A New Shape Subroutine for

Athletes pole-vault, race cars spin,
and fighter planes fire at enemy air-
craft. Is this the real world? No, I'm
talking about fast, smooth animation
on the Apple II high-resolution
graphics screen. In the past year,
dozens of new Apple II programs
have achieved such awesome anima-
tion capabilities that several years ago
most Apple programmers would
scarcely have believed them possible.
After trying unsuccessfully to match
the quality of the commercially pro-
duced animation in my own assem-
bly-language programs, I realized
that the problem stemmed from the
standard Apple shape subroutine
that I was using to display the shapes
I wanted to animate.

Standard Hi-Res Package

The hi-res (high-resolution)
graphics package I was using is the
standard package supplied by Apple
Computer. It once was supplied with
all Apple II computers sold, and it
can now be found on the volume 3
disk of the Apple Software Bank
Contributed Programs, available from
Apple dealers. Indeed, this package
was eventually incorporated into the
Applesoft language to add hi-res
commands. Written in machine
language, the package includes
subroutines to clear the screen, plot
a point, draw a line, and draw a
shape on the hi-res screen. Although
the clear, plot, and line subroutines
work well in animation, the shape

292 August 1983 © BYTE Publications Inc

the Apple

by Richard T. Simoni Jr.

subroutine is much too slow to allow
shapes to move across the screen
quickly, smoothly, and without
flickering.

The speed of the shape subroutine
is the most important factor in anima-
tion for two main reasons. First, the
speed with which the subroutine can
plot the shape, erase it, and plot it
again in its next position limits how
fast any shape can move across the
screen. Second, in a typical anima-
tion scheme, a shape moves from one
position to the next in four phases,
which correspond to the time re-
quired to plot the shape, the time the
shape remains on the screen, the
time required to erase the shape, and
the time that the shape is not on the
screen at all. These four phases
repeat each time a shape moves to a
new position. The time spent during
each phase of the process determines
how fast the shape moves and how
smooth and flicker-free the animation
looks. To maximize the smoothness,
the time used in plotting the shape,
erasing the shape, and leaving the
shape off the screen must be
minimized, for the human eye
perceives these phases as con-
tributing to the flicker of the image.
On the other hand, if the amount of
time the eye sees the image whole on
the screen is significantly greater
than the time required for the other
phases, the image appears to move
smoothly across the screen. Minimiz-
ing the time the image is totally off

the screen is not difficult, for all
calculations for the next plot can be
done while the image is on the
screen; when the image is erased, it
can then be immediately plotted in
the new position. The times required
to plot and erase the shape, however,
are directly determined by the speed
of the image subroutine. If the sub-
routine is slow, the plot and erase
times are long, and the image ap-
pears to flicker as it moves across the
screen.

Representing Shapes

To understand why the standard
Apple shape subroutine is too slow
for most animation purposes, you
must know how the subroutine
works and especially how it expects
a shape to be represented in memory.
A shape is represented by a series of
vectors in memory, with each vector
specifying if a given pixel should be
turned on. It also specifies which of
the four adjacent pixels should be ad-
dressed by the next vector. This
scheme best suits the representation
of simple, single-line shapes such as-
those in figure 1. Unfortunately, if a
shape must be filled in or if the shape
has any detail drawn within its boun-
daries, as in figure 2, the shape’s
representation is awkward and inef-
ficient at best. In these cases it is
often necessary to overplot points
and use many vectors that specify
motion without plotting. Moreover,
if the shape is large, the sheer size of

(1a)

(1b)

(1)

0000000

vode

I

Figure 1: Because they are easily represented in memory by a series of vectors, these simple single-line closed shapes are suitable for display
by the standard Apple shape subroutine on the hi-res graphics screen.

S T S |

|

the vector table becomes unwieldy.
When the time comes to plot these
shapes, the subroutine steps through
the table, and each vector takes up a
certain amount of time. If the vector
table represents the shape inefficient-
ly, the end result is wasted time in the
plotting of the shape.

Similarly contributing to the slow
speed of the shape subroutine is the
inclusion of scaling and rotation fac-
tors. In order to plot a shape, a call-
ing routine must specify a scaling fac-
tor that determines the plotted
shape’s size (actual size, double size,
triple size, etc.) and a rotation factor
that determines the angle through
which the shape is rotated before

plotting. Although these factors are
useful in some applications, using
them with shape animation rarely
produces satisfying results, and these
calculations slow the subroutine
considerably.

A New Shape Subroutine

After realizing that the speed bot-
tleneck in my programs was caused
by the shape subroutine, I went
about designing my own subroutine
with two criteria in mind. First, the
subroutine had to be high speed to
minimize image flicker, and second,
the method of representing a shape
in memory had to allow complicated
images to be plotted as quickly as

simple single-line shapes of the same
overall size. One way to meet these
criteria is to use a bit picture to repre-
sent the shape in memory. In other
words, the shape is represented in
main memory in the same form in
which it is ultimately represented in
the hi-res screen memory when the
shape is plotted on the hi-res screen.
Plotting the shape is then simple and
fast: the bytes representing the shape
in main memory need only be
transferred to the hi-res screen
memory. [used this technique in
writing a fast shape subroutine
suitable for animation.

The table of bytes that make up the
bit picture is called the shape table.

(2a)

(2b)

2¢)

8 TR O T T Y

11 T T

Figure 2: The detail within these shapes makes their representation as vectors in memory inefficient; therefore, the standard Apple shape
subroutine is neither well suited nor easy to use for the display of these shapes on the hi-res screen.

rr

I

[A R A O O B I

August 1983 © BYTE Publications Inc 293

(3a)
00000
e @ [
[) (] @
) [(]
00000600
K_SPLIT HERE
(3b) 0|0j0|0|0[0|0{0OlO OO0
olojojo|0[O|O|O]|O|O{O]|O
ojojojoll|1i1{1f1{1(1]0
ofjojoj1|o0j1|0|0|0O|0O]|1]0O
ojojljojoj1]/olo]o|1]|0]O
ojli|ofojoj1|o|o]1|0]|0Of}0O
Of1:1(1]1]1/1(1]/0]|0]0]O
0j0|0(0]|0|0|0]O|O]|O|O]|0O
0lofoj0|0f0f0|OjO|0O{0O|O

0001111 1110000
0010100 0010000
0100100 0100000
1000100 1000000
1111111 0000000

—

ADDED
ZEROS

(3¢) 1111000 0000111
0010100 0000100
0010010 0000010
0010001 0000001
1111111 0000000

Bd) 78 o7
14 o4
12 02
11 01
7F 00

Figure 3: To form a shape table, start by draw-
ing the desired shape on graph paper, using
Is and Os to represent “on” and “off” pixels
(3a). Next, split each line of bits into 7-bit
groups, padding the last group of each line
with Os if necessary (3b). Then, reverse the
order of the binary digits in each 7-bit group
(3¢c) and convert to hexadecimal (3d). Later
you must add height and width bytes as
described in the text.

