
 
SBC-3 User’s Guide 

 

 
 

Written by 
 

Daryl Rictor 
 
 
 

V1.0 
Nov 9, 2008 



 2

CONTENTS 
 

Contents          2 
Disclaimer & Copyright Notice     3 
Overview         4    
CPU          4 
RAM          5 
EEPROM         5 
System Reset        6 
Power          6 
System timing        6 
XC95108 Memory and Video Controller   7 
Video Display        8 
Video Display Register      10 
Input/Output        11 
65C22         11   
65SPI         13   
SPI Operation                                     15 
ATMega8         16 
PC keyboard        18  
ASCII Code Conversion table                   19   
RS-232         22 
System Monitor Commands      23 
Example XMODEM file upload     24 
Example XMODEM file download     24 
System Monitor Routines      25 
Support Package           26 



 3

DISCLAIMER AND COPYRIGHT NOTICE 
 

This computer design, firmware, software, and its associated 
documentation are provided for your personal use only and appear 
here exclusively by permission of the copyright holder.  No 
commercial reproduction is authorized without prior written 
consent of the copyright holder.  Please contact the copyright 
holder before re-distributing, re-publishing or disseminating 
this copyrighted work. This work is not GPL or in the public 
domain. Please respect the author's copyright.                         
 
No warranty, either expressed or implied, is given.  I assume no 
liability for its use in any project or device.  Use this work 
at your own risk. 
 
Your use of this computer design and the associated programs 
indicates your acceptance of all license terms.   



 4

OVERVIEW 

 
SBC-3 is my latest design.  It is an expansion on the SBC-2 
board and incorporates two Complex Programmable Logic Devices 
(CPLDs).   The CPLDs replace dozens of discrete logic chips and 
increase performance and features.   
 
This is the System Block Diagram: 
 

 
 

 
 
 

CPU 

 
The microprocessor is the 65C02's big brother, the WDC 65C816.  
This processor is a 16-bit processor and can directly address 
16MB of memory space.  It is compatible with 65C02 code and 
includes more powerful 16-bit instructions as well.  While a 
65C02 can address more than 65k using bank switching techniques, 
the 65C816 can address SBC-3’s entire 512k directly. SBC-3 uses 
the 40-pin DIP package. 
 



 5

RAM 
 

The RAM is a Cypress CY7C1049D 512k x 8 static RAM with an 
access speed if 15ns.  It is packaged in a 36-pin SOP.  It is 
used for the microprocessor program and data storage, and for 
the video display buffers.  The Video system and the 
microprocessor access the RAM using an alternating access scheme 
that allows both to have full access without causing either to 
wait on the other.  This is done using the PHI2 clock signal.  
When the clock is low, the video system accesses RAM, and when 
it’s high, the 65C816 can access RAM. 
 
The RAM is located in the first 8 blocks of the 16MB space, from 
$00000 to $7FFFF.  There are not any provisions to expand this 
on the board.  This was chosen to prevent bus loading from 
interfering with critical system timing.  Additional temporary 
storage could be implemented through the SPI interface. 
 
This is the System memory map: 
 
$00000-$0000F - VIA 1 I/O 
$00010-$0001F - VIA 2 I/O 
$00020-$00027 - SPI I/O 
$00028-$0002F – unused I/O Space 
$00030      - Video Display Register  
$00031-$07FFF - System RAM 
$08000-$0FFFF - System RAM loaded with contents of the EEPROM 

during RESET.  Software-selectable Write 
Protection through Video Data Register. 

$10000-$1FFFF - System RAM - Default Video display block 
$20000-$7FFFF - System RAM  
 
EEPROM 
 

The EEPROM is a standard 28C256 32k x 8 EEPROM in a 28-pin DIP 
package.  It contains the boot code and System Monitor which is 
copied into RAM during the RESET cycle of the XC95108.  After 
the reset is released, the EEPROM is deselected and stays in 
low-power standby until another reset.  Users can create their 
own boot code to suit their individual needs.  The EEPROM is not 
writable in-system, therefore must be programmed externally.  It 
is highly recommended to place this IC in a socket to allow 
changes easily. 
 

 
 



 6

SYSTEM RESET 
 

The Dallas Semiconductor DS-1813 econo-reset device handles the 
system-reset functions.  This 3-pin package provides the power-
on reset and also de-bounces the reset button.  No external 
components are required.  Pressing the Reset switch will re-
initialize the system also.  The reset signal goes to the 
XC95108 CPLD, which sets the 65C816’s reset low and keeps it 
low, inhibiting it.  The XC95108 copies the contents of the 32k 
EEPROM into RAM, from address $08000 to $0FFFF, initializes the 
video system, and releases the reset to the 65C816.  The 65C816 
will pull a RESET vector from $0FFFC and $0FFFD and start 
executing instructions from that address.  This allows the 
system to boot up into the System Monitor.  The upper 32k of RAM 
in Block 0 ($08000-$0FFFF) is defined as read-only after RESET 
to prevent changes to the boot code.  Under software control, it 
can be changed to read-write access, allowing the user to change 
the RESET and Interrupt vectors as needed.  See the Video 
Display Register description below for more details.   
 
