aware that the value listed in the % time
column for most profiled functions in this report will change.

-f De-emphasizes the general appearance of all function boxes in the function call
tree, except for that of the specified function(s) and its descendant(s). In
addition, the number of entries in the Call Graph Profile report for the
non-specified functions and non-descendant functions is limited. The -f flag
overrides the -e flag.

In the function call tree, all function boxes except for that of the specified
function(s) and it descendant(s) appear greyed-out. The size of these boxes
and the content of their labels remain the same. For the specified function(s),
and it descendants, the appearance of the function boxes and labels remain the
same.

In the Call Graph Profile report, an entry for a non-specified or non-descendant
function only appears where it is a parent or child of a specified function or one
of its descendants. All information for this entry remains the same.

-F Changes the general appearance and label information of all function boxes in

xprofiler

210 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

the function call tree except for that of the specified function(s) and its
descendants. In addition, the number of entries in the Call Graph Profile report
for the non-specified and non-descendant functions is limited, and the CPU data
associated with them is changed. The -F flag overrides the -E flag.

In the function call tree, the function box for the specified function appears
greyed-out, and its size and shape also changes so that it appears as a square
of the smallest allowable size. In addition, the CPU time shown in the function
box label, appears as 0 (zero).

In the Call Graph Profile report, an entry for a non-specified or non-descendant
function only appears where it is a parent or child of a specified function or one
of its descendants. The time in the self and descendants columns for this entry
is set to 0 (zero). When this is the case, the time in the self and descendants
columns for this entry is set to 0 (zero). As a result, be aware that the value
listed in the % time column for most profiled functions in this report will change.

-L Uses an alternate path name for locating shared libraries. If you plan to specify
multiple paths, use the Set File Search Path option of the File menu on the
Xprofiler GUI.

-h Prints basic Xprofiler command syntax to the screen.

DESCRIPTION
Xprofiler is a GUI-based performance profiling tool, which can be used to analyze
the performance of sequential as well as parallel programs. Xprofiler provides
graphical function call tree display and textual profile reports to help you understand
your program’s CPU usage and function call counts information.

EXAMPLES
To use xprofiler , you first compile your program (for example, foo.c) with -pg :
xlc -pg -o foo foo.c

When the program foo is executed, one gmon.out file will be generated for each
processor involved in the execution. To invoke xprofiler , enter:
xprofiler foo [[gmon.out]...]

FILES
/usr/lib/X11/app-defaults/Xprofiler

RELATED INFORMATION
Commands: gprof (1), xlc (1), xlf (1)

xprofiler

Appendix A. Parallel environment tools commands 211

xprofiler

212 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Appendix B. Command line flags for normal or attach mode

This appendix lists the command line flags that poe and pdbx use, indicating which
ones are valid in normal and in attach debugging mode. When starting in attach
mode, the debugger gives a message listing the invalid flags used, and then exits.

Table 7. Command Line Flags for Normal or Attach Mode

Flag Description Normal Mode Attach Mode

-procs number of processors yes no

-hostfile name of host list file yes no

-hfile name of host list file yes no

-infolevel message reporting level yes yes

-ilevel message reporting level yes yes

-retry wait for processors yes no

-pmlights number of LEDs yes no

-usrport port for API-to-user programmable monitor yes no

-resd directive to use Resource Manager yes no

-euilib eui library to use yes no

-euidevice adapter set to use for message passing -
either Ethernet, FDDI, token ring, or the
RS/6000 SP’ high-performance
communication adapter

yes no

-euidevelop EUI develop mode yes no

-newjob submit new PE jobs without exiting PE no no

-pmdlog use pmd logfile yes yes

-savehostfile list of hosts from resource manager yes no

-cmdfile PE command file no no

-stdoutmode STDOUT mode yes no

-stdinmode STDIN mode yes no

-labelio label output yes yes - debugger only

-euilibpath eui library path yes no

-pgmmodel programming model no no

-retrycount retry count for node allocation yes no

-rmpool default pool for job manager yes no

-cpu_use cpu usage yes no

-adapter_use adapter usage yes no

-pulse poe pulse no no

-d nesting depth of program blocks yes yes

-I (upper case i) path to search for source files yes yes

-x prevents the dbx command from stripping
trailing underscore in Fortran

yes yes

-a start in attach mode N/A yes

© Copyright IBM Corp. 2000, 2001 213

214 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Appendix C. Customizing Xprofiler resources

You can customize certain features of an X-Window. For example, you can
customize its colors, fonts, orientation, and so on. This section lists each of the
resource variables you can set for xprofiler , the IBM Parallel Environment for AIX
profiling tool.

You may customize resources by assigning a value to a resource name in a
standard X-Windows format. Several resource files are searched according to the
following X-Windows convention:

/usr/lib/X11/$LANG/app-defaults/Xprofiler
/usr/lib/X11/app-defaults/Xprofiler
$XAPPLRESDIR/Xprofiler
$HOME/.Xdefaults

Options in the .Xdefaults file take precedence over entries in the preceding files.
This allows you to have certain specifications apply to all users in the app-defaults
file as well as user-specific preferences set for each user in their $HOME/.Xdefaults
file.

You customize a resource by setting a value to a resource variable associated with
that feature. You store these resource settings in a file called .Xdefaults in your
home directory. You can create this file on a server, and so customize a resource
for all users. Individual users may also want to customize resources. The resource
settings are essentially your own personal preferences as to how the X-Windows
should look.

For example, consider the following resource variables for a hypothetical
X-Windows tool:
TOOL*MainWindow.foreground:
TOOL*MainWindow.background:

In this example, say the resource variable TOOL*MainWindow.foreground controls
the color of text on the tool’s main window. The resource variable
TOOL*MainWindow.background controls the background color of this same window.
If you wanted the tool’s main window to have red lettering on a white background,
you would insert the following lines into the .Xdefaults file.
TOOL*MainWindow.foreground: red
TOOL*MainWindow.background: white

Customizable resources and instructions for their use for Xprofiler are defined in
/usr/lib/X11/app-defaults/Xprofiler , as well as
/usr/lpp/ppe.xprofiler/defaults/Xprofiler.ad . In this file is a set of X resources for
defining graphical user interfaces based on the following criteria:

v Window geometry

v Window title

v Push button and label text

v Color maps

v text font (in both textual reports and the graphical display).

© Copyright IBM Corp. 2000, 2001 215

Xprofiler resource variables
You can use the resource variables listed below to control the appearance and
behavior of Xprofiler. Note that the values supplied here are the defaults, but you
may change them to suit your own preferences.

Controlling fonts
To specify the font for the labels that appear with function boxes, call arcs, and
cluster boxes:

Use this resource variable: Specify this default, or a value of your own choice:

*narc*font fixed

To specify the font used in textual reports:

Use this resource variable: Specify this default, or a value of your
own choice:

Xprofiler*fontList rom10

Controlling the appearance of the Xprofiler main window
To specify the size of the main window:

Use this resource variable: Specify this default, or a value of your
own choice:

Xprofiler*mainW.height 700

Xprofiler*mainW.width 900

To specify the foreground and background colors of the main window:

Use this resource variable: Specify this default, or a value of your
own choice:

Xprofiler*foreground black

Xprofiler*background light gray

To specify the number of function boxes that are displayed when you first open the
Xprofiler main window:

Use this resource variable: Specify this default, or a value of your
own choice:

Xprofiler*InitialDisplayGraph 5000

You can use the -disp_max command line option to override this value.

To specify the colors of the function boxes and call arcs of the function call tree:

Use this resource variable: Specify this default, or a value of your
own choice:

Xprofiler*defaultNodeColor forest green

Xprofiler*defaultArcColor royal blue

216 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

To specify the color in which a specified function box or call arc is highlighted:

Use this resource variable: Specify this default, or a value of your
own choice:

Xprofiler*HighlightNode red

Xprofiler*HighlightArc red

To specify the color in which de-emphasized function boxes appear:

Use this resource variable: Specify this default, or a value of your
own choice:

Xprofiler*SuppressNode gray

Function boxes are de-emphasized with the -e, -E, -f, and -F options.

Controlling variables related to the File menu
To specify the size of the Load Files Dialog box:

Use this resource variable: Specify this default, or a value of your
own choice:

Xprofiler*loadFile.height 785

Xprofiler*loadFile.width 725

The Load Files Dialog box is invoked via Load Files option of the File menu.

To specify whether a confirmation dialog box should appear whenever a file will be
overwritten:

Use this resource variable: Specify this default, or a value of your
own choice:

Xprofiler*OverwriteOK False

The value True would be equivalent to selecting the Set Options option from the
File menu, and then selecting the Forced File Overwriting option from the Runtime
Options Dialog box.

To specify the alternative search paths for locating source or library files:

Use this resource variable: Specify this default, or a value of your
own choice:

Xprofiler*fileSearchPath . (refers to current working directory)

The value you specify for search path is equivalent to the search path you would
designate from the Alt File Search Path Dialog box. To get to this dialog box, you
would choose the Set File Search Paths option from the File menu.

To specify the file search sequence (whether the default or alternative path is
searched first):

Appendix C. Customizing Xprofiler resources 217

Use this resource variable: Specify this default, or a value of your
own choice:

Xprofiler*fileSearchDefault True

The value True is equivalent to selecting the Set File Search Paths from the File
menu, and then the Check default path(s) first option from the Alt File Search Path
Dialog box.

Controlling variables related to the Screen Dump option
To specify whether a screen dump will be sent to a printer or placed in a file:

Use this resource variable: Specify this default, or a value of your
own choice:

Xprofiler*PrintToFile True

The value True is equivalent to selecting the File button in the Output To field of the
Screen Dump Options Dialog box. You access the Screen Dump Options Dialog
box by selecting the Screen Dump→Set Option options from the File menu.

To specify whether the PostScript screen dump will created in grey shades or color:

Use this resource variable: Specify this default, or a value of your
own choice:

Xprofiler*ColorPscript False

The value False is equivalent to selecting the GreyShades button in the PostScript
Output area of the Screen Dump Options Dialog box. You access the Screen Dump
Options Dialog box by selecting the Screen Dump→Set Option options from the File
menu.

To specify the number of grey shades that the PostScript screen dump will include
(if you selected GreyShades in the PostScript Output field):

Use this resource variable: Specify this default, or a value of your
own choice:

Xprofiler*GreyShades 16

The value 16 is equivalent to selecting the 16 button in the Number of Grey Shades
field of the Screen Dump Options Dialog box. You access the Screen Dump
Options Dialog box by selecting the Screen Dump→Set Option options from the File
menu.

To specify the number of seconds that Xprofiler waits before capturing a screen
image:

Use this resource variable: Specify this default, or a
value of your own choice:

Xprofiler*GrabDelay 1

The value 1 is the default for the Delay Before Grab option of the Screen Dump
Options Dialog box, but you may specify a longer interval by entering a value here.

218 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

You access the Screen Dump Options Dialog box by selecting the Screen
Dump→Set Option options from the File menu.

To specify the maximum number of seconds that may be specified with the slider of
the Delay Before Grab option:

Use this resource variable: Specify this default, or a value of your
own choice:

Xprofiler*grabDelayScale.maximum 30

The value 30 is the default for the Delay Before Grab option of the Screen Dump
Options Dialog box. This means that users cannot set the slider scale to a value
greater than 30. You access the Screen Dump Options Dialog box by selecting the
Screen Dump→Set Option options from the File menu.