A shape table is most easily formed
through the use of the shape-editor
program presented later in this arti-
cle. To form a shape table manually,
start by drawing the shape on a piece
of graph paper with one pixel per
square, as in figure 3a. Use 1s to
represent on pixels and Os to repre-
sent off pixels. Draw the smallest
possible rectangle that still encloses

} © BYTE Publications Inc

295

Listing 1: A fast shape subroutine that plots high-resolution shapes on the Apple I1.

THE Y~COORD OF THE LAST LINE + 1.
WIDTH (IN BYTES) OF EACH LINE.

$1800

$1B800 ;ASSEMBLY LOCATION

T T I I I T e e s R R L e R 2 R R At A Ll
SHAPE SUBROUTINE WRITTEN BY RICHARD T. SIMONI, JR.

SHAPE WORKS BY STEPPING THROUGH THE USER TABLE ONE

E, SHIFTING THE BIT PATTERN THE

X~COORDINATE PASSED IN THE X~ AND Y-REGISTERS), AND

*
*
*
*
APPROPRIATE NUMBER OF TIMES (DEPENDING ON THE *
*
MOVING THE PATTERN TO THE PROPER PLACE IN THE HI-RES *

*

*

P Y S 2 L R LA R R YRR R RSS2 R 222 22202 2 2 2 2t

$19 ; START OF LINE STORAGE
$E3 ; LINE COUNTER

SEB ;USER TABLE POINTER
SED +1ST SCREEN BYTE TO USE
SEE ; IN LINE YCOQORD

SEF ;OFFSET FROM LEFT BYTE
$F9 ;NUMBER OF SHIFTS

$FD ;LAST LINE + 1

$F8 ;WIDTH OF USER TABLE
SFC ;POINTER IN USER TABLE

DIVIDE X~COORD 8Y 7 TO GET BYTE OFFSET FROM LEFTMOST
BYTE IN ANY HI-RES LINE.
NUMBER OF SHIFTS TO PERFORM ON BIT PATTERN.

DIVISION IS PERFORMED USING LOOKUP TABLE FOR SPEED.

REMAINDER WILL BE CORRECT

YCOORD ; STORE Y-COORD (COUNTER)
A
A
;MULTIPLY X~-COORD BY TWO
;A—REG = X-COORD*2 LO-BYTE
#>QUOTBL ;ADD TABLE ADDRESS LO-BYTE
ADDRL ;STORE RESULT
;A~REG = X~COORD*2 HI-BYTE
#<QUOTBL ;ADD TABLE ADDRESS HI-BYTE
ADDRH ; STORE RESULT
#500 ;ZERO Y-REG FOR INDEXING
(ADDRL) ,¥Y ;LOAD X-COORD/7 FROM TABLE
ADDRADD ;ADDRADD = X~COORD/7
;REMAINDER FOLLOWS IN TABLE
(ADDRL) ,Y ;LOAD REMAINDER FROM TABLE
SHFTNUM ;SHFTNUM = REMAINDER

INITIALIZE LOCATIONS ENDLN AND WIDTH. ENDLN CONTAINS

WIDTH CONTAINS THE

YCOORD
$s00

(START) ,Y

ENDLN ;ENDLN = Y-COORD+LENGTH

(START) ,Y
WIDTH ;GET & STORE WIDTH

INDEX ; INDEX=2

LOOP1 IS THE LOOP THAT IS CYCLED THROUGH ONCE FOR FACH
LINE ON THE HI-RES SCREEN

WIDTH
INDEX

; X~REG=0 (COUNTER)

* MOVE BYTES FOR LINE YCOORD FROM USER TABLE TO ZERO PAGE
*

0000+ 1 0BJ
1800: 2 ORG
1800: 3

1B00: 4. %

1B0O: 5 *

1B0O: 6 *

1B00: 7 * HI-RES LINE AT A TI
1B0O: 8 *

1B00: 9 *

1B0O: 10 *

1B00: 11 * SCREEN MEMORY.
1800: 12

1800: 13 STARTZ EQU
1800: 14 YCOORD EQU
1B0O: - 15 START EQU
1B00: 16 ADDRL EQU
1B0O: 17 ADDRH EQU
1800: 18 ADDRADD EQU
1B00: 19 SHFTNUM EQU
1800: 20 ENDLN EQU
1B00: 21 WIDTH EQU
1B0O: 22 INDEX EQU
1B00: 23 *

1800: 24 *

1800: 25 *

1B00O: 26 *

1B00: 27 *

1800: 28 *

1B0O: 85 E3 29 STA
1B02: 8A 30 TXA
1803: 0A 31 ASL
1804: AA 32 TAX
1B0S: 98 33 TYA
1B06: 2A 34 ROL
1B07: A8 35 TAY
1808: 18 36 CLC
1809: B8A 37 TXA
1B0OA: 69 83 38 ADC
180C: 85 ED 39 STA
1B0E: 98 40 TYA
1BOF: 69 18 41 ADC
1B11: 85 EE 42 STA
1B13: A0 00 43 LDY
1815: B1 ED 44 LDA
1817: 85 EF 45 STA
1819: C8 46 INY
181A: Bl ED 47 LDA
181C: 85 F9 48 STA
1B1E: 49 *