POWER SUPPLY 
 

The power supply is a standard 9vdc wall transformer capable of 
delivering up to 1.25A.  This feeds the onboard 5vdc voltage 
regulator.  This is an L7805 capable of providing up to 1.5A of 
regulated power.  I have included 5 fuses on the board to help 
prevent an overload to the power supply.  There is a 1A fuse 
feeding the output of the 5v regulator.  There are three 375mA 
fuses providing 5v power to the I/O ports: one for the SPI 
ports, one for the keyboard jack, and one for the 65C22 ports. 
There is also a fuse for the 9v pads on the SPI ports.  The 
fuses are optional but I recommend using them, especially the 
I/O port fuses, as a short could damage the power traces on the 
board. 
 
SYSTEM TIMING 
 

NTSC System – A 14.318 MHz TTL oscillator is used to clock the 
XC95108 and AD724. The XC95108 divides the clock in half and 
feeds the 65C816 with a 7.158 MHz PHI2 clock. 
 
PAL System – A 16 MHZ TTL Oscillator is used to clock the 
XC95108.  The XC95108 divides the clock in half and feeds the 
65C816 with an 8 MHz PHI2 clock.  The AD724 color subcarrier is 
4.43 MHz and is provided from a crystal and capacitor located 
next to it.  Alternatively, a 17.734 MHz TTL oscillator could be 
used for both XC95018 and AD724, just like the NTSC system. 



 7

XC95108 CPLD 
 
The large CPLD is a Xilinx XC95108 unit in an 84-pin PLCC 
package.  It essentially ties the whole computer together and 
generated the video display.  There are two firmware versions 
for this device: one for NTSC video, the other is for PAL video. 
 
Here is a functional block diagram: 
 

 
 
 

The memory management section contains the upper address latch, 
bus multiplexers, I/O decoder and the Video Data Register.  The 
upper address latch fetched the upper 3 address lines from the 
65C816 data bus during the PHI2 low clock cycle.  This is how 
the 65C816 can address more than 64k of memory.  The address bus 
multiplexer used PHI2 to select which device has access to RAM.  
When the clock is low, the video system accesses RAM, and when 



 8

it’s high, the 65C816 can access RAM.  The data bus multiplexer 
gates RAM data to and from the 65C816, from RAM to Video data 
latch, and from the Video Display Register (VDR) to and from the 
65C816. 
 
The I/O decoder is used to select the address space from $00000-
$0002F for use by the I/O devices.  The VDR’s functions are 
described below.  The non-maskable interrupt from the vertical 
sync circuits is also fed through the VDR and connects to the 
65C816’s NMI input pin. 
 
The video system consists of a horizontal and vertical counter, 
sync generator, video data latch, and reset memory controller.  
The counters are used to provide the necessary timing signals 
for the video data, blank space, and horizontal and vertical 
line timing.  The sync generator extracts timing pulses from the 
counters and generated the composite sync pulses.  The video 
data latch holds the display data taken from RAM and sends it to 
the digital to analog converters used to generate the color 
picture data.  The reset memory control is used for two 
purposes.  During reset, it provides addressing for the RAM and 
EEPROM and controls the RAM write pin to copy the EEPROM data to 
RAM.  After reset, it is used to sequentially step through the 
video data in the RAM.  It used the 3 bits from the VDR to 
select the memory block to display. 
 
The video data output leaves the CPLD and goes through a simple 
resister-ladder analog-to-digital converter.  It then is 
conditioned and enters the Analog Devices AD724 RGB to Composite 
Video converter.  The CPLD’s composite sync pulse is also sent 
to the AD724.  This chip does all the mixing of the video 
signals and outputs an NTSC (or PAL) composite video signal.  
The AD724 also has S-Video output.  I did not add the 
conditioning components or jack, but there are pads near the 
AD724 to add a pigtail if S-Video is desired.  The AD724 
datasheet contains details on the conditioning components 
needed. 
 
VIDEO DISPLAY 
 

SBC-3 has a 320x200 pixel, 256-color composite video display 
supporting the analog NTSC or PAL format.  The screen is stored 
in a 64,000-byte array in RAM.  The upper left corner pixel is 
located at address $x0000.  The “x” is a user selectable block 
number, ranging from $0 to $7.   



 9

The screen array is formatted like this: 
 

 1 2 3  318 319 320 
1 $x0000 $x0001 $x0002 ... $x013D $x013E $x013F 
2 $x0140 $x0141 $x0142 ... $x027D $x027E $x027F 
3 $x0280 $x0281 $x0282 ... $x03BD $x03BE $x03BF 
 ... ... ... ... ... ... ... 
198 $xF640 $xF641 $xF642 ... $xF77D $xF77E $xF77F 
199 $xF780 $xF781 $xF782 ... $xF8BD $xF8BE $xF8BF 
200 $xF8C0 $xF8C1 $xF8C2 ... $xF9FD $xF9FE $xF9FF 

 
On startup, the video display uses block 1 of RAM, or in other 
words, the display base address is set to $10000.  
 