To specify whether the screen dump is created in Landscape or Portrait format:

Use this resource variable: Specify this default, or a value of your
own choice:

Xprofiler*Landscape False

The value True is the default for the Enable Landscape option of the Screen Dump
Options Dialog box. You access the Screen Dump Options Dialog box by selecting
the Screen Dump→Set Option options from the File menu.

To specify whether or not you would like information about how the image was
created to be added to the PostScript screen dump:

Use this resource variable: Specify this default, or a value of your
own choice:

Xprofiler*Annotate False

The value False is the default for the Annotate Output option of the Screen Dump
Options Dialog box. You access the Screen Dump Options Dialog box by selecting
the Screen Dump→Set Option options from the File menu.

To specify the directory that will store the screen dump file (if you selected File in
the Output To field):

Use this resource variable: Specify this default, or a value of your
own choice:

Xprofiler*PrintFileName /tmp/Xprofiler_screenDump.ps.0

The value you specify is equivalent to the filename you would designate in the File
Name field of the Screen Dump Dialog box. You access the Screen Dump Options
Dialog box by selecting the Screen Dump→Set Option options from the File menu.

To specify the printer destination of the screen dump (if you selected Printer in the
Output To field):

Appendix C. Customizing Xprofiler resources 219

Use this resource variable: Specify this default, or a value of your
own choice:

Xprofiler*PrintCommand qprt -B ga -c -Pps

The value qprt -B ga -c -Pps is the default print command, but you may supply a
different one here.

Controlling variables related to the View menu
To specify the size of the Overview window:

Use this resource variable: Specify this default, or a
value of your own choice:

Xprofiler*overviewMain.height 300

Xprofiler*overviewMain.width 300

To specify the color of the highlight area of the Overview window:

Use this resource variable: Specify this default, or a
value of your own choice:

Xprofiler*overviewGraph*defaultHighlightColor sky blue

To specify whether the function call tree is updated as the highlight area is moved
(Immediate) or only when it is stopped and the mouse button released (Delayed):

Use this resource variable: Specify this default, or a value of your
own choice:

Xprofiler*TrackImmed True

The value True is equivalent to selecting the Immediate Update option from the
Utility menu of the Overview window. You access the Overview window by selecting
the Overview option from the View menu.

To specify whether the function boxes in the function call tree appear in 2-D or 3-D
format:

Use this resource variable: Specify this default, or a value of your
own choice:

Xprofiler*Shape2D True

The value True is equivalent to selecting the 2-D Image option from the View menu.

To specify whether the function call tree appears in Top-to-Bottom or Left-to-Right
format:

Use this resource variable: Specify this default, or a value of your
own choice:

Xprofiler*LayoutTopDown True

220 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

The value True is equivalent to selecting the Layout: Top→Bottom option from the
View menu.

Controlling variables related to the Filter menu
To specify whether the function boxes of the function call tree are clustered or
unclustered when the Xprofiler main window is first opened:

Use this resource variable: Specify this default, or a value of your
own choice:

Xprofiler*ClusterNode True

The value True is equivalent to selecting the Cluster Functions by Library option
from the Filter menu.

To specify whether the call arcs of the function call tree are collapsed or expanded
when the Xprofiler main window is first opened:

Use this resource variable: Specify this default, or a value of your
own choice:

Xprofiler*ClusterArc True

The value True is equivalent to selecting the Collapse Library Arcs option from the
Filter menu.

Appendix C. Customizing Xprofiler resources 221

222 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Appendix D. Profiling programs with the AIX prof and gprof
commands

The difference between profiling serial and parallel applications with the AIX
profilers is that serial applications can be run to generate a single profile data file,
while a parallel application can be run to produce many.

You request parallel profiling by setting the compile flag to -p or -pg as you would
with serial compilation. The parallel profiling capability of PE creates a monitor
output file for each task. The files are created in the current directory, and are
identified by the name mon.out.taskid or gmon.out.taskid, where taskid is a number
between 0 and one less than the number of tasks.

Following the traditional method of profiling using the AIX operating system, you
compile a serial application and run it to produce a single profile data file that you
can then process using either the prof or gprof commands. With a parallel
application, you compile and run it to produce a profile data file for each parallel
task. You can then process one, some, or all the data files produced using either
the prof or gprof commands. The following table describes how to profile parallel
programs. For comparison, the steps involved in profiling a serial program are
shown in the left-hand column of the table.

To Profile a Serial Program: To Profile a Parallel Program:

Step 1: Compile the application
source code using the cc
command with either the -p or -pg
flag.

Step 1: Compile the application source code using the command mpcc (for C
programs), mpCC (for C++ programs), or mpxlf (for Fortran programs) as
described in IBM Parallel Environment for AIX: Operation and Use, Volume 1,
Using the Parallel Operating Environment. You should use one of the standard
profiling compiler options – either -p or -pg – on the compiler command. For
more information on the compiler options -p and -pg , refer to their use on the cc
command as described in AIX 5L Version 5.1 Commands Reference and AIX 5L
Version 5.1 General Programming Concepts: Writing and Debugging Programs

Step 2: Run the executable
program to produce a profile data
file. If you have compiled the
source code with the -p option,
the data file produced is named
mon.out. If you have compiled the
source code with the -pg option,
the data file produced is named
gmon.out.

Step 2: Before you run the parallel program, set the environment variable
MP_EUILIBPATH=/usr/lpp/ppe.poe/lib/profiled:/usr/lib/profiled:/lib/profiled :
/usr/lpp/ppe.poe/lib . If your message passing library is not in
/usr/lpp/ppe.poe/lib , substitute your message passing library path. Run the
parallel program. When the program ends, it generates a profile data file for
each parallel task. The system gives unique names to the data files by
appending each task’s identifying number to mon.out or gmon.out. If you have
compiled the source code with the -p option, the data files produced take the
form:

mon.out. taskid

If the source code has been compiled with the -pg option, the data files
produced take the form:

gmon.out. taskid
Note: The current directory must be writable from all remote nodes. Otherwise,
the profile data files will have to be manually moved to the home node for
analysis with prof and gprof . You can also use the mcpgath command to move
the files. See IBM Parallel Environment for AIX: Operation and Use, Volume 1,
Using the Parallel Operating Environment for more about mcpgath .

© Copyright IBM Corp. 2000, 2001 223

To Profile a Serial Program: To Profile a Parallel Program:

Step 3: Use either the prof or the
gprof command to process the
profile data file. You use the prof
command to process the mon.out
data file, and the gprof command
to process the gmon.out data file.

Step 3: Use either the prof or gprof command to process the profile data files.
The prof command processes the mon.out data files, and gprof processes the
gmon.out data files. You can process one, some, or all of the data files created
during the run. You must specify the name(s) of the profile data file(s) to read,
however, because the prof and gprof commands read mon.out or gmon.out by
default. On the prof command, use the -m flag to specify the name(s) of the
profile data file(s) it should read. For example, to specify the profile data file for
task 0 with the prof command:

ENTER
prof -m mon.out. 0

You can also specify that the prof command should take profile data from some
or all of the profile data files produced. For example, to specify three different
profile data files – the ones associated with tasks 0, 1, and 2 – on the prof
command:

ENTER
prof -m mon.out. 0 mon.out. 1 mon.out. 2

On the gprof command, you simply specify the name(s) of the profile data file(s)
it should read on the command line. You must also specify the name of the
program on the gprof command, but no option flag is needed. For example, to
specify the profile data file for task 0 with the gprof command:

ENTER
gprof program gmon.out .0

As with the prof command, you can also specify that the gprof command should
take profile data from some or all of the profile data files produced. For example,
to specify three different profile data files – the ones associated with tasks 0, 1,
and 2 – on the gprof command:

ENTER
gprof program gmon.out. 0 gmon.out. 1 gmon.out. 2

The parallel utility, mp_profile (), may also be used to selectively profile portions of
a program. To start profiling, call mp_profile (1). To suspend profiling, call
mp_profile (0). The final profile data set will contain counts and CPU times for the
program lines that are delimited by the start and stop calls. In C, the calls are
mpc_profile (1), and mpc_profile (0). By default, profiling is active at the start of the
user’s executable.

Note: Like the sequential version of prof /gprof , if more than one profile file is
specified, the parallel version of the prof /gprof command output shows the
sum of the profile information in the given profile files. There is no statistical
analysis contacted across the multiple profile files.

224 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Appendix E. Understanding and Creating PCT Hardware
Counter Groups

Using the Performance Collection Tool (PCT), you can add hardware counter
probes to a target application to collect information on various hardware operations.
We have collected similar or complementary hardware counters into groups, so that
when you add one of these groups to a target application, information on different
but related events are collected. The collected information can later be viewed and
analyzed in the Profile Visualization Tool (PVT). The hardware counter groups
available to you will differ depending on whether the processes you want to
instrument are running on 604e CPUs or 630 CPUs.

If you are using the PCT’s graphical user interface, the available counter groups are
listed in the Select Performance Profiling Probes Panel:

If you are using the PCT’s command-line interface, you can list the available
counter groups by issuing the profile show probetype hwcount subcommand:
pct> profile show probetype hwcount
Prof Type Name Description
--------- ------- ------
0 FPU FPU, FXU, and LSU operations
1 Branch Branch operations
2 L1_TLB L1 cache and TLB operations
3 L2 Prefetch and L2 cache operations
4 Fpop Floating-point operations
5 xFPU FPU, FXU, LSU, and BPU operations
pct>

© Copyright IBM Corp. 2000, 2001 225

|

|

|

|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

For more information on the Select Performance Profiling Probes Panel and the
PCT’s graphical user interface, refer to the PCT’s online help system (as described
in “Accessing the Performance Collection Tool’s online help system” on page 103).
For more information on the profile show probetype hwcount subcommand, refer
to “Adding Hardware Profile Probes to Processes” on page 121.

This appendix describes:

v the specific hardware counters in each of the hardware counter groups we
supply. See “Understanding the Default Hardware Counter Groups” for more
information.

v how you can create your own hardware counter groups using a configuration
program we supply. See “Creating Hardware Counter Groups” on page 228 for
more information.

Understanding the Default Hardware Counter Groups
While you can create your own hardware counter groups, most users will be
satisfied with the set of pre-defined counter groups that we supply. The following
two tables describe the hardware counter groups we supply for 604e CPUs and 630
CPUs.