1B1E: 50 *

1B1lE: 51 *

1B1E: 52 *

1B1lE: 53 *

1BlE: A5 E3 54 LDA
1820: A0 00 55 LDY
1B22: 18 56 CLC
1B23: 71 EB 57 ADC
1825: 85 FD 58 STA
1827: C8 59 INY
1828: Bl EB 60 LDA
1B2A: 85 FB 61 STA
182C: C8 62 INY
182D: 84 FC 63 STY
182F: 64 *

132F: 65 *

182F: 66 *

1B2F: 67 *

182F: A6 FB 68 LOOP1 LDX
1331: A4 FC 69 LDY
1833: 70 *

1833: 71

1833: 72

1833: Bl EB 73 LOOP2 LDA
1835: 95 19 74 STA
1B837: €8 75 INY
1838: CA 76 DEX
1839: DO F8 77 BNE
1B3B: 86 19 78 STX
183D: 84 FC 79 STY
1B3F: 80 *

1B3F: 81 * SHIFT THF BIT
183F: 82 *

183F: A4 F9 83 LDY
1B41: FO 16 84 BEQ
1843: 18 85 LOOP3 CLC
1844: A6 FB 86 LDX
1846: 08 87 PHP
1B47: 28 88 LOOP4 PLP
1B48: BS 19 89 LDA
1B4A: 2A 90 ROL

298 August 1983 © BYTE Publications Inc

(START) ,Y ;GET XTH BYTE OF LINE

STARTZ , X ;STORE IN STARTZ+X
;MOVED ALL BYTES YET?

LOOP2 ;NO, LOOP

STARTZ ; STARTZ=0

INDEX

PATTERN SHFTNUM TIMES

SHFTNUM ;IS SHFTNUM=0?

SKIP ;YES, SKIP THE SHIFTING
;NO, START SHIFTING

WIDTH
;KEEP STACK IN ORDER
;RESTORE CARRY

STARTZ ,X ;LOAD ORIGINAL PATTERN

A

Listing 1 continued on page 300

the entire figure. Then split each line
of binary digits enclosed by the rec-
tangle into 7bit groups. If, as in
figure 3b, the last group doesn’t have
a full 7 bits, add enough 0s to the end
of each line to bring the total up to
7 bits. Due to limitations to the
subroutine, no more than seven 7-bit
groups per line are allowed. Reverse
the order of the bits in each group,
as shown in figure 3c. Convert each
new 7-bit group into its hexadecimal
or decimal equivalent, whichever is
preferred (figure 3d shows the hex-
adecimal equivalent) and, reading
across each line left to right from the
top to the bottom line, recopy the list
of numbers in table (linear) form. The
table is now complete except for two
bytes that belong at the top of the
table. The first of these bytes
represents the height of the shape—
in other words, the number of lines

‘of digits in figure 3b; the second byte

represents the width of the shape in
7-bit groups—that is, the number of
7-bit groups used in each line in
figure 3b. As previously mentioned,
this width should be no more than
seven groups. The complete table in
hexadecimal form for the sample
shape used in figure 3 is as follows:

05 02 78 07 14 04 12 02
11 01 7F 00

The shape subroutine itself is
shown in listing 1, and the lookup
tables used by the subroutine are
shown in listing 2. Before calling the
subroutine, several registers and
memory locations must be set up
with certain parameters, including
the hi-res screen coordinates of the
pixel where the upper left corner of
the bit picture should be positioned.
The low-order byte of the x-
coordinate should be placed in the X
register, and the corresponding high-
order byte of the x-coordinate (either
1 or 0) goes in the Y register. The y-
coordinate goes in the A register (ac-
cumulator). The low- and high-order
bytes of the shape-table starting ad-
dress should be stored in hexadeci-
mal memoty locations EB and EC,

. respectively. The subroutine can then

be called with the usual JSR instruc-
Text continued on page 303

300 August 1983 © BYTE Publications Inc

Listing 1 continued:

1B4B: 2a 91 ROL A ;ROTATE LEFT TWICE
184C: 08 92 PHP iSAVE CARRY

184D: 4A 93 LSR A . ;SHIFT RIGHT ONCE
1B4E: 95 19 94 STA STARTZ,X ;STORE SHIFTED PATTERN
1B50: CA 95 DEX

1BS1: EO FF 96 CPX $$FF ;ROTATED EACH BYTE?
1B53: DO F2 97 BNE LOOP4 iNO, LOOP

1B55: 28 98 PLP iKEEP STACK IN ORDER
1856: 88 99 DEY

1857: DO EA 100 BNE LOOP3 ;LOOP IF Y<>0

1859: 101 *

1859: 102 * CALCULATE HI-RES SCREEN ADDRESS FOR FIRST BYTE TO
1859: 103 * BE USED IN LINE YCOORD

1B59: 104 *

1B859: A4 E3 105 SKIP LDY YCOORD

1BSB: 89 B3 1D 106 LDA LOSTRT,Y

1BSE: 18 107 cLC

185F: 65 EF 108 ADC ADDRADD

1861: 85 ED 109 STA ADDRL

1863: B9 73 1€ 110 LDA HISTRT,Y

1B66: 69 00 111 ADC #500

1B68: 85 EE 112 STA ADDRH ;GET ADDR FOR 1ST BYTE
1B6A: 113 *

1B6A: 114 * MOVE SHIFTED BYTES FROM ZERO PAGE TO HI-RES SCREEN
186A: 115 * MEMORY. FOR NON-EXCLUSIVE-OR PLOTTING, CHANGE
1B6A: 116 * 'EOR (ADDRL),Y' TO 'ORA (ADDPL),Y' (OPCODE $11).
1B6A: 117 *

1B6A: A0 00 118 LDY #$00

186C: A6 FB 119 LDX WIDTH

186E: BS5 19 120 LOOPS LDA STARTZ,X

1870: 51 ED 121 EOR (ADDRL),Y

1872: 91 ED 122 STA (ADDRL) ,Y ;PLOT 8YTE ON SCREEN
1874: C8 123 Ny

1875: CA 124 DEX

1B76: EQ FF 125 CPX #SFF ; THROUGH PLOTTING LINE?
1878: DO F4 126 BNE LOOP5 iNO, LOOP

1B7A: E6 E3 127 INC YCOORD ;YES, GO TO NEXT LINE
187C: A5 E3 128 LDA YCOORD

187E: C5 FD 129 CMP ENDLN ;MORE LINES?