The display’s color is generated using a simple binary encoding 
for the Red, Green, and Blue components.  It uses 3 bits for Red 
(00000111b), 3 bits for Green (00111000b), and 2 bits for Blue 
(11000000b).  Without going into a lot of theory, Blue is a 
stronger color than Red and Green, so we can get away with using 
just 2 bits.  This allows us to store the color information for 
one pixel in one byte of memory.   
 
Here is a small representation of the color patterns available: 
 

Hex bbgggrrr Color 
$00 00000000 Black  
$07 00000111 Red  
$38 00111000 Green  
$C0 11000000 Blue  
$3F 00111111 Yellow  
$C7 11000111 Violet  
$F8 11111000 Cyan  

$27 00100111 Orange  

$B5 10101101 Gray  

$FF 11111111 White  
 

Text is rendered using software to apply a character font to the 
graphic area.  In other words, there is no hardware-driven text 
generation.   
 
The System Monitor includes a simple white on black text 
generator.  The resolution is 40x25 characters using an 8x8 
pixel font.  Text data is stored just above the graphics window, 
from $xFA00 to $xFDE7.  Software generates the display using a 
font stored in RAM (loaded during reset from the EEPROM).  The 
user can create custom text generation code to allow for color 
text or different sized fonts. 



 10

 
Even though the display starts in block 1, that doesn’t mean you 
are limited to using just it.  Many games use double buffering 
to generate video.  This is simply displaying the current scene 
from one block (or buffer) while drawing the next scene in 
another block.  Once the next scene is drawn, you switch the 
display to the new block and start drawing the next one in the 
first block.  This method prevents flicker and other video 
artifacts from degrading the display.  SBC-3 can use any of the 
8 blocks available to display the picture.  Block 0 will most 
likely be used for code and is not recommended.  Block 1 is the 
default and blocks 2 through 7 can be used for multiple 
buffering or caching of images.   
 
Video Display Register 

 
The Video Display Register (VDR) is used to select which block 
to display, and to control interrupt and memory protection 
functions.  It is accessed at address $00030.  The actual 
register is located inside of the XC95108 CPLD.   
 
These are the bit descriptions of the VDR: 

 

 
 
 

Bit 7: NMI – Non-maskable Interrupt:          (Read Only) 
  0= no NMI, 1=NMI active  

Bit 6: VSI – Vertical blanking active:        (Read Only) 
       0=inactive, 1=active   
Bit 5: VIE – Vertical Interrupt Enable:      (read/write) 
       0=disable, 1=enable   
Bit 4: MP  - Memory Protect:                 (read/write) 
       0=read/write, 1=read only 
Bit 3: Video Mode  0=NTSC, 1=PAL              (Read Only) 
Bit 3: 0 - not used 
Bit 2-0: Display Block # (0-7)               (read/write) 

 
Power on and reset values for read/write flags are shown in the 
bottom row. 
 
Bits 0-2 can be updated at any time.  The current display block 
will continue to be displayed until after the next vertical sync 
has completed.  The new block number is loaded as the next 
screen refresh begins.  You can poll the NMI bit to know when 
the block has switched, or enable the VIE bit and use the NMI 
interrupt on the CPU to update the status.  You do not need to 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

NMI VSI VIE MP VM B2 B1 B0 

      0  1    0   0   1 



 11

worry about this function if you are not using the double-
buffering technique described above.   
 
When using the Non-Maskable Interrupt, the NMI bit in the VDR 
will remain set until a read of the VDR is performed.  In other 
words, enabling VIE will cause a single interrupt during the 
next vertical sync period.  The NMI output will remain active-
low until the VDR is read.  If repeated interrupts are desired, 
then be sure to add a read of the VDR into your NMI service 
routine. 
 
The System Monitor includes a simple NMI service routine that 
increments location $000FF on each NMI and reads the VDR.  You 
can use this as a simple timer or other application. 
 
Input/Output 
 

Communication with the outside world is accomplished using the 
three peripheral devices attached to the 65C816.  There are two 
65C22 Versatile Interface Adapters (VIA) and one 65SPI Serial 
Peripheral Interface adapter. 
 
65C22 VIA 
 

The 65C22 VIA’s are 40-pin DIP packages that include two 8-bit 
data ports, each with 2 handshake lines.  These lines can be 
individually programmed as inputs or outputs.  They can also be 
combined into a single 16-bit parallel data port, with 
handshake.  Two of the handshake lines can also form a serial 
data channel.  There are two timers that can be used for 
interrupt generation, serial shift clocks, pulse width 
modulation, and many other applications.  The VIA’s provide a 
versatile path for adding your own I/O devices.  See the device 
data sheet for a more detailed description of the available 
functions. 
 
SBC-3’s System Monitor initializes these VIA’s on reset.  It 
disables interrupts, sets the port to inputs, disables the 
timers and serial shift registers. The only resource used by the 
system is the CB1 input from VIA1, used by the ATMega8 for 
handshaking.  All other resources in the VIA’s are available for 
user applications. 
 