Table 8. Hardware counter groups for 630 CPUs

Counter group
name:

Counts: Specifically, this counter group
contains counters for these
events:

FPU FPU (floating-point unit), FXU
(fixed-point unit), and LSU
(load/share unit) operations

v FPU0 produced a result

v FPU1 produced a result

v FXU0 produced a result

v FXU1 produced a result

v FXU2 produced a result

v Number of load instructions
completed

v Number of store instructions
completed

v Processor clock cycles

Branch Branch operations v Branches executed

v A conditional branch was
predicted

v Global cancel due to a branch
guessed wrong

v Processor clock cycles

L1_TLB L1 cache (primary cache) and
TLB (translation lookaside
buffer) operations

v L1 I-cache miss

v A load miss occurred in L1

v Store miss occurred in L1

v TLB miss. Includes both D-cache
and I-cache misses

v Snoop hit occurred and L2 has
the valid block

v Processor clock cycles

226 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|
|
|
|

|

|
|
|

|
|
|

|
|

|
|
|
|

||

|
|
||
|
|

||
|
|

|

|

|

|

|

|
|

|
|

|

|||

|
|

|
|

|

||
|
|

|

|

|

|
|

|
|

|

Table 8. Hardware counter groups for 630 CPUs (continued)

Counter group
name:

Counts: Specifically, this counter group
contains counters for these
events:

L2 Prefetch and L2 cache
(secondary cache) operations

v Number of D-cache prefetch data
stream allocations blocked due to
four streams

v Number of D-cache prefetch and
used

v RWITM caused L2 miss

v Burst read caused L2 miss

v Number of cycles load stalls due
to interleave conflict

v Processor clock cycles

FPop Floating-point operations v FPU0 produced a result

v FPU1 produced a result

v FPU divides executed (count both
FPUs)

v Float Multiply-Adds executed
(count both FPUs)

v Float Add, Multiply, Subtract
executed (count both FPUs)

v Number of FPU FSQRT executed
(count both FPUs)

v Float FCMP executed (count both
FPUs)

v Processor clock cycles

xFPU FPU (floating-point unit), FXU
(fixed-point unit), LSU
(load/store unit), and BPU
(branch processing unit)
operations

v FPU0 produced a result

v FPU1 produced a result

v FXU0 produced a result

v FXU1 produced a result

v FXU2 produced a result

v Branches executed

v Number of load instructions
completed

v Number of store instructions
completed

Table 9. Hardware Counter Groups for 604e CPUs

Counter group
name:

Counts: Specifically, this counter group
contains counters for these
events:

FPU FPU (floating-point unit)
operations

v Number of floating-point
instructions completed

v Processor clock cycles

FXU FXU (fixed-point unit)
operations

v Number of integer instructions
completed

v Processor clock cycles

Appendix E. Understanding and Creating PCT Hardware Counter Groups 227

|

|
|
||
|
|

||
|
|
|
|

|
|

|

|

|
|

|

|||

|

|
|

|
|

|
|

|
|

|
|

|

||
|
|
|
|

|

|

|

|

|

|

|
|

|
|
|

||

|
|
||
|
|

||
|
|
|

|

||
|
|
|

|

Table 9. Hardware Counter Groups for 604e CPUs (continued)

Counter group
name:

Counts: Specifically, this counter group
contains counters for these
events:

LSU LSU (load/share unit)
operations

v Number of loads completed

v LSU produced result

v Processor clock cycles

Branch Branch operations v BPU produced result

v Branch misprediction correction
from execute stage

v Processor clock cycles

L1 L1 cache (primary cache)
operations

v Instruction cache misses

v Data cache misses

v Processor clock cycles

TLB TLB (translation lookaside
buffer) operations

v Number of instruction TLB misses

v Data TLB misses

v Processor clock cycles

Snoop Snoop operations v Valid snoop requests received
from outside the 604e

v Number of snoop hits occurred

v Processor clock cycles

Loadmiss Load miss operations v Number of cycles a load miss
takes

v Processor clock cycles

Pipeline Pipeline operations v Number of pipeline ″flushing″
instructions

v Processor clock cycles

Creating Hardware Counter Groups
In addition to our pre-defined hardware counter groups, you can create your own
hardware counter groups using the event_build program. The event_build program
interactively guides you through the process of selecting a hardware counter event
for each counter available for a particular CPU type. The description of your counter
group is saved to the file $HOME/.pct/PMC_usergroup.conf. The PCT will use this
configuration file when listing available counter groups, and the groups you define in
PMC_usergroup.conf will be included with the list of pre-defined hardware counter
groups that we define.

To create a hardware counter group:

1. Invoke the event_build program. It is located in the
/usr/lpp/ppe.perf/samples/user_profile directory.
$ /usr/lpp/ppe.perf/samples/user_profile/event_build

2. The event_build program prompts you to select a CPU type. Simply enter the
number that corresponds with the CPU type you want to monitor. The hardware
counter events and the number of counter registers available depend on the
CPU type. The following example assumes that the processes you want to
monitor will all be running on 604e CPUs.

228 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|

|
|
||
|
|

||
|
|

|

|

|||

|
|

|

||
|
|

|

|

||
|
|

|

|

|||
|

|

|

|||
|

|

|||
|

|
|

|
|

|
|
|
|
|
|
|
|

|

|
|

|

|
|
|
|
|

cpu output:
[0] cpu type 604e has 4 counter
[1] cpu type 630 has 8 counter
pick a cpu or -1 to exit--> 0

3. The 604e CPU has four hardware counter registers available. For each of these
registers, the event_build program asks you what event you want to monitor.
Simply enter the number associated with the event you want to monitor. If you
do not want to monitor anything for a particular register, enter -1. In the
following example, we specify that, for the first counter register, we want to
monitor the ″Number of floating-point instructions completed″. For the other
three registers, we enter -1 to indicate that we don’t want to monitor anything on
those registers.
counter 1 in cpu 604e
[0] 107 PM_FPU_CMPL Number of floating-point instructions completed
[1] 203 PM_FXU_CMPL Number of integer instructions completed
[2] 304 PM_BR_MPRED Branch misprediction correction from execute stage
[3] 404 PM_LS_EXEC LSU produced result
[4] 509 PM_IC_MISS Instruction cache misses
[5] 512 PM_DTLB_MISS Data TLB misses
[6] 513 PM_SNOOP_RECV Valid snoop requests received from outside the 604e
[7] 601 PM_CYC Processor clock cycles
select a number (0 - 7) or -1 to skip ->0
counter 2 in cpu 604e
[0] 107 PM_FPU_CMPL Number of floating-point instructions completed
[1] 203 PM_FXU_CMPL Number of integer instructions completed
[2] 304 PM_BR_MPRED Branch misprediction correction from execute stage
[3] 404 PM_LS_EXEC LSU produced result
[4] 509 PM_IC_MISS Instruction cache misses
[5] 512 PM_DTLB_MISS Data TLB misses
[6] 513 PM_SNOOP_RECV Valid snoop requests received from outside the 604e
[7] 601 PM_CYC Processor clock cycles
select a number (0 - 7) or -1 to skip ->-1
counter 3 in cpu 604e
[0] 107 PM_FPU_CMPL Number of floating-point instructions completed
[1] 203 PM_FXU_CMPL Number of integer instructions completed
[2] 304 PM_BR_MPRED Branch misprediction correction from execute stage
[3] 404 PM_LS_EXEC LSU produced result
[4] 509 PM_IC_MISS Instruction cache misses
[5] 512 PM_DTLB_MISS Data TLB misses
[6] 513 PM_SNOOP_RECV Valid snoop requests received from outside the 604e
[7] 601 PM_CYC Processor clock cycles
select a number (0 - 7) or -1 to skip ->-1
counter 4 in cpu 604e
[0] 107 PM_FPU_CMPL Number of floating-point instructions completed
[1] 203 PM_FXU_CMPL Number of integer instructions completed
[2] 304 PM_BR_MPRED Branch misprediction correction from execute stage
[3] 404 PM_LS_EXEC LSU produced result
[4] 509 PM_IC_MISS Instruction cache misses
[5] 512 PM_DTLB_MISS Data TLB misses
[6] 513 PM_SNOOP_RECV Valid snoop requests received from outside the 604e
[7] 601 PM_CYC Processor clock cycles
select a number (0 - 7) or -1 to skip ->-1
generate a record:

user: "first","my first user group","604e",107,-1,-1,-1

4. Once you have made your selection for each register, the event_build program
prompts you for a name and a short description of the counter group. The name
and description can be any string; and will appear in the PCT when it lists
available hardware counters.
Enter a short name to describe it -->first
Enter a description -->my first user group

5. The event_build program prompts you to ask if you want to ″add more input
(y/n)?″ If you enter ″y″, you will again be prompted for a CPU type and the

Appendix E. Understanding and Creating PCT Hardware Counter Groups 229

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|

event to count on each available register. Here we enter ″n″, and the
$HOME/.pct/PMC_usergroup.conf file is updated to include the new counter
group.
add more input (y/n)? n
generating xml file...

/usr/lpp/ppe.perf/samples/user_profile/xml_build < /tmp/aaaxHu0aa

230 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|
|

|
|
|

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2000, 2001 231

|

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Department LJEB/P905
2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Program License Agreement or any equivalent agreement between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Trademarks
The following are trademarks of International Business Machines Corporation in the
United States, other countries, or both:

AFS

AIX

AIX/L

AIX/L (logo)

232 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

AIX 5L

e (logo)

ESCON

IBM

IBM (logo)

IBMLink

LoadLeveler

Micro Channel

pSeries

RS/6000

SP

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, MS-DOS, Windows, Windows NT, and the Windows logo are trademarks
of Microsoft Corporation in the United States, other countries, or both.

PC Direct is a trademark of Ziff Communications Company in the United States,
other countries, or both and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

SET and the SET Logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks
of others.

Acknowledgments
The PE Benchmarker product includes software developed by the Apache Software
Foundation, http://www.apache.org.

Notices 233

|

|
|

234 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Glossary

A
address. A value, possibly a character or group of
characters that identifies a register, a device, a
particular part of storage, or some other data source or
destination.

AIX. Abbreviation for Advanced Interactive Executive,
IBM’s licensed version of the UNIX operating system.
AIX is particularly suited to support technical computing
applications, including high-function graphics and
floating-point computations.

AIXwindows Environment/6000. A graphical user
interface (GUI) for the RS/6000. It has the following
components:

v A graphical user interface and toolkit based on
OSF/Motif

v Enhanced X-Windows, an enhanced version of the
MIT X Window System

v Graphics Library (GL), a graphical interface library for
the application programmer that is compatible with
Silicon Graphics’ GL interface.

API. See application programming interface.

application. The use to which a data processing
system is put; for example, topayroll application, an
airline reservation application.

application programming interface. A set of
programming functions and routines that provide access
between the Application layer of the OSI seven-layer
model and applications that want to use the network. It
is a software interface.

argument. A parameter passed between a calling
program and a called program or subprogram.

attribute. A named property of an entity.

B
bandwidth. The difference, expressed in hertz,
between the highest and the lowest frequencies of a
range of frequencies. For example, analog transmission
by recognizable voice telephone requires a bandwidth
of about 3000 hertz (3 kHz). The bandwidth of an
optical link designates the information-carrying capacity
of the link and is related to the maximum bit rate that a
fiber link can support.

blocking operation. An operation that does not
complete until the operation either succeeds or fails. For
example, a blocking receive will not return until a
message is received or until the channel is closed and
no further messages can be received.

breakpoint. A place in a program, specified by a
command or a condition, where the system halts
execution and gives control to the workstation user or to
a specified program.

broadcast operation. A communication operation in
which one processor sends (or broadcasts) a message
to all other processors.

buffer. A portion of storage used to hold input or
output data temporarily.

C
C. A general-purpose programming language. It was
formalized by Uniforum in 1983 and the ANSI standards
committee for the C language in 1984.