1880: DO AD 130 BNE LOOP1 iYES, LOOP

1882: 60 131 RTS :NO, RETURN

1B83: 132 QuOTBL EQU *

1883: 133 LOSTRT EQU *+560

1883: 134 HISTRT EQU *+752

**% SUCCESSFUL ASSEMBLY: NO ERRORS

Listing 2: Lookup tables used by the listing 1 subroutine.

1883~ 00 00 00 01 00 02 00 03 00 04 00 05 00

1890~ 06 01 00 01 01 Ol 02 0l 03 01 04 01 05 01 06 02

1BAO- 00 02 01 02 02 02 03 0204 02 05 02 06 03 00 03

18B0- 01 03 02 03 03 03 04 03 05 03 06 04 00 04 01 04

18C0- 02 04 03 04 04 04 05 04 06 05 00 05 Ol 05 02 05

18D0- 03 05 04 05 05 05 06 06 00 06 01 06 02 06 03 06

18E0- 04 06 05 06 06 07 00 07 01 07 02 07 03 07 04 07

1BF0- 05 07 06 08 00 08 Ol 08 02 08 03 08 04 08 05 08

1C00- 06 09 00 09 01 09 02 09 03 09 04 09 05 09 06 0A

1C10- 00 OA 01 O0A 02 O0A 03 OA 04 OA 05 0A 06 08 00 0B

1C20- 01 08 02 0B 03 0B 04 0B 05 0B 06 0C 00 0C 0l OC

1C30- 02 0C 03 0C 04 0C 05 O0C 06 0D 00 OD 0l 0D 02 0D

1C40- 03 OD 04 0D 05 0D 06 OE 00 OE 01 OE 02 OE 03 OE

1C50- 04 OE 05 OE 06 OF 00 OF 01l OF 02 OF 03 OF 04 OF

1C60~ 05 OF 06 10 00 10 01 10 02 10 03 10 04 10 05 10

1C70~ 06 11 00 11 01 11 02 11 03 11 04 11 05 11 06 12

1C80- 00 12 01 12 02 12 03 12 04 12 05 12 06 13 00 13

1C90- 01 13 02 13 03 13 04 13 05 13 06 14 00 14 01 14

1CAO- 02 14 03 14 04 14 05 14 06 15 00 15 01 15 02 15

1C80- 03 15 04 15 05 15 06 16 00 16 01 16 02 16 03 16

1CCO- 04 16 05 16 06 17 00 17 01 17 02 17 03 17 04 17

1CD0- 05 17 06 18 00 18 01 18 02 18 03 18 04 18 05 18

1CEO- 06 19 00 19 01 19 02 19 03 19 04 19 05 19 06 1A

1CF0- 00 1A 01 1A 02 1A 03 1A 04 1A 05 1A 06 18 00 18

1D00- 01 18 02 18 03 1B 04 1B 05 18 06 1C 00 1C 01 1C

1D10- 02 1C 03 1C 04 1C 05 1C 06 1D 00 1D 0l 1D 02 1D

1020~ 03 1D 04 1D 05 1D 06 1E 00 1F 01 1E 02 1E 03 1E

1030~ 04 1E 05 1E 06 1F 00 1F 01 LF 02 1F 03 1F 04 1F

1p40- 05 1F 06 20 00 20 Ol 20 02 20 03 20 04 20 05 20

1050~ 06 21 00 21 01 21 02 21 03 21 04 21 05 21 06 22

1D60- 00 22 01 22 02 22 03 22 04 22 05 22 06 23 00 23

1D70- 01 23 02 23 03 23 04 23 05 23 06 24 00 24 01 24

1080~ 02 24 03 24 04 24 05 24 06 25 00 25 01 25 02 25

1D90- 03 25 04 25 05 25 06 26 00 26 0l 26 02 26 03 26

1DAO- 04 26 05 26 06 27 00 27 01 27 02 27 03 27 04 27

1DBO- 05 27 06 00 00 00 00 00 00 00 00 80 80 80 80 80

1DCO- 80 80 80 00 00 00 00 00 00 00 00 80 80 80 80 80

1DD0~ 80 80 80 00 00 00 00 0O 00 00 00 80 80 80 80 80

1DEO- 80 80 80 00 00 00 00 00 00 00 00 80 80 80 80 80

1DFO- 80 80 80 28 28 28 28 28 28 28 28 A8 AB AB A8 A8

LE00~ A8 A8 A8 28 28 28 28 28 28 28 28 A8 A8 AS A8 A8

1E10- A8 A8 A8 28 28 28 28 28 28 28 28 AB AB A8 A8 A8

1E20- A8 A8 A8 28 28 28 28 28 28 28 28 A8 AB A8 A8 A8

1E30- A8 A8 A8 50 50 50 50 50 50 50 50 DO DO DO DO DO

1E40~ DO DO DO 50 50 50 50 50 50 50 50 DO DO DO DO DO

Listing 2 continued on page 303

(1a)) .
Coordinate 6502 Register

x low-order byte X
X high-order byte Y
y A
(1b)

Address Byte Memory Location
low-order byte EB
high-order byte EC

Table 1: Summary of parameters that
must be set up prior to calling the shape
subroutine: coordinates of upper left cor-
ner of bit picture (1a) and starting address
(hexadecimal) of shape table (1b).

Text continued from page 298:

tion. A summary of the parameter
setup is given in table 1.

The subroutine works by taking the
exclusive-OR of each affected bit in
page-1 hi-res screen memory with the
corresponding bit of the bit picture.
This exclusive-OR plotting has
several advantages. First, a color need
not be specified; the shape is drawn
by calling the subroutine once and is
erased by simply calling it again with
the same screen coordinates. Second,
any shape drawn using exclusive-OR
plotting is nondestructive; that is,
whatever the shape happens to plot
over is restored when the shape is
erased. This property can be used to
form interesting backgrounds that
need not be redrawn after shapes are
plotted and moved on top of them.
Cross-hair cursors are also free to
move around without destroying the
screen’s previous contents.