 12

This is the memory map for the VIA1 registers: 
 
$00000 – VIA1PRB     : port B data 
$00001 – VIA1PRA     : port A data  
$00002 - VIA1DDRB    : port B Data direction register 
$00003 - VIA1DDRA    : port A Data direction register 
$00004 - VIA1T1CL    : Timer 1 counter low 
$00005 - VIA1T1CH    : Timer 1 counter high 
$00006 - VIA1T1LL    : Timer 1 latch low 
$00007 - VIA1TALH    : Timer 1 latch high 
$00008 - VIA1T2CL    : Timer 2 counter low 
$00009 - VIA1T2CH    : Timer 2 counter low 
$0000A - VIA1SR      : Shift Register 
$0000B - VIA1ACR     : Auxiliary control register 
$0000C - VIA1PCR     : Peripheral control register 
$0000D - VIA1IFR     : Interrupt flag register 
$0000E - VIA1IER     : interrupt enable register 
$0000F - VIA1PRA1    : port A data (no handshake) 
 
This is the memory map for the VIA2 registers: 
 
$00010 – VIA2PRB     : port B data 
$00011 – VIA2PRA     : port A data  
$00012 – VIA2DDRB    : port B Data direction register 
$00013 – VIA2DDRA    : port A Data direction register 
$00014 – VIA2T1CL    : Timer 1 counter low 
$00015 – VIA2T1CH    : Timer 1 counter high 
$00016 – VIA2T1LL    : Timer 1 latch low 
$00017 – VIA2TALH    : Timer 1 latch high 
$00018 – VIA2T2CL    : Timer 2 counter low 
$00019 – VIA2T2CH    : Timer 2 counter low 
$0001A – VIA2SR      : Shift Register 
$0001B – VIA2ACR     : Auxiliary control register 
$0001C – VIA2PCR     : Peripheral control register 
$0001D – VIA2IFR     : Interrupt flag register 
$0001E – VIA21IER    : interrupt enable register 
$0001F – VIA2PRA1    : port A data (no handshake) 
 
 



 13

65SPI 
 

The 65SPI is the other CPLD on the board.  It is a Xilinx XC9572 
CPLD in a 44-pin PLCC package.  It is a modified version of my 
65SPI device.  It has all the features of the standard package 
but also uses a few pins to decode the 65C22 address space and 
provide interrupt management back to the 65C816.  As a trade-off 
for pins, the modified 65SPI does not have a dedicated external 
clock pin.  Instead, it uses the Slave Select 7 (SS7) pin, under 
software control, to act as the external clock.  The SS6 pin is 
dedicated to the on-board keyboard and RS-232 port controller.  
If you decide you don’t want the onboard I/O, the SS6 pin is 
available on the SPI expansion port.  In either case, SS0 
through SS5 are available on dedicated ports for SPI devices.  
These ports provide the MOSI, MISO, SCLK, SSx; and 5vdc, 9vdc, 
and ground pins.  The SPI expansion port has all of those pins 
and includes all 8 of the SS pins.  This will allow you to 
provide extra decoding on an expansion board to yield up to 255 
SPI devices.  The 65SPI sits from $00020-$0027 in the 65C816’s 
memory map.   
 
The 65SPI Register map is here: 
 
$00020 – SPI data port 
$00021 – SPI status and control 
$00022 – SCLK divisor 
$00023 – Slave Select register 
$00024 – Interrupt status 
$00025 – Interrupt status (repeated) 
$00026 – Interrupt status (repeated) 
$00027 – Interrupt status (repeated) 

A detailed description of the SPI Master’s functions and 
registers can be found in the 65SPI Datasheet.  

The data port is used to read and write data to the SPI. The 
status and control provides status from the SPI and control to 
the SPI.  The SCLK divisor controls the SPI clock speed.  It 
uses the lower 6 bits to control the speed. The upper 2 bits are 
not used.  The fastest speed is with 0 loaded.  It will be equal 
to 1/2 of the selected clock speed.  The slowest is with $3F 
loaded.  This is equal to selected clock divided by 128. The 
slave select is an 8-bit output port used to select the Slave 
SPI devices.  The interrupt status register provided Interrupt 
status from the SPI and each of the 6522 VIA’s.  The CPU can use 
this to find which device caused an interrupt. 



 14

The SPI Status and Control register is configured like this: 

 
(Read Status) 
(Write Control) 
(power up default) 

 
TC  Transmission Complete – This flag is set when the last bit has 

been shifted and is cleared when the SPI Data register is read. 
IER  Interrupt Enable – Interrupts are enabled when this is set to 1 

and disabled when set to 0. 
BSY  SPI Busy – This is 1 when data is written to the SPI data 

register and will stay high until the last bit is shifted. 
FRX Fast Receive mode – When set to 1, fast receive mode triggers 

shifting upon reading or writing the SPI Data register.  When set 
to 0, shifting is only triggered by writing the SPI data 
register. 

TMO Tri-state MOSI - When set to 1, the MOSI pin will be tri-stated. 
When set to 0, the MOSI pin will have an active output.  Tri-
state will allow some three-wire interfaces to work properly. 

ECE  External Clock Enable – This flag displays the selected shift 
clock source.  0 = PHI2 and 1 = external Shift clock pin (14). 