C++. A general-purpose programming language that is
based on the C language. C++ includes extensions that
support an object-oriented programming paradigm.
Extensions include:
v strong typing
v data abstraction and encapsulation
v polymorphism through function overloading and

templates
v class inheritance.

call arc. The representation of a call between two
functions within the Xprofiler function call tree. It
appears as a solid line between the two functions. The
arrowhead indicates the direction of the call; the
function it points to is the one that receives the call. The
function making the call is known as the caller, while the
function receiving the call is known as the callee.

chaotic relaxation. An iterative relaxation method
which uses a combination of the Gauss-Seidel and
Jacobi-Seidel methods. The array of discrete values is
divided into sub-regions that can be operated on in
parallel. The sub-region boundaries are calculated using
Jacobi-Seidel, whereas the sub-region interiors are
calculated using Gauss-Seidel. See also Gauss-Seidel.

client. A function that requests services from a server
and makes them available to the user.

cluster. A group of processors interconnected through
a high-speed network that can be used for
high-performance computing. A cluster typically provides
excellent price/performance.

collective communication. A communication
operation that involves more than two processes or
tasks. Broadcasts, reductions, and the MPI_Allreduce
subroutine are all examples of collective communication
operations. All tasks in a communicator must participate.

© Copyright IBM Corp. 2000, 2001 235

|
|
|
|
|

command alias. When using the PE command line
debugger pdbx , you can create abbreviations for
existing commands using the pdbx alias command.
These abbreviations are known as command aliases.

Communication Subsystem (CSS). A component of
the IBM Parallel System Support Programs for AIX that
provides software support for the SP Switch. CSS
provides two protocols: Internet Protocol (IP) for
LAN-based communication and user space (US) as a
message-passing interface that is optimized for
performance over the switch. See also Internet Protocol
and user space.

communicator. An MPI object that describes the
communication context and an associated group of
processes.

compile. To translate a source program into an
executable program.

condition. One of a set of specified values that a data
item can assume.

control workstation. A workstation attached to the
RS/6000 SP SP that serves as a single point of control
allowing the administrator or operator to monitor and
manage the system using IBM Parallel System Support
Programs for AIX.

core dump. A process by which the current state of a
program is preserved in a file. Core dumps are usually
associated with programs that have encountered an
unexpected, system-detected fault, such as a
Segmentation Fault or a severe user error. The current
program state is needed for the programmer to
diagnose and correct the problem.

core file. A file that preserves the state of a program,
usually just before a program is terminated for an
unexpected error. See also core dump.

current context. When using the pdbx debugger,
control of the parallel program and the display of its
data can be limited to a subset of the tasks belonging to
that program. This subset of tasks is called the current
context. You can set the current context to be a single
task, multiple tasks, or all the tasks in the program.

D
data decomposition. A method of breaking up (or
decomposing) a program into smaller parts to exploit
parallelism. One divides the program by dividing the
data (usually arrays) into smaller parts and operating on
each part independently.

data parallelism. Refers to situations where parallel
tasks perform the same computation on different sets of
data.

dbx. A symbolic command line debugger that is often
provided with UNIX systems. The PE command line
debugger pdbx is based on the dbx debugger.

debugger. A debugger provides an environment in
which you can manually control the execution of a
program. It also provides the ability to display the
program’ data and operation.

distributed shell (dsh). A PSSP command that lets
you issue commands to a group of hosts in parallel.
See IBM Parallel System Support Programs for AIX:
Command and Technical Reference for details.

domain name. The hierarchical identification of a host
system (in a network), consisting of human-readable
labels, separated by decimals.

E
environment variable. 1) A variable that describes the
operating environment of the process. Common
environment variables describe the home directory,
command search path, and the current time zone. 2) A
variable that is included in the current software
environment and is therefore available to any called
program that requests it.

Ethernet. A baseband local area network (LAN) that
allows multiple stations to access the transmission
medium at will without prior coordination, avoids
contention by using carrier sense and deference, and
resolves contention by using collision detection and
delayed retransmission. Ethernet uses carrier sense
multiple access with collision detection (CSMA/CD).

event. An occurrence of significance to a task — the
completion of an asynchronous operation such as an
input/output operation, for example.

executable. A program that has been link-edited and
therefore can be run in a processor.

execution. To perform the actions specified by a
program or a portion of a program.

expression. In programming languages, a language
construct for computing a value from one or more
operands.

F
fairness. A policy in which tasks, threads, or
processes must be allowed eventual access to a
resource for which they are competing. For example, if
multiple threads are simultaneously seeking a lock, no
set of circumstances can cause any thread to wait
indefinitely for access to the lock.

FDDI. See Fiber Distributed Data Interface.

236 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Fiber Distributed Data Interface (FDDI). An American
National Standards Institute (ANSI) standard for a local
area network (LAN) using optical fiber cables. An FDDI
LAN can be up to 100 kilometers (62 miles) and can
include up to 500 system units. There can be up to 2
kilometers (1.24 miles) between system units and
concentrators.

file system. In the AIX operating system, the collection
of files and file management structures on a physical or
logical mass storage device, such as a diskette or
minidisk.

fileset. 1) An individually-installable option or update.
Options provide specific functions. Updates correct an
error in, or enhance, a previously installed program. 2)
One or more separately-installable, logically-grouped
units in an installation package. See also licensed
program and package.

foreign host. See remote host.

FORTRAN. One of the oldest of the modern
programming languages, and the most popular
language for scientific and engineering computations. Its
name is a contraction of FORmula TRANslation. The
two most common FORTRAN versions are FORTRAN
77, originally standardized in 1978, and FORTRAN 90.
FORTRAN 77 is a proper subset of FORTRAN 90.

function call tree. A graphical representation of all the
functions and calls within an application, which appears
in the Xprofiler main window. The functions are
represented by green, solid-filled rectangles called
function boxes. The size and shape of each function
box indicates its CPU usage. Calls between functions
are represented by blue arrows, called call arcs, drawn
between the function boxes. See also call arcs.

function cycle. A chain of calls in which the first caller
is also the last to be called. A function that calls itself
recursively is not considered a function cycle.

functional decomposition. A method of dividing the
work in a program to exploit parallelism. One divides the
program into independent pieces of functionality, which
are distributed to independent processors. This method
is in contrast to data decomposition, which distributes
the same work over different data to independent
processors.

functional parallelism. Refers to situations where
parallel tasks specialize in particular work.

G
Gauss-Seidel. An iterative relaxation method for
solving Laplace’s equation. It calculates the general
solution by finding particular solutions to a set of
discrete points distributed throughout the area in
question. The values of the individual points are
obtained by averaging the values of nearby points.

Gauss-Seidel differs from Jacobi-Seidel in that, for the
i+1st iteration, Jacobi-Seidel uses only values calculated
in the ith iteration. Gauss-Seidel uses a mixture of
values calculated in the ith and i+1st iterations.

global max. The maximum value across all
processors for a given variable. It is global in the sense
that it is global to the available processors.

global variable. A variable defined in one portion of a
computer program and used in at least one other
portion of the computer program.

gprof. A UNIX command that produces an execution
profile of C, COBOL, FORTRAN, or Pascal programs.
The execution profile is in a textual and tabular format.
It is useful for identifying which routines use the most
CPU time. See the man page on gprof .

graphical user interface (GUI). A type of computer
interface consisting of a visual metaphor of a real-world
scene, often of a desktop. Within that scene are icons,
which represent actual objects, that the user can access
and manipulate with a pointing device.

GUI. See Graphical user interface.

H
HIPPI. High performance parallel interface.

hook. A pdbx command that lets you re-establish
control over all tasks in the current context that were
previously unhooked with this command.

home node. The node from which an application
developer compiles and runs his program. The home
node can be any workstation on the LAN.

host. A computer connected to a network that provides
an access method to that network. A host provides
end-user services.

host list file. A file that contains a list of host names,
and possibly other information, that was defined by the
application which reads it.

host name. The name used to uniquely identify any
computer on a network.

hot spot. A memory location or synchronization
resource for which multiple processors compete
excessively. This competition can cause a
disproportionately large performance degradation when
one processor that seeks the resource blocks,
preventing many other processors from having it,
thereby forcing them to become idle.

I
IBM Parallel Environment for AIX (PE). A licensed
program that provides an execution and development

Glossary 237

|
|
|
|
|
|
|

environment for parallel C, C++, and FORTRAN
programs. PE also includes tools for debugging,
profiling, and tuning parallel programs.

installation image. A file or collection of files that are
required in order to install a software product on a
RS/6000 workstation or on SP system nodes. These
files are in a form that allows them to be installed or
removed with the AIX installp command. See also
fileset, licensed program, and package.

IBM Parallel System Support Programs for AIX
(PSSP). A comprehensive suite of applications that is
used to manage an RS/6000 SP system as a
full-function parallel-processing system. PSSP provides
a single point of control for administrative tasks and
helps increase productivity by letting administrators
view, monitor, and control how the system operates.

Internet. The collection of worldwide networks and
gateways that function as a single, cooperative virtual
network.

Internet Protocol (IP). 1) The TCP/IP protocol that
provides packet delivery between the hardware and
user processes. 2) The SP Switch library, provided with
the IBM Parallel System Support Programs for AIX, that
follows the IP protocol of TCP/IP.

IP. Internet Protocol.

J
Jacobi-Seidel. See Gauss-Seidel.

Jumpshot. A public domain tool, developed at
Argonne National Laboratory, for visualizing program
performance. Jumpshot reads files in a scalable log file
format, called SLOG. The PE Benchmarker toolset
provides the slogmerge utility to enable you to convert
UTE files into the SLOG format.

K
Kerberos. A publicly available security and
authentication product that works with the IBM Parallel
System Support Programs for AIX software to
authenticate the execution of remote commands.

kernel. The core portion of the UNIX operating system
that controls the resources of the CPU and allocates
them to the users. The kernel is memory-resident, is
said to run in kernel mode (in other words, at higher
execution priority level than user mode), and is
protected from user tampering by the hardware.

L
LAPI. See low-level communication API.

Laplace’s equation. A homogeneous partial
differential equation used to describe heat transfer,
electric fields, and many other applications.

The dimension-free version of Laplace’s equation is:

latency. The time interval between the instant at which
an instruction control unit initiates a call for data
transmission, and the instant at which the actual
transfer of data (or receipt of data at the remote end)
begins. Latency is related to the hardware
characteristics of the system and to the different layers
of software that are involved in initiating the task of
packing and transmitting the data.

licensed program. A collection of software packages
sold as a product that customers pay for to license. A
licensed program can consist of packages and filesets a
customer would install. These packages and filesets
bear a copyright and are offered under the terms and
conditions of a licensing agreement. See also fileset
and package.

lightweight corefiles. An alternative to standard AIX
corefiles. Corefiles produced in the Standardized
Lightweight Corefile Format provide simple process
stack traces (listings of function calls that led to the
error) and consume fewer system resources than
traditional corefiles.

LoadLeveler. A job management system that works
with POE to let users run jobs and match processing
needs with system resources, in order to make better
use of the system.

local variable. A variable that is defined and used
only in one specified portion of a computer program.

loop unrolling. A program transformation that makes
multiple copies of the body of a loop, also placing the
copies within the body of the loop. The loop trip count
and index are adjusted appropriately so the new loop
computes the same values as the original. This
transformation makes it possible for a compiler to take
additional advantage of instruction pipelining, data
cache effects, and software pipelining.