Several details about the subrou-
tine need to be explained. Zero page
(hexadecimal locations 00 through
FF) of memory is used for temporary
storage; the particular locations used
were chosen to avoid destruction of
locations used by the Apple Monitor,
Applesoft, Integer Basic, and the

'DOS (disk operating system). The
subroutine does not operate correct-
ly without the tables shown in listing
2. These tables may be stored any-
where in memory, but are best
located immediately after the sub-
routine in memory. Three pertinent

Text continued on page 306

Listing 2 continued:

1E50-
1E60~
1E70-
1E80-
1E90~
1EAQ-
1EBO~
1ECO-
1EDO-
1EEO~
1EFQO-
1F00-~
1F10-
1F20-
1F30~

DO
Do
DO
34
35
36
37
34
35
36
37
34
35
36
37

DO
DO
DO
38
39
3A
38
38
39
3A
3B
38
39
3A
38

D0
DO
Do
3C
3D
3E
3F
3C
3D
3E
3F
3C
3D
3E
3F

50
50
24
25
26
27
24
25
26
27
24
25
26
27

50
50
28

50 50
50
30

31

50
50
3C
3D
3E
3F
3C
3D
3E
3F
3¢
3D
3E
3F

DO
Do
20
21
22
23

Do
DO
24
25
26
27
24
25
26
27
24
25
26
27

DO
DO
28
29
2A
28
28
29
2A
28
28
29
2A
28

Do
Do
2C
2D
2F
2F
2C
2D
2E
2F
2C
2D
2E
2F

2C
2D
2F
2F
2C
2D
2E
2F
2C
2D
2E
2F

2A
28
28
29
2A
28
28
29
2A
28

33
30
31
32

21
22
23
20
21
22
23

30
31
32
33

Listing 3: This shape-editor program forms a shape table directly from a high-resolution screen

image.

100 TEXT : HOME : POKE - 16298,0: POKE - 16300,0

110 RESTORF : FOR I = 768 TO 774: READ J: POKE I,J: NEXT I[: POKE 232,0: POKF 23
3,3: DATA 1,0,3,0,45,5,0

120 DIM S%(105),T8(212)

130 XMAX = 42:YMAX = 35:ML = 101:MT = 10

140 H$ = "0123456789ABCDEF"

150 D$ = CHR$ (4)

160 GOSUB 3100: GOSUB 3300: GOSUB 3400

400 REM SHOW CURSOR POSITION ON GRID

410 XDRAW 1 AT CL + L,CT + 3

420 REM WAIT FOR KEYBOARD COMMAND

430 Q = PEFK { — 16384): IF Q < 128 THEN 430

440 POKE - 16368,0:Q = Q ~ 128

500 REM

501 REM CURSOR MOVEMENT COMMANDS

502 REM

510 IF Q < > ASC ("I") THEN 550

520 XDRAW 1 AT CL + 1,CT + 3

530 IF Y > 1 THEN ¥ = Y - 1:CT = CT - 4

540 GOTO 410

550 IF Q < > ASC ("M") THEN 590

560 XDRAW 1 AT CL + 1,CT + 3

570 IF Y < YMAX THEN Y = Y + 1:CT = CT + 4

580 GOTO 410

590 IF Q < > ASC ("J") THEN 630

600 XDRAW 1 AT CL + 1,CT + 3

610 IF X > 1 THEN X = X -~ 1:CL = CL.- 4

620 GOTO 410

630 IF Q < > ASC ("K") THEN 700

640 XDRAW 1 AT CL + 1,CT + 3

650 IF X < XMAX THEN X = X + 1:CL = CL + 4

660 GOTO 410

700 REM

701 REM PLOT COMMAND

702 REM

710 IF Q < > ASC ("P") THEN 810

720 ELE = INT ((X -~ 1) / 14) + 3 * (Y - 1)

730 BIT = (X -~ 1) - INT ((X - 1) / 14) * 14

740 A = INT (SS(ELE) / 2 " BIT)

750 IF A/ 2 < > INT (A / 2) THEN 810

760 S${ELE) = S$(ELE) + 2 ~ BIT

770 FOR I = 2 TO 4: XDRAW 1 AT CL + 1,CT + I: NEXT I

780 HCOLOR= 7: HPLOT 29 + X,62 + Y

790 GOTO 430

800 REM

801 REM ERASE COMMAND

802 REM

810 IF Q < > ASC ("E") THEN 900

820 ELE = INT ({X - 1) / 14) + 3 * (¥ - 1)

830 BIT = (X ~ 1) ~ INT ((X - 1) / 14) * 14

840 A = INT (S%(ELE) / 2 ~ BIT)

850 IF A/ 2 = INT (A/ 2) THEN 900

860 S%(ELE) = S$(ELE) - 2 " BIT

870 FOR I = 2 TO 4: XDRAW 1 AT CL + 1,CT + I: NEXT I

880 HCOLOR= 0: HPLOT 29 + X,62 + Y

890 GOTO 430

900 REM

901 REM CLEAR SCREEN COMMAND

902 REM X

910 IF Q < > ASC ("C") THEN 1030

920 XDRAW 1 AT CL + 1,CT + 3

930 VTA8 23: PRINT "SURF YOU WANT TO ERASE THE SCREEN?"

940 GOSU3 3500

950 VTAB 22: CALL - 958: IF Q < > ASC ("Y") THFN 410

960 FOR I = 0 TO 105:S%(I) = 0: NEXT [/

970 GOSUB 3300: GOSU8 3400: GOTO 410

1000 REM

1010 REM TABLE COMMAND

1020 REM

1030 IF Q < > ASC ("T") THEN 1520

1040 VTAB 23: PRINT "SET CURSOR TO TOP LEFT CORNER OF": PRINT "DESIRED SIT MAP
AND HIT RETURN";

1050 L5 = 1

Listing 3 continued on page 304

August 1983 © BYTE Publications Inc

303

Listing 3 continued:

1060
1070
1080

1090
1100
1110
1120
1130
1140

1150
1160
1170

1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290

1300
1310
1320
1330
1340
1350

1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470

1480
1490
1500
1510
1520
1530
1600
1601
1602
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1800
1801
1802
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990