CPOL Clock Polarity – This flag displays the shift clock polarity.   
0 = Rising edge;  1 = Falling edge 

CPHA Clock Phase – This flag displays the shift clock phase. 
 0 = Leading edge; 1 = Trailing edge 

The Interrupt Status register is configured like this: 

 

 
 

Bit 7: SPI Interrupt - 0 = not IRQ, 1=IRQ active 
Bit 6: VIA 1 Interrupt - 0 = no IRQ, 1= IRQ active 
Bit 5: VIA 2 Interrupt - 0 = no IRQ, 1= IRQ active 

* The changes for the Modified SPI are below: 

Bit 2 of the Status and Control registers ($00021) is the 
External Clock Enable (ECE) flag.  When this bit is 0, SS7 is an 
active output.  When ECE is high, SS7 is tri-stated and you can 
put an external SCLK signal on it.  The reset state is ECE = 1.  
This prevents an input clock from trying to drive against an 
active output.  If you plan to use the internal clock, then you 
will need to write a 0 to this bit before the SPI will work.  
The System Monitor does this after a Reset is performed. 
 
 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

TC    IER BSY FRX TMO ECE CPOL CPHA 

 IER  FRX TMO ECE CPOL CPHA 

 0  0 0 1 0 0 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

SPI VIA1 VIA2       



 15

SPI Operation 
 

The following is a guideline for initiating SPI communications. 
 

1. If interrupt-driven transmission is desired, ensure an  
   IRQ handler is enabled for the SPI interface. 
2. If the TC bit in the SPI Status register is 1, then read  
   the SPI Data register to clear it. 
3. Enable Interrupts if desired, and set the Clock mode  
   bits by writing to the SPI Control register. 
4. Write the clock divisor value to the SCLK Divisor  
   register. 
5. Enable the appropriate Slave Select line by writing the    
   Slave Select register. 
6. Write first data byte to SPI Data register. 
7. The TC bit will be set in the SPI Status register when  
   shifting is complete. 
8. Read the SPI Data register to get the incoming byte. The    
   TC flag will clear after byte is read. 
9. Process the incoming byte as required. 
10. If you have more data to send or receive, repeat steps 
    6-9 
11. After the last byte is received, de-select the Slave  
    device. 
 
Note 1.  For fast transmit without polling and without 
receiving data, you can perform step 6 repeatedly without 
doing steps 7-9 as long as the SCLK rate is fast enough to 
keep up. When finished, do step 8 and 11 to clear the 
controller for the next operation. 

 
Note 2. For fast receive without polling or sending data, 
Set the FRX bit in the control register and do steps 1 – 5. 
Now, just read the SPI data port, store the value, and 
repeat until you are done. The controller will 
automatically send the last byte written after each read. 
When done, set the FRX bit to 0 and do steps 8 and 11 to 
clear the controller for the next operation. 

 
Note 3. For three wire interfaces, connect the MOSI and 
MISO pins together. Use the TMO bit in the control register 
to tri-state the MOSI pin during data reads, using the fast 
receive procedures in note 2.  

 
 



 16

Atmel ATMega8 Micro-controller 
 

The Atmel ATMega8 micro-controller is a 28-pin DIP package that 
provides the interface to the PC keyboard and an RS-232 serial 
port via SPI port 6.  The PC keyboard decoder takes care of 
converting the keyboard scan codes into ASCII character codes.  
As an option, the scan codes can also be sent directly to the 
65C816 for enhanced user program control.  The RS-232 port is 
provided for general data transfer.  The default port set-up is 
9600 baud, 8 data bits, no parity, and one stop bit.  The user 
is able to select from the following options: 2400, 4800, 9600, 
19200, 38400 baud; 7 or 8 data bits; odd, even, or no parity; 
and 1 or 2 stop bits.  The ATMega8 provides a handshake line to 
65C816 through VIA1.  JP3 and JP4 are used to select either CA1 
or CB1. This line can be polled or an Interrupt can be enabled 
on VIA1.  The System Monitor uses polling on CB1, so JP3 should 
be strapped on 2-3 and JP4 strapped on 1-2.  This chip cannot be 
programmed in-system so it is highly recommended that this chip 
be installed in a socket for ease of removal. 
 
The fastest speed recommended for the SCLK when communicating 
with the ATMega8 is 2MHz.  Therefore, the SCLK Divisor register 
in the 65SPI must be 1 or higher. For PAL systems, a 2 is 
recommended. 

 
The System Monitor will use these ports to provide basic 
Input/Output terminal functions, including the ability to load 
and save programs and data via XMODEM file transfers to a 
connected RS-232 device. 
 
The ATMega8’s available functions include: 
 
$00 – null command (used to read back data) 
$01 - Read Chip Status 
$02 - Read RS-232 Receive Data 
$03 - Send RS-232 Transmit data 
$04 - Get RS-232 parameters 
$05 - Set RS-232 parameters 
$06 - Read Keyboard data 
$07 - Send Keyboard command  
$08 – Reset the RS-232 port 
$09 – Reset the PK Keyboard 
 



 17

The micro-controller status byte provides the following 
information: 
 
  bit 7 - KB data avail – 1 = data available, 0 = no data available  
  bit 6 - RX data avail – 1 = data available, 0 = no data available  
  bit 5 - TX ready – 1 = ok to send TX data, 0 = wait to send TX data 
  bit 4 - RX Frame error – 1 = RX frame error, 0 = no error 
  bit 3 - RX overrun – 1 = RX overrun error, 0 = no error 
  bit 2 - RX parity error – 1 = RX parity error, 0 = no error 
  bit 1 - KB missing – 1 = keyboard missing, 0 = no error 
  bit 0 – not used 