See also optimization.

low-level communication API (LAPI). A low-level
(low overhead) message-passing protocol that uses a
one-sided, active-message-style interface to transfer
messages between processes. LAPI is an IBM
proprietary interface that exploits the SP Switch
adapters.

M
menu. A list of options displayed to the user by a data
processing system, from which the user can select an
action to be initiated.

238 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|

message catalog. A file created using the AIX
Message Facility from a message source file that
contains application error and other messages, which
can later be translated into other languages without
having to recompile the application source code.

message passing. Refers to the process by which
parallel tasks explicitly exchange program data.

message passing client interface (MPCI). The
primary interface to the point¡to¡point message-passing
protocols that support the SP Switch and the SP
Switch2.

message passing interface (MPI). An
industry-standard message-passing protocol that
typically uses a two-sided send-receive model to
transfer messages between processes.

MIMD. See multiple instruction stream, multiple data
stream.

MPCI. See message passing client interface.

MPMD. See Multiple program, multiple data.

multiple program, multiple data (MPMD). A parallel
programming model in which different, but related,
programs are run on different sets of data.

MPI. See message passing interface.

multiple instruction stream, multiple data stream
(MIMD). A parallel programming model in which
different processors perform different instructions on
different sets of data.

N
netCDF file. See network Common Data Form
(netCDF) file.

network. An interconnected group of nodes, lines, and
terminals. A network provides the ability to transmit data
to and receive data from other systems and users.

network Common Data Form (netCDF) file. A file
using the netCDF format developed at the Unidata
Program Center — a program funded by the National
Science Foundation (NSF). In the PE Benchmarker
toolset, the PVT reads netCDF files containing hardware
and operating system profiles output by the PCT.

Network Information Services (NIS). A set of UNIX
network services (for example, a distributed service for
retrieving information about the users, groups, network
addresses, and gateways in a network) that resolve
naming and addressing differences among computers in
a network.

NIS. See Network Information Services.

node. (1) In a network, the point where one or more
functional units interconnect transmission lines. A
computer location defined in a network. (2) In terms of
the RS/6000 SP, a single location or workstation in a
network. An SP node is a physical entity (a processor).

node ID. A string of unique characters that identifies
the node on a network.

nonblocking operation. An operation, such as
sending or receiving a message, that returns
immediately whether or not the operation was
completed. For example, a nonblocking receive will not
wait until a message is sent, but a blocking receive will
wait. A nonblocking receive will return a status value
that indicates whether or not a message was received.

O
object code. The result of translating a computer
program to a relocatable, low-level form. Object code
contains machine instructions, but symbol names (such
as array, scalar, and procedure names), are not yet
given a location in memory. Contrast with source code.

optimization. A widely-used (though not strictly
accurate) term for program performance improvement,
especially for performance improvement done by a
compiler or other program translation software. An
optimizing compiler is one that performs extensive code
transformations in order to obtain an executable that
runs faster but gives the same answer as the original.
Such code transformations, however, can make code
debugging and performance analysis very difficult
because complex code transformations obscure the
correspondence between compiled and original source
code.

option flag. Arguments or any other additional
information that a user specifies with a program name.
Also referred to as parameters or command line
options.

P
package. A number of filesets that have been
collected into a single installable image of licensed
programs. Multiple filesets can be bundled together for
installing groups of software together. See also fileset
and licensed program.

Parallel Environment. See IBM Parallel Environment
for AIX.

parallelism. The degree to which parts of a program
may be concurrently executed.

parallelize. To convert a serial program for parallel
execution.

Glossary 239

|
|
|
|

|
|
|
|

|

|
|

|
|
|
|
|
|

|
|

Parallel System Support Programs. See IBM Parallel
System Support Programs for AIX.

Parallel Operating Environment (POE). An execution
environment that smooths the differences between
serial and parallel execution. POE lets you submit and
manage parallel jobs.

parameter. (1) In FORTRAN, a symbol that is given a
constant value for a specified application. (2) An item in
a menu for which the operator specifies a value or for
which the system provides a value when the menu is
interpreted. (3) A name in a procedure that is used to
refer to an argument that is passed to the procedure.
(4) A particular piece of information that a system or
application program needs to process a request.

partition. (1) A fixed-size division of storage. (2) In
terms of the RS/6000 SP, a logical definition of nodes to
be viewed as one system or domain. System
partitioning is a method of organizing the SP into groups
of nodes for testing or running different levels of
software of product environments.

Partition Manager. The component of the Parallel
Operating Environment (POE) that allocates nodes, sets
up the execution environment for remote tasks, and
manages distribution or collection of standard input
(STDIN), standard output (STDOUT), and standard error
(STDERR).

PCT. See Performance Collection Tool.

pdbx. The parallel, symbolic command line debugging
facility of PE. pdbx is based on the dbx debugger and
has a similar interface.

PE. See IBM Parallel Environment for AIX.

PE Benchmarker. A suite of applications and utilities
that you can use to analyze the performance of
programs run within IBM Parallel Environment for AIX.
The PE Benchmarker toolset consists of the
Performance Collection Tool (PCT), the Profile
Visualization Tool (PVT), and a set of Unified Trace
Environment (UTE) utilities.

Performance Collection Tool (PCT). Part of the PE
Benchmarker toolset, this tool enables you to collect
either MPI and user event data or hardware and
operating system profiles for one or more application
processes. Because it is built on dynamic
instrumentation technology, the PCT enables you to
insert instrumentation probes into a target application
while the target application is running.

performance monitor. A utility that displays how
effectively a system is being used by programs.

PID. See process identifier.

point-to-point communication. A communication
operation which involves exactly two processes or

tasks. One process initiates the communication through
a send operation. The partner process issues a receive
operation to accept the data being sent.

POE. See Parallel Operating Environment.

pool. Groups of nodes on an SP that are known to
LoadLeveler, and are identified by a pool name or
number.

procedure. (1) In a programming language, a block,
with or without formal parameters, whose execution is
invoked by means of a procedure call. (2) A set of
related control statements that cause one or more
programs to be performed.

process. A program or command that is actually
running the computer. It consists of a loaded version of
the executable file, its data, its stack, and its kernel data
structures that represent the process’s state within a
multitasking environment. The executable file contains
the machine instructions (and any calls to shared
objects) that will be executed by the hardware. A
process can contain multiple threads of execution.

The process is created via a fork() system call and
ends using an exit() system call. Between fork and
exit , the process is known to the system by a unique
process identifier (PID).

Each process has its own virtual memory space and
cannot access another process’s memory directly.
Communication methods across processes include
pipes, sockets, shared memory, and message passing.

process identifier (PID). An integer used by the Unix
kernel to uniquely identify a process. PIDs are returned
by the fork system call and can be passed to wait() or
kill() to perform actions on the given process.

prof. A utility that produces an execution profile of an
application or program. prof is useful for identifying
which routines use the most CPU time.

Profile Visualization Tool (PVT). Part of the PE
Benchmarker toolset, this tool reads the hardware or
operating system profiles output by the PCT in netCDF
format. The PVT enables you to summarize the
collected information in reports.

profiling. The act of determining how much CPU time
is used by each function or subroutine in a program.
The histogram or table produced is called the execution
profile.

Program Marker Array. An X-Windows run time
monitor tool provided with Parallel Operating
Environment, used to provide immediate visual
feedback on a program’s execution.

PSSP. See IBM Parallel System Support Programs for
AIX.

240 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

pthread. A thread that conforms to the POSIX Threads
Programming Model.

PVT. See Profile Visualization Tool.

R
reduced instruction set computer (RISC). A
computer that uses a small, simplified set of
frequently-used instructions for rapid execution.

reduction operation. An operation, usually
mathematical, that reduces a collection of data by one
or more dimensions. For example, the arithmetic SUM
operation is a reduction operation which reduces an
array to a scalar value. Other reduction operations
include MAXVAL and MINVAL.

remote host. Any host on a network except the one at
which a particular operator is working.

remote shell (rsh). A command supplied with both AIX
and the IBM Parallel System Support Programs for AIX
that lets you issue commands on a remote host.

Report. In Xprofiler, a tabular listing of performance
data that is derived from the gmon.out files of an
application. Xprofiler generates five types of reports.
Each type of report presents different statistical
information for an application.

RISC. See reduced instruction set computer.

RS/6000 SP. A scalable parallel system arranged in
various physical configurations that provides a
high-powered computing environment.

S
segmentation fault. A system-detected error, usually
caused by referencing an non-valid memory address.

server. A functional unit that provides shared services
to workstations over a network — a file server, a print
server, or a mail server, for example.

shell script. A sequence of commands that are to be
executed by a shell interpreter such as the Bourne shell
(sh), the C shell (csh), or the Korn shell (ksh). Script
commands are stored in a file in the same form as if
they were typed at a terminal.

signal handling. A type of communication that is used
by message passing libraries. Signal handling involves
using AIX signals as an asynchronous way to move
data in and out of message buffers.

single program, multiple data (SPMD). A parallel
programming model in which different processors
execute the same program on different sets of data.

SLOG file. A file using the scalable log file format. The
Jumpshot tool from Argonne National Laboratory reads
files of this format. The slogmerge utility of the PE
Benchmarker toolset converts UTE files into the SLOG
file format.

source code. The input to a compiler or assembler,
written in a source language. Contrast with object code.

source line. A line of source code.

SP. See RS/6000 SP.

SPMD. See single program, multiple data.

SP Switch. The high-performance message-passing
network of the RS/6000 SP system that connects all
processor nodes.

standard error (STDERR). (1) An output file intended
to be used for error messages for C programs. (2) In
many workstation-based operating systems, the output
stream to which error messages or diagnostic
messages are sent.

standard input (STDIN). In the AIX operating system,
the primary source of data entered into a command.
Standard input comes from the keyboard unless
redirection or piping is used, in which case standard
input can be from a file or the output from another
command.

standard output (STDOUT). In the AIX operating
system, the primary destination of data produced by a
command. Standard output goes to the display unless
redirection or piping is used, in which case standard
output can go to a file or to another command.

STDERR. See standard error.

STDIN. See standard input.

STDOUT. See standard output.

stencil. A pattern of memory references used for
averaging. A 4-point stencil in two dimensions for a
given array cell, x(i,j), uses the four adjacent cells,
x(i-1,j), x(i+1,j), x(i,j-1), and x(i,j+1).

subroutine. (1) A sequence of instructions whose
execution is invoked by a call. (2) A sequenced set of
instructions or statements that may be used in one or
more computer programs and at one or more points in a
computer program. (3) A group of instructions that can
be part of another routine or can be called by another
program or routine.

synchronization. The action of forcing certain points
in the execution sequences of two or more
asynchronous procedures to coincide in time.

system administrator. (1) The person at a computer
installation who designs, controls, and manages the use

Glossary 241

|

|
|
|

|
|
|
|
|

|

|
|
|
|
|

|

of the computer system. (2) The person who is
responsible for setting up, modifying, and maintaining
the Parallel Environment.

System Data Repository. A component of the IBM
Parallel System Support Programs for AIX software that
provides configuration management for the SP system.
It manages the storage and retrieval of system data
across the control workstation, file servers, and nodes.