GOTO 430

pPL = X:PT = Y

VTAB 22: CALL -~ 958: PRINT : PRINT "SET CURSOR TO BOTTOM RIGHT CORNER OF"
PRINT "DESIRED BIT MAP AND HIT RETURN";

L5 = 2

GOTQ 430

PR = X:PB = Y:L5 =0
XDRAW 1 AT CL + 1,CT + 3

VTAB 22: CALL - 958

IF PL > PR OR PT > PB THEN VTAB 23: HTAB 1l: POKE 50,63: PRINT “"ILLEGAL BI
T MAP CORNERS": POKE 50,255: FOR I = 1 TO 2000: NEXT I[: VTAB 22: CALL -~ 95
8: GOTO 410

VTAB 23: HTAB 1: PRINT "NOW FORMING SHAPE TABLE"
FOR I = 0 TO 212:T%(I) = 0: NEXT I

L =PB - PT + 1:W = (PR — PL + 1) / 7: IF W < > INT (W) THEN W = [INT (W)
+ 1

T%(0) = L:T%{(l) = W:N = 2:Q =0

FOR PT TO PB

Y =
FOR X = PL TO PL + W * 7 -1
IF X > PR THEN BN = 0: GOTO 1250

FLE = INT ((X - 1) / 14) + 3 * (¥ - 1)
BIT = (X - 1) ~ INT ((X - 1),/ 14) * 14
BN = 0:A = INT (S%(ELE) / 2 ~ BIT): IF INT (A / 2) < > A/ 2 THEN BN =1

IF BN = 1 THEN T$(N) = T%(N) + 2 " Q
Q=0+ 1: IF Q =7 THEN Q = 0:N =N + 1
NEXT X: NEXT Y

HOME : POKE -~ 16303,0

VTAB 2: PRINT "DO YOU WANT TO SEE THE TABLE IN HEX": PRINT " OR IN DECIM
AL?": PRINT : PRINT

GOSUB 3500

IF Q < > ASC ("D") AND Q < > ASC ("H") THEN 1280
Z =0: FORI =0 TOL *W+1
Z =2 +1

IF Q = ASC ("D") THEN PRINT TAB(Z * 4);T3(l);: GOTO 1360

PRINT TAB(Z * 3); MIDS (HS, INT (T$(I) / 16) + 1,1); MID$S (H$,T#(I) ~ I

NT (T$(I) / 16) * 16 + 1,1);

IF 2z = 8 THEN 2 = 0: PRINT

NEXT I

PRINT : PRINT : IF PEEK (37) < 21 THEN POKE 34, PEEK (37)

PRINT "DO YOU WANT TO SAVE THE OBJECT TABLE": PRINT " ON DISK?"
GosuB 3500

IF Q < > ASC ("Y") THEN 1470

PRINT : PRINT "WHAT DO YOU WANT TO NAME": INPUT " THE FILE? ";N$
FOR I = 0 TOL * W + 1: POKF 16384 + I,T%(I): NEXT I

PRINT D$;"BSAVE";NS$;" ,A$4000,L";L * W + 2

PRINT "FILE SAVED USING NAME “;N$

PRINT : PRINT : GOTO 1390

POKE 34,0: HOME : VTAB 2: PRINT "DO YOU WANT TO RETURN TO THE": PRINT "
SCREEN EDIT MODE?2"

GOSuUB 3500

IF Q < > ASC ("Y") THEN 2260

GOSUB 3100: POKE - 16304,0: GOSUB 3310: GOTO 410

REM 'RETURN' PSEUDO-COMMAND

IF Q < > 13 THEN 1600

ON LS + 1 GOTO 430,1070,1110

REM

REM SAVE TABLE COMMAND

REM

IF Q@ ¢ > ASC ("S") THEN 1800

XDRAW 1 AT CL + 1,CT + 3

VTAB 23: INPUT "FILE NAME FOR SAVE? ";N$

VTAB 24: PRINT "NOW SCANNING IMAGE";: HTAB 1

Zl1 = 0
IF S%(21) = 0 AND Z1 < 105 THEN Z1 = 21 + 1l: GOTO 1660
Z2 = 105

IF S%(Z2) = 0 AND 22 > O THEN 22 = 22 - l: GOTO 1680

IF Z1 > 22 THEN 21 = 0322 =1

VTAB 24: PRINT "NOW SAVING IMAGE TO DISK";: VTAB 23: PRINT

PRINT DS;"OPEN";N$: PRINT D$;"WRITE";N$

PRINT Z1l: PRINT 22

FOR I = Z1 TO 22

PRINT S%(I)

NEXT I

PRINT D$;"CLOSE";N$

VTAB 22: CALL - 958: GOTO 410

REM

REM LOAD TABLE COMMAND

REM

IF Q < > ASC ("G") THEN 2100

XDRAW 1 AT CL + 1,CT + 3

VTAB 23: PRINT "SURE YOU WANT TO LOAD?”

GOSUB 3500

VTAB 22: CALL ~- 958: IF Q < > ASC ("Y") THEN 410

VTAB 23: INPUT “FILE NAME FOR LOAD? “;N$

PRINT D$;"OPEN";N$: PRINT D$;"READ";N$

INPUT Z1: INPUT 22 .

FOR I = 0 TO Z1:S%(I) = 0: NEXT I: FOR I = 22 TO 105:S%(I) = 0: NEXT I
FOR I = 21 TO 22

INPUT S%(I)

NEXT I

PRINT D$;"CLOSE";N$

GOSUB 3300: GOSUB 3400

VTAB 22: CALL -~ 958: VTAB 23: PRINT "NOW RETRACING IMAGE ON SCREEN"
ELE = Z1:BIT = 0:CL = ML + 4 * ((ELE - INT (ELE / 3) * 3) * 14)
CT = MT + 4 * INT (ELE / 3) .
A = INT (S%(ELE) / 2 ~ BIT): IF INT (A / 2) = A/ 2 THEN 2000

FOR I = 2 TO 4: XDRAW 1 AT CL + 1,CT + I: NEXT I: HPLOT 30 + (CL - ML) / 4
,63 + (CT - MT) / 4
Listing 3 continued on page 306

Circle 231 on inquiry card. b

Listing 3 continued:

> 14 THEN 1980

2000 CL = CL + 4:BIT = BIT + 1l: -IF BIT <

2010 IF ELE > = 22 THEN GOSUB 3310: GOTO 410

2020 BIT = 0:ELE = ELE + 1

2030 IF ELE / 3 = INT (ELE / 3) THEN CL = ML:CT = CT + 4

2040 GOTO 1980

2100 REM

2101 REM HELP COMMAND

2102 REM

2110 IF O < > ASC ("H") AND Q < > ASC ("/") AND Q < > ASC ("?") THEN 2200

2120 VTAB 21: CALL ~ 958: POKE ~ 16303,0

2130 GOSUB 3170 j

2140 POKE - 16304,0 /

5150 VTAB 20: PRINT : CALL ~ 958: HTAB 2: PRINT "ACTUAL SIZE";: HTAB 21: PRINT
“VIEWING WINDOW"

2160 GOTO 430

2200 REM

2201 REM QUIT COMMAND

2202 REM

2210 IF Q < > ASC ("Q") THEN 430

2220 XDRAW 1 AT CL + 1,CT + 3

2230 VTAB 23: PRINT "SURE YOU WANT TO QUIT?"

2240 GOSUB 3500

2250 IF Q < > ASC ("Y") THEN VTAB 22: CALL ~ 958: GOTO 410

2260 HOME : POKE - 16303,0: POKE - 16298,0: VTAB 24

2270 GOTO 9999

3000 REM

3010 FEM SUBROUTINES

3020 REM

3100 HOME

3110 HTAB 15: PRINT "COMMAND MENU": HTAB 15: PRINT "-oc--—— ——o- "

3120 VTAB 4: PRINT "I,J,K,M"; TAB(9);"CURSOR MOVEMENT": PRINT : PRINT "P"; TAB

(9);"PLOT POINT AT CURSOR POSITION": PRINT

3130
B(9);"CLEAR SCREEN": PRINT
3140
APE SOURCE FILE TO DISK": PRINT

3150

PRINT "E"; TAB(9);"ERASE POINT AT CURSOR POSITION": PRINT :
PRINT "T"; TAB(9);"MAKE SHAPE TABLE":

PRINT "G"; TAB{ 9);"GET SHAPE SOURCE FILE FROM DISK": PRINT :

PRINT "C"; TA

PRINT : PRINT "S"; TAB(9);"SAVE SH

PRINT "H OR

?"; TAB(9);"HELP (RETURN TO THIS MENU)"

PRINT "Q"; TAB(9);"QUIT PROGRAM EXECUTION"

3160 PRINT :

3170 VTAB 24: HTAB 10: PRINT "HIT SPACE TO EXIT MENU";
3180 GOSUB 3500: IF Q < > ASC ("™ ") THEN 3180

3190 VTAB 21: CALL -~ 958

3200 RETURN

3300 POKE 230,32: CALL 62450: HGR : SCALE= 1: ROT= 0
3310 PT = YMAX + 1:PB = 0:PL = XMAX + l:PR = 0

HTAB 21: PRINT "VIEWING WINDOW";: C

3320 VTAB 21: HTAB 2: PRINT "ACTUAL SIZE";:
ALL - 958: PRINT
3330 X = INT (XMAX / 2):Y INT (YMAX / 2)

3340 MR = ML + XMAX * 4:MB

MT + YMAX * 4

3350 CL = ML + (X - 1) * 4:CT = MT + (Y - 1) * 4

3360
3400
3410
3420
3430
3500 Q =

3510 POKE
3520 RETURN
9999 END

RETURN

HCOLOR= 7

FOR I = ML TO MR STEP 4:

FOR I

RETURN

PEEK (-~ 16384):
- 16368,0:Q = Q - 128

Text continued from page 303:
tables are named QUOTBL, LOSTRT,
and HISTRT. QUOTBL is a lookup
table used internally by the
subroutine to divide the x-coordinate
by 7. LOSTRT and HISTRT are each
- 192 bytes long, and they contain the
low- and high-order bytes of the
address of the leftmost byte of each
y-coordinate in page 1 of hi-res screen
memory. For plotting on page 2 of the
hi-res memory, a hexadecimal 20
should be added to each byte in the
table HISTRT. Although I wanted the
subroutine to be fully relocatable, I
compromised this requirement in
favor of additional speed. However,
as I have written it, relocating the
subroutine requires changing only
the two locations referencing
QUOTBL in lines 38 and 41 of listing
1.

306 August 1983 © BYTE Publications Inc

= HPLOT I,MT TO I,MB: NEXT I
= MT TO MB STEP 4: HPLOT ML,I TO MR,I: NEXT I

IF Q < 128 THEN 3500

A Note on Color

One of the most difficult aspects of
using the Apple high-resolution
graphics mode is trying to control the
color of objects displayed on the
screen. This difficulty arises because
a color cannot be individually as-
signed to each pixel on the screen;
the color depends instead on such
factors as whether an object is drawn
with pixels horizontally alternating
between on and off and whether the
on pixels have even or odd x-coordi-
nates. Through careful programming
and shape-table composition, you
can control colors in this manner
using the shape subroutine
presented in this article. In newer
Apples, however, two more colors are

added to the hi-res screen by defin-.

ing the previously unused high-order
bit in each word in hi-res screen

memory. Unfortunately, these colors
cannot be easily displayed using the
shape subroutine because the sub-
routine forces the extra bit in the hi-
res screen to 0. For a complete
description of color in the Apple hi-
res screen, see page 19 of the Apple
II Reference Manual (Cupertino: Apple
Computer Inc., 1979).

The Shape-Editor Program

Although it is not difficult to form
the shape table for a given shape, it
is often time consuming. When writ-
ing a program that uses shapes, you
rarely know in advance the exact pix-
el pattern that makes up the shape.
Even if you know the pattern, you're
probably not sure whether the shape
will look good on the hi-res screen.
It might take you hours to develop a
suitable shape if you have to write
out each trial on graph paper, form
the shape table, and use the
subroutine to display the shape
before you can tell if it is satisfactory.
This time-consuming method can
bring the creative process to a halt.
A more desirable situation would be
one in which you could easily experi-
ment with different shapes on the hi-
res screen until you were satisfied
with the results and then form the
shape table directly from the screen
image. I had this concept in mind
when writing the shape-editor pro-
gram shown in listing 3. The program
features complete hi-res editing, both
actual size and a blown-up view of
the shape being drawn, disk storage
of the current shape (the source file)
for future editing, and assembly of a
shape table from any portion of the
current screen.