 
You can get the status using the System Monitor’s “Get_Status” 
routine.  See Page 20 for more information.  The following code 
shows the Monitor’s subroutine to get the status of the ATMega8: 
 
SPI_STATUS     lda   #$01              ; GET ATM8 STATUS command 
               sta   SPIDR             ; send get Status cmd 
SPI_STAT1      lda   Via1_IFR          ; test VIA1’s CB1 for high-low change 
               and   #$10              ; CB1 mask 
               beq   SPI_STAT1         ; wait for ATM8 to signal ready 
               lda   SPIDR             ; clear 65SPI flag 
               lda   Via1_ORB          ; clear Via1 CB1 flag 
               lda   #$00              ; null cmd (for returning data) 
               sta   SPIDR             ; send data to ATM8 
SPI_STAT2      lda   SPISR             ; read 65SPI status reg 
               bpl   SPI_STAT2         ; wait for tx to end 
               lda   SPIDR             ; read SPI status byte 
               rts 

 

Study the System Monitors routine located in the “SPI.INC” for 
more details on ATMega8 communications. 
 
WARNING: 

Since the System Monitor is continually monitoring the ATMega8 
for keyboard activity, trying to access the 65SPI from the 
Monitor’s command line is not advisable and may cause the 
Monitor to hang.  You should place test code in RAM and run that 
from the Monitor to access the 65SPI interface, or you can call 
one of the System Monitor’s built-in functions from the command 
line.



 18

PC keyboard 

 
The keyboard interface defaults to use the built-in Scan code to 
ASCII converter.  You can issue a command to revert to raw scan 
code mode if desired.  Issuing the send keyboard command 
followed by $00 will set the ASCII converter on. Issuing the 
send keyboard command followed by $01 will set the ASCII 
converter off.  Issuing the send keyboard command followed by 
data > $02 will pass the data onto the keyboard, allowing you to 
send direct keyboard commands.  A few options include: 
 

$ED = Set Status LED's - This command can be used to turn 
on and off the Num Lock, Caps Lock & Scroll Lock LED's. 
After Sending ED, keyboard will reply with ACK (FA) and 
wait for another byte which determines their Status. Bit 0 
controls the Scroll Lock, Bit 1 the Num Lock and Bit 2 the 
Caps lock. Bits 3 to 7 are ignored.  

 
$EE = Echo - Upon sending a Echo command to the Keyboard, 
the keyboard should reply with a Echo (EE)  

 
$F0 = Set Scan Code Set. Upon Sending F0, keyboard will 
reply with ACK (FA) and wait for another byte, 01-03 which 
determines the Scan Code Used. Sending 00 as the second 
byte will return the Scan Code Set currently in Use  
 
$F3 = Set Typematic Repeat Rate. Keyboard will Acknowledge 
command with FA and wait for second byte, which determines 
the Typematic Repeat Rate.  
 
$F4 = Keyboard Enable - Clears the keyboards output buffer, 
enables Keyboard Scanning and returns an Acknowledgment.  
 
$F5 = Keyboard Disable - Resets the keyboard, disables 
Keyboard Scanning and returns an Acknowledgment.  
 
$FE Resend - Upon receipt of the resend command the 
keyboard will re- transmit the last byte sent.  
 
$FF Reset - Resets the Keyboard. 

 



 19

ASCII Conversion Table 

 
Key Numlock off 

Unshifted 
Numlock off 
Shifted 

Numlock on Control 

A $61 $41  $01 
B $62 $42  $02 
C $63 $43  $03 
D $64 $44  $04 
E $65 $45  $05 
F $66 $46  $06 
G $67 $47  $07 
H $68 $48  $08 
I $69 $49  $09 
J $6A $4A  $0A 
K $6B $4B  $0B 
L $6C $4C  $0C 
M $6D $4D  $0D 
N $6E $4E  $0E 
O $6F $4F  $0F 
P $70 $50  $10 
Q $71 $51  $11 
R $72 $52  $12 
S $73 $53  $13 
T $74 $54  $14 
U $75 $55  $15 
V $76 $56  $16 
W $77 $57  $17 
X $78 $58  $18 
Y $79 $59  $19 
Z $7A $5A  $1A 
1 ! $31 $21  $11 
2 @ $32 $40  $12 
3 # $33 $23  $13 
4 $ $34 $24  $14 
5 % $35 $25  $15 
6 ^ $36 $5E  $16 
7 & $37 $26  $17 
8 * $38 $2A  $18 
9 ( $39 $28  $19 
0 ) S30 $29  $10 