T
target application. See DPCL target application.

task. A unit of computation analogous to an AIX
process.

thread. A single, separately dispatchable, unit of
execution. There may be one or more threads in a
process, and each thread is executed by the operating
system concurrently.

tracing. In PE, the collection of information about the
execution of the program. This information is
accumulated into a trace file that can later be examined.

tracepoint. Tracepoints are places in the program
that, when reached during execution, cause the
debugger to print information about the state of the
program.

trace record. In PE, a collection of information about a
specific event that occurred during the execution of your
program. For example, a trace record is created for
each send and receive operation that occurs in your
program (this is optional and may not be appropriate).
These records are then accumulated into a trace file
that can later be examined.

U
Unified Trace Environment (UTE). An environment
that is used to generate, analyze, and visualize trace
events for applications running on IBM RS/6000 SP
systems.

unrolling loops. See loop unrolling.

US. See user space.

user. (1) A person who requires the services of a
computing system. (2) Any person or any thing that may
issue or receive commands and message to or from the
information processing system.

user space (US). A version of the message passing
library that is optimized for direct access to the SP
Switch, that maximizes the performance capabilities of
the SP hardware.

UTE. See Unified Trace Environment.

UTE interval files. A Unified Trace Environment file
that is distinct from an AIX trace file by the inclusion of
interval information. While an AIX trace file has a time
stamp indicating the point in time when an event
occurred, UTE interval files also determine how long an
event lasts before encountering the next event.
Because they include this duration information, UTE
interval files are easier to visualize than traditional AIX
event trace files.

utility program. A computer program in general
support of computer processes; for example, a
diagnostic program, a trace program, a sort program.

utility routine. A routine in general support of the
processes of a computer; for example, an input routine.

V
variable. (1) In programming languages, a named
object that may take different values, one at a time. The
values of a variable are usually restricted to one data
type. (2) A quantity that can assume any of a given set
of values. (3) A name used to represent a data item
whose value can be changed while the program is
running. (4) A name used to represent data whose value
can be changed, while the program is running, by
referring to the name of the variable.

view. (1) To display and look at data on screen.

(2) A special display of data, created as needed. A view
temporarily ties two or more files together so that the
combined files can be displayed, printed, or queried.
The user specifies the fields to be included. The original
files are not permanently linked or altered; however, if
the system allows editing, the data in the original files
will be changed.

X
X Window System. The UNIX industry’s graphics
windowing standard that provides simultaneous views of
several executing programs or processes on high
resolution graphics displays.

Xprofiler. An AIX tool that is used to analyze the
performance of both serial and parallel applications, via
a graphical user interface. Xprofiler provides quick
access to the profiled data, so that the functions that
are the most CPU-intensive can be easily identified.

242 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|
|
|

|

|
|
|
|
|
|
|
|
|

Bibliography

This bibliography helps you find product documentation related to the RS/6000 SP
hardware and software products.

You can find most of the IBM product information for RS/6000 SP products on the
World Wide Web. Formats for both viewing and downloading are available.

PE documentation is shipped with the PE licensed program in a variety of formats
and can be installed on your system. See “Accessing PE documentation online” and
“Parallel Environment (PE) publications” on page 244 for more information.

This bibliography also contains a list of non-IBM publications that discuss parallel
computing and other topics related to the RS/6000 SP.

Information formats
Documentation supporting RS/6000 SP software licensed programs is no longer
available from IBM in hardcopy format. However, you can view, search, and print
documentation in the following ways:

v On the World Wide Web

v Online (on the product media and via the SP Resource Center)

Finding documentation on the World Wide Web
Most of the RS/6000 SP hardware and software books are available from the IBM
Web site at:

http://www.ibm.com/servers/eserver/pseries

The serial and parallel programs that you find in the IBM Parallel Environment for
AIX: Hitchhiker’s Guide are also available from this Web site, in the same location
as the PE online library.

You can view a book, download a Portable Document Format (PDF) version of it, or
download the sample programs from the IBM Parallel Environment for AIX:
Hitchhiker’s Guide.

At the time this manual was published, the Web address of the RS/6000 SP
Product Documentation Library page was:

http://www.rs6000.ibm.com/resource/aix_resource/sp_books

However, the structure of the IBM Web site may change over time.

Accessing PE documentation online
On the same medium as the PE product code, IBM ships PE man pages, HTML
files, and PDF files. To use the PE online documentation, you must first install these
filesets:

v ppe.html

v ppe.man

v ppe.pdf

© Copyright IBM Corp. 2000, 2001 243

|

|

To view the PE HTML publications, you need access to an HTML document
browser such as Netscape. The HTML files and an index that links to them are
installed in the /usr/lpp/ppe.html directory. Once the HTML files are installed, you
can also view them from the RS/6000 SP Resource Center.

To view the PE PDF publications, you need access to the Adobe Acrobat Reader.
The Acrobat Reader is shipped with the AIX Bonus Pack and is also freely available
for downloading from the Adobe Web site at:

http://www.adobe.com

To successfully print a large PDF file (approximately 300 or more pages) from the
Adobe Acrobat reader, you may need to select the “Download Fonts Once” button
on the Print window.

If you have installed the SP Resource Center on your SP system, you can access it
by entering this command:
/usr/lpp/ssp/bin/resource_center

If you have the SP Resource Center on CD-ROM, see the readme.txt file for
information about how to run it.

RS/6000 SP publications

SP planning publications
The following publications are related to this book only if you run parallel programs
on the RS/6000 SP. These books are not related if you use a network cluster that is
made up of IBM Eserver pSeries processors, IBM RS/6000 processors, or both.

v IBM RS/6000 SP: Planning, Volume 1, Hardware and Physical Environment,
GA22-7280

v IBM RS/6000 SP: Planning, Volume 2, Control Workstation and Software
Environment, GA22-7281

SP software publications

GPFS publications
v IBM General Parallel File System for AIX: Administration and Programming

Reference, SA22-7452

v IBM General Parallel File System for AIX: Concepts, Planning, and Installation
Guide, GA22-7453

v IBM General Parallel File System for AIX: Data Management API Guide,
GA22-7435

v IBM General Parallel File System for AIX: Problem Determination Guide,
GA22-7434

LoadLeveler publications
v IBM LoadLeveler for AIX 5L: Diagnosis and Messages Guide, GA22-7277

v IBM LoadLeveler for AIX 5L: Using and Administering, SA22-7311

Parallel Environment (PE) publications
v IBM Parallel Environment for AIX: Hitchhiker’s Guide, SA22-7424

v IBM Parallel Environment for AIX: Installation, GA22-7418

244 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

|
|
|

|
|

|
|
|

|
|

|
|

|
|

v IBM Parallel Environment for AIX: Messages, GA22-7419

v IBM Parallel Environment for AIX: MPI Programming Guide, SA22-7422

v IBM Parallel Environment for AIX: MPI Subroutine Reference, SA22-7423

v IBM Parallel Environment for AIX: Operation and Use, Volume 1, SA22-7425

v IBM Parallel Environment for AIX: Operation and Use, Volume 2, SA22-7426

PSSP publications
The following publications are related to this book only if you run parallel programs
on the RS/6000 SP. These books are not related if you use a network cluster that is
made up of IBM Eserver pSeries processors, IBM RS/6000 processors, or both.

v IBM Parallel System Support Programs for AIX: Administration Guide, SA22-7348

v IBM Parallel System Support Programs for AIX: Command and Technical
Reference, SA22-7351

v IBM Parallel System Support Programs for AIX: Diagnosis Guide, GA22-7350

v IBM Parallel System Support Programs for AIX: Installation and Migration Guide,
GA22-7347

v IBM Parallel System Support Programs for AIX: Messages Reference,
GA22-7352

v IBM Parallel System Support Programs for AIX: Planning, Volume 2, GA22-7281

v IBM Parallel System Support Programs for AIX: Managing Shared Disks,
SA22-7349

RS/6000 Cluster Technology (RSCT) publications
v IBM RS/6000 Cluster Technology: Event Management Programming Guide and

Reference, SA22-7354

v IBM RS/6000 Cluster Technology: Group Services Programming Guide and
Reference, SA22-7355

v IBM RS/6000 Cluster Technology: First Failure Data Capture Programming Guide
and Reference, SA22-7454

AIX publications
You can find links to the latest AIX publications on the IBM Web site at:

http://www.ibm.com/servers/aix/library/techpubs.html

DCE publications
You can view a DCE book or download a PDF version of it from the IBM Web site
at:

http://www.ibm.com/software/network/dce/library

Red books
IBM’s International Technical Support Organization (ITSO) has published a number
of redbooks related to the RS/6000 SP. For a current list, see the IBM Web site at:

http://www.ibm.com/redbooks

Non-IBM publications
Here are some non-IBM publications that you might find helpful.

Bibliography 245

|
|

|
|
|

|
|

|
|

|

|

|

|

v Almasi, G. and A. Gottlieb. Highly Parallel Computing, Benjamin-Cummings
Publishing Company, Inc., 1989.

v Bergmark, D., and M. Pottle. Optimization and Parallelization of a Commodity
Trade Model for the SP1. Cornell Theory Center, Cornell University, June 1994.

v Foster, I. Designing and Building Parallel Programs, Addison-Wesley, 1995.

v Gropp, William, Ewing Lusk, and Anthony Skjellum. Using MPI, The MIT Press,
1994.

As an alternative, you can use SR28-5757 to order this book through your IBM
representative or IBM branch office serving your locality.

v Koelbel, Charles H., David B. Loveman, Robert S. Schreiber, Guy L. Steele Jr.,
and Mary E. Zosel. The High Performance FORTRAN Handbook, The MIT Press,
1993.

v Message Passing Interface Forum, MPI: A Message-Passing Interface Standard,
Version 1.1, University of Tennessee, Knoxville, Tennessee, June 6, 1995.

v Message Passing Interface Forum, MPI-2: Extensions to the Message-Passing
Interface, Version 2.0, University of Tennessee, Knoxville, Tennessee, July 18,
1997.

v Pfister, Gregory, F. In Search of Clusters, Prentice Hall, 1998.

v Snir, M., Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack
Dongarra. MPI: The Complete Reference The MIT Press, 1996.

v Spiegel, Murray R. Vector Analysis McGraw-Hill, 1959.

Permission to copy without fee all or part of Message Passing Interface Forum
material is granted, provided the University of Tennessee copyright notice and the
title of the document appear, and notice is given that copying is by permission of
the University of Tennessee. ©1993, 1997 University of Tennessee, Knoxville,
Tennessee.