- _ $2D $5F  $0D 
= + $3D $2B  $1D 
` ~ $60 $7E  $00 
[ { $5B $7B  $1B 
] } $5D $7D  $1D 
\ | $5C $7C  $1C 



 20

; : $3B $3A  $1B 
‘ “ $27 $22  $07 
, < $2C $3C  $0C 
. > $2E $3E  $0E 
/ ? $2F $3F  $0F 
Esc $1B $1B  $0B 
F1 $81 $C1  $01 
F2 $82 $C2  $02 
F3 $83 $C3  $03 
F4 $84 $C4  $04 
F5 $85 $C5  $05 
F6 $86 $C6  $06 
F7 $87 $C7  $07 
F8 $88 $C8  $08 
F9 $89 $C9  $09 
F10 $8A $CA  $0A 
F11 $8B $CB  $0B 
F12 $8C $CC  $0C 
Backspace $08 $08  $08 
Insert $90 $90  $10 
Home $97 $97  $17 
PageUp $99 $99  $19 
Delete $7F $7F  $1F 
End $91 $91  $11 
PageDown $93 $93  $13 
Up Arrow $98 $98  $18 
Left Arrow $94 $94  $14 
Right Arrow $96 $96  $16 
Down Arrow $92 $92  $12 
PrintScreen $8F $CF  $0F 
Scroll Lock $8D $CD  $0D 
PauseBreak $03 $03  $02 
NP / $2F $2F $2F $2F 
NP * $2A $2A $2A $0A 
NP - $2D $2D $2D $0D 
NP 7 Home $97 $97 $37 $17 
NP 8 up $98 $98 $38 $18 
NP 9 Pgup $99 $99 $39 $19 
NP 4 Left $94 $94 $34 $14 
NP 5 $95 $95 $35 $15 
NP 6 Right $96 $96 $36 $16 
NP 1 End $91 $91 $31 $11 
NP 2 Down $92 $92 $32 $12 
NP 3 Pgdn $93 $93 $33 $13 
NP + $2B $2B $2B $0B 



 21

NP Enter $0D $0D $0D $0D 
NP 0 Ins $90 $30 $30 $10 
NP . Del $7F $7F $2E $0E 
Left Window $A1 $E1  $01 
Left Alt $A0 $A0 Alt Release  = $E0 
Space $20 $20  $00 
Right Alt $A0 $A0 Alt Release  = $E0 
Right 
Window 

$A2 $E2  $02 

Right Menu $A3 $E3  $03 
Power $A4 $E4  $04 
Sleep $A5 $E5  $05 
Wake $A6 $E6  $06 
 
 
 
Control key note: It is being assumed that if you hold down the 
ctrl key, you are going to press an alpha key (A-Z) with it 
(except break key defined below).  If you press another key, its 
ASCII code's lower 5 bits will be send as a control code.  For 
example, Ctrl-1 sends $11, Ctrl-; sends $2B (Esc), Ctrl-F1 sends 
$01.  Ctrl-Pause/Break is set to return $02. 
 
The Alt key is decoded as a hold down (like shift and ctrl) but 
does not alter the ASCII code of the key(s) that follow.  
Rather, it sends a Alt key-down code and a separate Alt key-up 
code.  The user program will have to keep track of it if they 
want to use Alt keys.  
 
An Example byte stream of the Alt-F1 sequence:  A0 81 E0.  If 
Alt is held down longer than the repeat delay, a series of A0's 
will precede the 81 E0.    i.e. A0 A0 A0 A0 A0 A0 81 E0. 
 



 22

RS-232 Serial Port 

 
Use the Get or Set RS-232 parameters commands to see or change 
the port configuration.  The data byte format is: 
 
Bit 7 - not used 
 0 
 
Bit 6 - stop bits 
 0 = 1 stop bit (default) 
 1 = 2 stop bits 
 
Bits - Parity 
5 4 
0 0 = no parity (default) 
0 1 = no parity 
1 0 = even parity 
1 1 = odd parity 
 
Bit 3 - Data bits 
 0 = 7 data bits 
 1 = 8 data bits (default) 
 
Bits - Baud Rate  
2 1 0 
0 0 0 = 2400 
0 0 1 = 4800 
0 1 0 = 9600  (default) 
0 1 1 = 19200 
1 x x = 38400  (x x = don’t care) 
 
Default mode is 9600 8N1, = 00001010 = $0A     
 
Flow control provisions are not included with this serial port. 
If high performance RS-232 is needed, a direct SPI to RS-232 
device should be used. 
 
MAX232 Level Shifter 
 

The MAX232 IC is a 16-pin DIP package that provides the voltage 
conversion from 5v logic to +/- 12v RS-232 levels.  The DB9 
socket is wired as a DTE device.  A modem could be connected to 
this port or, by using a standard null-modem cable, you can 
connect to another computer or PC.  The System Monitor supports 
data transfer via XMODEM CRC. 
 
 



 23

SYSTEM MONITOR COMMANDS 
 

The monitor syntax is as follows: 
 {} = required       [] = optional 
 HHHH = hex address  DD = hex data 
    
The commands are: 
 
[HHHHHH][ HHHHHH]{Return}  Dump single or multiple addresses 
[HHHHHH]{.HHHH}{Return}  Dump a range of addresses 
[HHHHHH]{:DD}[ DD]{Return}  Modify memory at address, 1 or more bytes 
[HHHHHH]{G}{Return}   Execute program at address 
{HHHH.HHHH>HHHH{I}{Return}   Move range from 1st HHHH to 2nd HHHH to  
      3rd HHHH, start at the 2nd HHHH moving down 
[HHHHHH]{L}{Return}   Disassemble 20 lines of code at address 
 [HHHHHH]{.HHHH}{L}{Return}  Disassemble a block of code at address 
      Immediate values are assumed as 8 bit 
{HHHH.HHHH>HHHH{M}{Return}  Move range from 1st HHHH to 2nd HHHH to  
      3rd HHHH, start at 1st HHHH and move up 
{HH}{O}{Return}    Set serial port parameters 
{HHHH.HHHH}{P}{Return}      Put memory->PC via RS-232 XMODEM transfer 
{R}{Return}    Dump Register contents 
{HH}{S}{Return}    Set source block number 
{HH}{T}{Return}    Set destination block number 
[HH]{U}{Return}    Upload a file using XMODEM from PC->SBC-3  
{V}{Return}    Display System Monitor Version 
[HHHHHH]{X}{Return}   Disassemble 20 lines of code at address 
[HHHHHH]{.HHHH}{X}{Return}  Disassemble a block of code at address 
      Immediate values are assumed as 16-bit 
{?}{Return}    Display command help screen 
 

 



 24

XMODEM File Upload 
 

To perform an XMODEM file transfer from a PC connected to the 
RS-232 port, you do the following: 
 
An example would be a picture file being sent to address $20000 
 

1. Make a null-modem connection between the PC and SBC-3. 
2. Open a communications program on the PC (hyperterminal) 
3. Set communications parameters to match SBC-3’s  

Example (9600, N81) 
4. On SBC-3 keyboard, type 02U{return} 
5. In the terminal window, you will see “C”’s appear 
6. Start the XMODEM/CRC transfer on the PC (Send File) 

 
When the file has finished transferring, the SBC-3 will return 
to a command prompt.  If you need to abort the transfer, from 
the terminal program on the PC, press “Esc” until the SBC-3 
returns to a Command Prompt. 
 
XMODEM File Download 
 

To perform an XMODEM file transfer to a PC connected to the RS-
232 port, you do the following: 
 
An example would be a data file beginning at $10000 and ending 
at $28000. This crosses a block boundary and is $18000 bytes 
long. 
 

1. Make a null-modem connection between the PC and SBC-3. 
2. Open a communications program on the PC (hyperterminal) 
3. Set communications parameters to match SBC-3’s  

Example (9600, N81) 
4. Start an XMODEM/CRC file transfer on the PC (Receive 

File) Give it a file name and begin transfer 
5. On SBC-3 keyboard, type 01S{return} 
6. On SBC-3 keyboard, type 02T{return} 
7. On SBC-3 keyboard, type 0000.8000P{return} 

 
When the file has finished transferring, the SBC-3 will return 
to a command prompt.  If you need to abort the transfer, from 
the terminal program on the PC, press “Esc” until the SBC-3 
returns to a Command Prompt. 
 



 25

System Monitor Routines 
 

Here are the addresses for some useful routines in the System 
Monitor: 
 
$EFDC Clearsc  Clear the screen 
$F4D7 delay  Delay loop based on value of A reg 
$f101 drawscrn  Redraw the text screen 
$EEA2 dispinit  Initialize the text Display 
$F37A get_ser  Wait for a byte from RS-232 port 
$F26D Get_Status Read status of ATMmega8, ret in A reg 
$F473 input  Print a prompt and get a line of  

characters from keyboard Buffer=$00200 
$EEC4     output  Print character in A reg to screen 
$F448 print2byte Print 16 bit Hex value from X & A reg 
$F44C print1byte Print 8 bit Hex value from A reg 
$F455 printdig  print 4 bit Hex value from A reg 
$F466 printxsp   Print # of spaces stored in X reg 
$F46B print2sp  Print 2 spaces 
$F46E print1sp  Print 1 space ($20) 
$F43B print_cr  Print CR and LF characters ($0D, $0A) 
$FF00 reset  Run system reset code 
$F30F scan_serin If data ready on RS-232, Set Carry flag 
$F350 ser_out  Send character in A reg to RS-232 port 
$F323 ser_in  Wait for character from RS-232  
$F29A set_kb  Send command to KB from A reg 
$F394 set_ser  Ser Serial port parameters from A reg 
$F2E8 spi_kbscan  If data ready on Keybrd, set Carry flag  
$F2BD spi_kbin  Wait for byte from keyboard, ret A reg 
 



 26

SUPPORT PACKAGE 

 
I am including a support package that contains all of the IC 
datasheets, the system schematics, the board layout and trace 
details, a parts list, the source and JEDEC program files for 
both CPLD’s and the ATMega8, and the source and assembled copies 
of the System Monitor.  You are free to modify anything you 
wish.   
 
I encourage all who build the SBC-3 or use this information to 
build a modified version to share their experiences and designs 
with others.  You are welcome to send me any details of your 
projects and I’d be happy to include them on my web site.  This 
includes SPI devices, other hardware additions, Operating System 
software, and software applications, cool graphics; anything 
others might find useful. 
 
For questions, email Daryl Rictor at sbc2@surewest.net 
 
Website: http://sbc.rictor.org/ 
 
 
 
V0.1 – First draft  
V1.0 – First release: 11-09-2008 