For more information about the Message Passing Interface Forum and the MPI
standards documents, see:

http://www.mpi-forum.org

246 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Index

A
abbreviated names xiv
acknowledgments 233
acronyms for product names xiv
adapter 213
address 8
alias subcommand (of the pdbx command) 169
application 1
argument 19
assign subcommand (of the pdbx command) 170
attach subcommand (of the pdbx command) 170
attribute subcommand (of the pdbx command) 170
audience of this book xiii

B
back subcommand (of the pdbx command) 171
Benchmarker toolset 97

illustration of 99
overview of 97

blocking read 16
blocking receive 24
blocking send 23

C
Call Graph Profile report 81
call subcommand (of the pdbx command) 171
calls between functions, how depicted 52
case subcommand (of the pdbx command) 172
catch subcommand (of the pdbx command) 172
clustering functions 71
command alias 2
command line options

Xprofiler 35
commands, PE 139
compiling applications for Xprofiler 34
condition subcommand (of the pdbx command) 172
connect subcommand (of the pct command) 111, 141
cont subcommand (of the pdbx command) 173
conventions xiv
current context 2
customizable resources for Xprofiler 215
customizing Xprofiler resources 215

D
data

basic 75
detailed 79
getting via reports 79
performance 75

dbx subcommand (of the pdbx command) 173
dbx subcommands 27, 175
debugging parallel programs 1

with pdbx 1
delete subcommand (of the pdbx command) 174

destroy subcommand (of the pct command) 124, 142
detach subcommand (of the pdbx command) 174
dhelp subcommand (of the pdbx command) 175
dialog window buttons, using 53
dialog window filters, using 54
disassembler code, viewing 90
disconnect subcommand (of the pct command) 124,

143
display, xprofiler 48
display memory subcommand (of the pdbx

command) 175
down subcommand (of the pdbx command) 176
dump subcommand (of the pdbx command) 176

E
Ethernet 213
event 2
executable 5
execution 1
exit subcommand (of the pct command) 125, 143
exit subcommand (of the pvt command) 138, 199
export subcommand (of the pvt command) 138, 199
expression 2

F
FDDI 213
file subcommand (of the pct command) 144
file subcommand (of the pdbx command) 176
filtering, function call tree 64
find subcommand (of the pct command) 145
finding objects in call tree 73
flag 1
Flat Profile report 79
Fortran 5
func subcommand (of the pdbx command) 176
function

context sensitive subcommands 2
function call tree

clustering 70
controlling graphic style 62
controlling orientation of 62
controlling representation of 63
displaying 65
excluding specific objects 65
filtering 64
including specific objects 65
manipulating 57
restoring 64
zooming in on 57

Function Index report 83
function subcommand (of the pct command) 145
functions, how depicted 51

© Copyright IBM Corp. 2000, 2001 247

G
global variable 22
goto subcommand (of the pdbx command) 177
gotoi subcommand (of the pdbx command) 177
group subcommand (of the pct command) 108, 147
group subcommand (of the pdbx command) 177

H
halt subcommand (of the pdbx command) 179
hardware counter groups

creating 228
default groups we provide 226

help
accessing PCT’s command-line help 108
accessing PCT’s GUI help 103
accessing PVT’s GUI help 134

help subcommand (of the pct command) 148
help subcommand (of the pdbx command) 179
home node 2
hook subcommand (of the pdbx command) 180
host list file 5

I
IBM Parallel Environment for AIX xiii
ignore subcommand (of the pdbx command) 180

L
library clusters, how depicted 53
Library Statistics report 85
list subcommand (of the pct command) 113, 148
list subcommand (of the pdbx command) 181
listi subcommand (of the pdbx command) 182
load subcommand (of the pct command) 110, 149
load subcommand (of the pdbx command) 182
load subcommand (of the pvt command) 137, 199
loading files from the Xprofiler GUI 38

specifying binary executable 40
specifying command line options 43
specifying profile data files 41

local variable 22
locating objects in call tree 73

M
map subcommand (of the pdbx command) 183
mixed system xiii
MPMD (Multiple Program Multiple Data) 4
mutex subcommand (of the pdbx command) 183

N
next subcommand (of the pdbx command) 183
nexti subcommand (of the pdbx command) 184
node 1

O
objects, locating in call tree 73
on subcommand (of the pdbx command) 184
online help

accessing PCT’s command-line help 108
accessing PCT’s GUI help 103
accessing PVT’s GUI help 134

optimization 1
option 1

P
Parallel Operating Environment (POE) xiii
parallel profiling capability 223
parallel programs 1

debugging 1
profiling 33

parameter 24
partition 1
Partition Manager 9
PCT See also ″Performance Collection Tool

(PCT)″ 100
pct command 102, 107, 140
PCT hardware counter groups

creating 228
default groups we provide 226

PCT script files, creating and running 125
PCT subcommands 141

(comment) 141
connect 111, 141
destroy 124, 142
disconnect 124, 143
exit 125, 143
file 144
find 145
function 145
group 108, 147
help 148
list 113, 148
load 110, 149
point 151
profile add 122, 152
profile remove 123, 154
profile set path 121, 154
profile show 154
resume 112, 155
run 125, 156
select 115, 156
set 156
show 157
start 111, 158
stdin 113, 158
suspend 112, 159
trace add 117, 119, 159
trace remove 119, 120, 161
trace set 116, 162
trace show 163
wait 164

pdbx Attach screen 8
pdbx command 164

248 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

pdbx debugger 1
accessing help for dbx subcommands 27
accessing help for pdbx subcommands 27
attach mode 6
checking event status 23
command context 1
controlling program execution 17
creating, removing, and listing aliases 28
deleting breakpoints 22
deleting events 22
deleting tracepoints 22
displaying source 26
displaying task states 10
displaying tasks 10
exiting pdbx 32
grouping tasks 14
hooking tasks 23
interrupting tasks 19
loading the partition 9
normal mode 4
overloaded symbols 31
reading subcommands from a command file 29
setting breakpoints 18
setting command context 14
setting tracepoints 20
specifying expressions 29
specifying variables on trace and stop

subcommands 21
starting pdbx 4
unhooking tasks 23
using pdbx 1
viewing program call stacks 24
viewing program variables 24

pdbx subcommands 1, 2, 15, 169
active 10
alias 28, 169
assign 170
attach 170
attribute 170
back 171
call 171
case 172
catch 172
condition 172
cont 173
context insensitive subcommands 2
dbx 173
delete 22, 174
detach 32, 174
dhelp 27, 175
display memory 175
down 176
dump 176
file 176
func 176
goto 177
gotoi 177
group 11, 177
halt 179
help 27, 179
hook 23, 180

pdbx subcommands (continued)
ignore 180
list 26, 181
listi 182
load 9, 182
map 183
mutex 183
next 183
nexti 184
on 14, 184
overview 1
print 24, 186
quick reference listing 2
quit 32, 186
registers 187
return 187
search 187
set 188
sh 188
skip 188
source 188
status 23, 189
step 189
stepi 190
stop 18, 190
tasks 191
thread 192
trace 20, 193
unalias 28, 195
unhook 23, 195
unset 196
up 196
use 196
whatis 196
where 24, 197
whereis 197
which 197

PE Benchmarker toolset 97
illustration of 99
overview of 97

PE commands 139
pct command 102, 107, 140
pdbx 164
pvt 198
pvt command 132, 137
slogmerge 130, 201
uteconvert 128, 203
utemerge 205
utestats 128, 207
xprofiler 209

Performance Collection Tool (PCT) 100
application, connecting to an 111
application, disconnecting 124
application, loading 110
application, starting 111
application, terminating 124
command-line interface of 105
execution, resuming application 112
execution, suspending application 112
exiting 125
graphical user interface of 100

Index 249

Performance Collection Tool (PCT) (continued)
grouping tasks 108
help, accessing 103, 108
MPI trace probes, adding 117
MPI trace probes, removing 119
preferences, setting 116
probe type, selecting 115
profile probes, adding 122
profile probes, removing 123
profile probes, setting output location for 121
script files, creating and running 125
source code, displaying application 113
standard input, sending to application 113
starting (in command-line mode) 107
starting (in graphical user interface mode) 102
user markers, adding 119
user markers, removing 120

performance data, getting 75
POE command-line flags 213

-procs 5
POE environment variables

MP_DBXPROMPTMOD 168
MP_DEBUG_INITIAL_STOP 31, 168
MP_EUILIBPATH 223
MP_PROCS 5

point subcommand (of the pct command) 151
pool 213
preface xiii
prerequisite knowledge for this book xiii
print subcommand (of the pdbx command) 186
procedure 2
profile add subcommand (of the pct command) 122,

152
profile remove subcommand (of the pct

command) 123, 154
profile set path subcommand (of the pct

command) 121, 154
profile show subcommand (of the pct command) 154
Profile Visualization Tool (PVT) 131

command-line interface of 136
graphical user interface of 131
help, accessing 134
starting (in command-line mode) 137
starting (in graphical user interface mode) 132

profiling parallel programs 33
PVT See also ″Profile Visualization Tool (PVT)″ 131
pvt command 132, 137, 198
PVT subcommands 199

exit 138, 199
export 138, 199
load 137, 199
report 137, 199
sum 137, 200

Q
quit subcommand (of the pdbx command) 186

R
radio buttons, using 54
registers subcommand (of the pdbx command) 187
remote node 2
report subcommand (of the pvt command) 137, 199
reports

Call Graph Profile 81
Flat Profile 79
Function Index 83
Library Statistics 85
saving to a file 86

reports, getting data from 79
Resource Manager 9
resource settings 215
resource variables, Xprofiler 216
resources, customizing Xprofiler 215
resume subcommand (of the pct command) 112, 155
return subcommand (of the pdbx command) 187
run subcommand (of the pct command) 125, 156

S
save dialog windows, using 54
saving screen images of profiled data 92
screen images, saving 92
search engine, using 54
search file sequence, setting 46
search subcommand (of the pdbx command) 187
select subcommand (of the pct command) 115, 156
serial program 223
server 2
set subcommand (of the pct command) 156
set subcommand (of the pdbx command) 188
sh subcommand (of the pdbx command) 188
show subcommand (of the pct command) 157
skip subcommand (of the pdbx command) 188
sliders, using 54
slogmerge command 130, 201
source code 5
source code, viewing 89
source line 18
source subcommand (of the pdbx command) 188
SPMD (Single Program Multiple Data) 4
standard input (STDIN) 16
standard output (STDOUT) 5
start subcommand (of the pct command) 111, 158
starting Xprofiler 35
status subcommand (of the pdbx command) 189
stdin subcommand (of the pct command) 113, 158
step subcommand (of the pdbx command) 189
stepi subcommand (of the pdbx command) 190
stop subcommand (of the pdbx command) 190
subcommands 27, 169

dbx 27, 175
pdbx 27, 169

sum subcommand (of the pvt command) 137, 200
suspend subcommand (of the pct command) 112, 159

250 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

T
task 1
tasks subcommand (of the pdbx command) 191
thread subcommand (of the pdbx command) 192
trace add subcommand (of the pct command) 117,

119, 159
trace remove subcommand (of the pct command) 119,

120, 161
trace set subcommand (of the pct command) 116, 162
trace show subcommand (of the pct command) 163
trace subcommand (of the pdbx command) 193
trademarks 232

U
unalias subcommand (of the pdbx command) 195
unclustering functions 72
unhook subcommand (of the pdbx command) 195
unset subcommand (of the pdbx command) 196
up subcommand (of the pdbx command) 196
use subcommand (of the pdbx command) 196
user 2
UTE interval files

converting AIX trace files into 128
converting info SLOG files 130
generating statistics tables from 128

UTE utilities 126
uteconvert command 128, 203
utemerge command 205
utestats command 128, 207

V
variable 11

W
wait subcommand (of the pct command) 164
whatis subcommand (of the pdbx command) 196
where subcommand (of the pdbx command) 197
whereis subcommand (of the pdbx command) 197
which subcommand (of the pdbx command) 197

X
Xprofiler 33

command line options 35
compiling applications 34
customizable resources 215
display 48
hidden menus 50
loading files from the GUI 38
main menus 49
main window 48
requirements and limitations 33
resource variables 216
setting search file sequence 46
starting 35
using 53
versus gprof 34

xprofiler command 209
Xprofiler resources, customizing 215

Z
zooming, function call tree 57

Index 251

252 IBM PE for AIX V3R2.0: Operation and Use, Vol. 2

Readers’ comments – We’d like to hear from you

IBM Parallel Environment for AIX
Operation and Use, Volume 2
Version 3 Release 2

Publication No. SA22-7426-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7426-01

SA22-7426-01

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie NY 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Program Number: 5765-D93

SA22-7426-01

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	How this book is organized
	Conventions and terminology used in this book
	Abbreviated names

	How to send your comments
	National language support
	What's new in Parallel Environment 3.2?
	New PE Benchmarker tools
	Improved parallel checkpointing capabilities
	MPI enhancements
	Additional command for starting MPI jobs
	Support for 64–bit applications
	MPI-IO performance enhancements
	Extended collective communication
	C++ and FORTRAN90 support
	MPI-2 external interfaces support
	Miscellaneous MPI-2 enhancements

	DPCL is now an open source offering
	Removal of pedb debugger support
	Removal of VT trace collection support
	Commands no longer supported

	Chapter 1. Using the pdbx debugger
	pdbx subcommands
	Starting the pdbx debugger
	Normal mode
	Attach mode
	Attach screen
	Other compiling options
	Command line arguments

	Loading the partition with the load subcommand
	Displaying tasks and their states
	Grouping tasks
	Syntax for group_name
	Syntax for task_list
	Adding a task to a task group
	Deleting tasks from a task group
	Changing the name of a task group
	Listing task groups
	Setting command context
	Context switch when blocked

	Controlling program execution
	Setting breakpoints
	Interrupting tasks
	Setting tracepoints
	Specifying variables on the trace and stop subcommands
	Deleting pdbx events
	Checking event status
	Unhooking and hooking tasks

	Examining program data
	Viewing program call stacks
	Viewing program variables
	Displaying source

	Other key features
	Accessing help for pdbx subcommands
	Accessing help for dbx subcommands
	Creating, removing, and listing command aliases
	Reading subcommands from a command file
	Specifying expressions

	Other important notes on pdbx
	Initial breakpoint
	Overloaded symbols

	Exiting pdbx

	Chapter 2. Profiling parallel programs with Xprofiler
	Before you begin
	About Xprofiler
	Requirements and limitations
	Xprofiler versus gprof
	Compiling applications to be profiled

	Starting Xprofiler
	Xprofiler command line options
	Loading files from the Xprofiler GUI
	Specifying the binary executable
	Specifying the profile data file(s)
	Specifying command line options (from the GUI)

	Setting the file search sequence
	Default paths
	Alternative paths

	Understanding the Xprofiler display
	The Xprofiler main window
	Xprofiler main menus
	Xprofiler hidden menus
	Display Status field
	How functions are depicted
	How calls between functions are depicted
	How library clusters are depicted

	Using the Xprofiler graphical user interface
	Using the dialog window buttons
	OK
	Apply
	Reset
	Cancel
	Help
	Filter

	Using the search engine
	Using the save dialog windows
	Using the dialog window filters
	Using the Radio/Toggle buttons and sliders
	Using the buttons
	Using the sliders

	Manipulating the function call tree
	Zooming in on the function call tree
	Controlling how the display is updated

	Other viewing options
	Controlling the graphic style of the function call tree
	Controlling the orientation of the function call tree
	Controlling the representation of the function call tree

	Filtering what you see
	Restoring the status of the function call tree
	Displaying the entire function call tree
	Excluding and including specific objects

	Clustering libraries together
	Clustering functions
	Unclustering functions

	Locating specific objects in the function call tree
	Locating and displaying parent functions
	Locating and displaying child functions
	Locating and displaying ancestor functions
	Locating and displaying descendant functions
	Locating and displaying functions on a cycle

	Getting performance data for your application
	Getting basic data
	Basic function data
	Basic call data
	Basic cluster data
	Information boxes
	Function menu Statistics Report option
	Function Name
	Summary Data
	Statistics Data

	Getting detailed data via reports
	Flat Profile report
	Call Graph Profile report
	Function Index report
	Function Call Summary report
	Library Statistics report
	Saving reports to a file

	Looking at source code
	Viewing source code
	Viewing disassembler code

	Saving screen images of profiled data

	Chapter 3. Analyzing program performance using the PE Benchmarker toolset
	What is the PE Benchmarker?
	Using the Performance Collection Tool
	Using the Performance Collection Tool's Graphical User Interface
	Performance Collection Tool (Graphical User Interface) Overview
	Starting the Performance Collection Tool
	Accessing the Performance Collection Tool's online help system

	Using the Performance Collection Tool's Command-Line Interface
	Performance Collection Tool (Command-Line Interface) Overview
	Starting the Performance Collection Tool In Command-Line Mode
	Getting help on the PCT's command-line interface
	Grouping Tasks of a POE Application
	Loading and Starting a New Application
	Connecting to a Running Application
	Suspending and Resuming Application Execution
	Sending Standard Input Text to the Application
	Displaying the Contents of a Source File
	Selecting the Type of Probe Data To Be Collected
	Collecting MPI Trace and Custom User Marker Information
	Collecting Hardware and Operating System Profile Information
	Terminating Connected Processes
	Disconnecting From the Application
	Exiting the Performance Collection Tool
	Creating and Running PCT Script Files

	Creating, Converting, and Viewing Information Contained In, UTE Interval Files
	Converting AIX Trace Files Into UTE Interval Trace Files
	Generating Statistics Tables From UTE Interval Trace Files
	Converting UTE Interval Files Into SLOG Files Required By Argonne National Laboratory's Jumpshot Tool

	Using the Profile Visualization Tool
	Using the Profile Visualization Tool's Graphical User Interface
	Profile Visualization Tool (Graphical User Interface) Overview
	Starting the Profile Visualization Tool
	Accessing the Profile Visualization Tool's online help system

	Using the Profile Visualization Tool's Command Line Interface
	Profile Visualization Tool (Command Line Interface) Overview
	Starting the Profile Visualization Tool in Command-Line Mode
	Loading Files
	Creating a Summary File
	Generating Reports
	Exporting Files
	Exiting the Profile Visualization Tool

	Appendix A. Parallel environment tools commands
	pct
	Subcommands of the pct command
	comment subcommand (of the pct command)
	connect subcommand (of the pct command)
	destroy subcommand (of the pct command)
	disconnect subcommand (of the pct command)
	exit subcommand (of the pct command)
	file subcommand (of the pct command)
	find subcommand (of the pct command)
	function subcommand (of the pct command)
	group subcommand (of the pct command)
	help subcommand (of the pct command)
	list subcommand (of the pct command)
	load subcommand (of the pct command)
	point subcommand (of the pct command)
	profile add subcommand (of the pct command)
	profile remove subcommand (of the pct command)
	profile set path subcommand (of the pct command)
	profile show subcommand (of the pct command)
	resume subcommand (of the pct command)
	run subcommand (of the pct command)
	select subcommand (of the pct command)
	set subcommand (of the pct command)
	show subcommand (of the pct command)
	start subcommand (of the pct command)
	stdin subcommand (of the pct command)
	suspend subcommand (of the pct command)
	trace add subcommand (of the pct command)
	trace remove subcommand (of the pct command)
	trace set subcommand (of the pct command)
	trace show subcommand (of the pct command)
	wait subcommand (of the pct command)

	pdbx
	Subcommands of the pdbx command
	alias subcommand (of the pdbx command)
	assign subcommand (of the pdbx command)
	attach subcommand (of the pdbx command)
	attribute subcommand (of the pdbx command)
	back subcommand (of the pdbx command)
	call subcommand (of the pdbx command)
	case subcommand (of the pdbx command)
	catch subcommand (of the pdbx command)
	condition subcommand (of the pdbx command)
	cont subcommand (of the pdbx command)
	dbx subcommand (of the pdbx command)
	delete subcommand (of the pdbx command)
	detach subcommand (of the pdbx command)
	dhelp subcommand (of the pdbx command)
	display memory subcommand (of the pdbx command)
	down subcommand (of the pdbx command)
	dump subcommand (of the pdbx command)
	file subcommand (of the pdbx command)
	func subcommand (of the pdbx command)
	goto subcommand (of the pdbx command)
	gotoi subcommand (of the pdbx command)
	group subcommand (of the pdbx command)
	halt subcommand (of the pdbx command)
	help subcommand (of the pdbx command)
	hook subcommand (of the pdbx command)
	ignore subcommand (of the pdbx command)
	list subcommand (of the pdbx command)
	listi subcommand (of the pdbx command)
	load subcommand (of the pdbx command)
	map subcommand (of the pdbx command)
	mutex subcommand (of the pdbx command)
	next subcommand (of the pdbx command)
	nexti subcommand (of the pdbx command)
	on subcommand (of the pdbx command)
	print subcommand (of the pdbx command)
	quit subcommand (of the pdbx command)
	registers subcommand (of the pdbx command)
	return subcommand (of the pdbx command)
	search subcommand (of the pdbx command)
	set subcommand (of the pdbx command)
	sh subcommand (of the pdbx command)
	skip subcommand (of the pdbx command)
	source subcommand (of the pdbx command)
	status subcommand (of the pdbx command)
	step subcommand (of the pdbx command)
	stepi subcommand (of the pdbx command)
	stop subcommand (of the pdbx command)
	tasks subcommand (of the pdbx command)
	thread subcommand (of the pdbx command)
	trace subcommand (of the pdbx command)
	unalias subcommand (of the pdbx command)
	unhook subcommand (of the pdbx command)
	unset subcommand (of the pdbx command)
	up subcommand (of the pdbx command)
	use subcommand (of the pdbx command)
	whatis subcommand (of the pdbx command)
	where subcommand (of the pdbx command)
	whereis subcommand (of the pdbx command)
	which subcommand (of the pdbx command)

	pvt
	Subcommands of the pvt command
	exit subcommand (of the pvt command)
	export subcommand (of the pvt command)
	load subcommand (of the pvt command)
	report subcommand (of the pvt command)
	sum subcommand (of the pvt command)

	slogmerge
	uteconvert
	utemerge
	utestats
	xprofiler

	Appendix B. Command line flags for normal or attach mode
	Appendix C. Customizing Xprofiler resources
	Xprofiler resource variables
	Controlling fonts
	Controlling the appearance of the Xprofiler main window
	Controlling variables related to the File menu
	Controlling variables related to the Screen Dump option

	Controlling variables related to the View menu
	Controlling variables related to the Filter menu

	Appendix D. Profiling programs with the AIX prof and gprof commands
	Appendix E. Understanding and Creating PCT Hardware Counter Groups
	Understanding the Default Hardware Counter Groups
	Creating Hardware Counter Groups

	Notices
	Trademarks
	Acknowledgments

	Glossary
	Bibliography
	Information formats
	Finding documentation on the World Wide Web
	Accessing PE documentation online
	RS/6000 SP publications
	SP planning publications
	SP software publications
	GPFS publications
	LoadLeveler publications
	Parallel Environment (PE) publications
	PSSP publications
	RS/6000 Cluster Technology (RSCT) publications

	AIX publications
	DCE publications
	Red books
	Non-IBM publications

	Index
	Readers' comments – We'd like to hear from you