The editor program requires an
Apple II with 32K bytes of memory,
a disk drive, and Applesoft in ROM
(read-only memory). When you run
the program, the list of commands
shown in photo 1 comes up on the
screen. After you press the space bar,
the left area of the screen becomes
blank, and a grid appears on the
right. The blank area is the “slate” on
which you can draw different shapes
actual size. Anything drawn also ap-
pears enlarged on the grid, making
it easier to see details of the shape.
Once the grid has been drawn, a

COMMRRE MENU

PR ———

2%, % CURSOR WOUEMENT

L T

CLEAR SCREEN
MAKE SHAPE TABLE

-
|4
-
e
-

LRI

#e X

WIT SPRCE TO EXIT mMENY

Photo 1: The command menu that appears at the beginning of the
shape-editor program (listing 3). This menu also appears whenever

the Help key is pressed.

small horizontal line appears in one
of the small squares in the grid. This
is the cursor, which always shows the
current drawing position of the
program.

Once the cursor appears on the
screen, you can execute any of the
commands listed in the menu (photo
1) by pressing the corresponding let-
ter on the keyboard. The letters [, J,
K, and M are used for moving the
graphics cursor up, left, right, and
down, respectively. The Plot com-
mand plots a point at the current cur-
sor position, and the Erase command
erases the point at the current cursor
position. Neither the Plot nor the
Erase command causes any harm if
the command has already been used
at the cursor position (e.g., if the Plot

308 August 1983 © BYTE Publications Inc

PLAT POINT AT CURSOR PQSI
ERASE POINT AT CURSOR POSI

SAVE SHAPE SOURCE FILE TO 0Isk
GET SHAPE SOURCE FILE FROM O
HELP (RETURH TGO THIS MENU >
GULT PROGRAM EXECUTION

Al Tual SI1ZE

l’lll"ltﬂ 41

ANEEESAANERAE AN

T
.
Ty -

.

by

-

-

LY I T
P T Ll ettt

e amBaREw
mERRASR®
ERER R R

» we
-

CERREARRRE SN "

P
- g e Tl b
-

BRURBESE .

-
e

.

*
*
L4
s
3
»
*
»
*
*
s
*
*
*
*
*
#
»

ARE RS RBEED SRR

PTTITEl

VIEMING WINOOU

Photo 2: A view of the screen-edit mode of the shape-editor program.
The figure on the grid is an enlarged view of the actual-size shape

on the left side of the screen. The cursor is the small horizontal line
in a square above the lower left corner of the displayed shape.

command is used at a position where
a point already exists). The Clear
command clears the screen after
prompting you to verify that the
screen should indeed be cleared. By
using the cursor-movement, Plot,
Erase, and Clear commands, you can
draw the desired shape on the screen
and modify it as many times as
necessary. A shape being drawn in
this screen-edit mode is shown in
photo 2.

With the Table command, you can
make a shape table from any segment
of the screen where you have drawn
a shape. After choosing the Table
command by pressing the T key, you
must choose the smallest rectangle
that encloses the shape; this is the
same rectangle chosen when forming

the shape table manually as pre-
viously described. You specify the
boundaries of this rectangle by mov-
ing the cursor to the upper left posi-
tion of the rectangle and pressing the
Return key and then doing the same
for the lower right corner of the rec-
tangle. The corners are inclusive; that
is, the rows and columns that contain
the corners become the outermost
edges included in the shape table. A
portion of the rectangle selection pro-
cess is shown in photo 3. After you
select the desired rectangle, the pro-
gram will form the shape table. The
time this takes (typically 15 to 30
seconds) depends on the size of the
shape. The completed shape table is
displayed on the screen in either
decimal or hexadecimal form, de-

eI T R
-

P L Ao
Cenwmanss
T LAt d b

+
*
*
.
*
2
*
¥
*
»
®
*
»
*
*
*
*
*
*
.
*
*
*
3
»*
*
*
.
£
.
»
¥
¥
»
.

VIEMING WINDOM
LD T T RaE RN R v REY

Photo 3: A view of the first step in forming a shape table. The desired
shape is selected by defining a rectangle enclosing the shape. Here,

® OF
BRn®

the user has positioned the cursor to the correct position to define

the upper left corner of the rectangle.

pending on how you answer a
prompt. The program will then save
this object-file shape table on disk as
a standard binary file if you so desire.
You are then asked whether to return
to the screen-edit mode or end the
program. Photo 4 shows the final
shape table formed from the sample
shape used in photo 3.
The Save and Get commands let
~you store on disk and later retrieve
any picture drawn in the screen-edit
mode. The Save command prompts
you for a file name and then saves to
disk a representation of the shape
drawn on the grid. The Get com-
mand can then be used to retrieve
and display the picture as long as the
saved file remains on disk. Because
the Get command erases any draw-

ing previously on the screen, you are
first asked to confirm that a file is to
be loaded. Once the picture is re-
trieved, it can be modified or
assembled into a shape table just as
if the picture had been entered using
the keyboard commands.

The Help command (executed by
pressing the H or ? key) returns you
from the screen-edit mode to the
menu shown at the beginning of the
program for a quick command-letter
check. Pressing the space bar returns
you to screen-edit mode with the
contents of the screen unaltered. The
Quit command ends the program.
Because any drawing on the screen
is lost once the program is ended,
you are asked to confirm the Quit
directive.

00 ANT TQ SEE THE TABLE IN MEX
i g":ﬁ m»:f:xmn.gE

BEQHUREE

oQ munm TO SAVE THE OBJECT TABLE

s

WANT TO NAME
e

Photo 4: A view of the screen after the shape-editor program has
formed the shape table for the shape shown in photo 3.

Summing Up

Using the techniques and pro-
grams described in this article, you
can implement professional-looking
animation on the Apple without hav-
ing to work around the limitations of
the standard Apple shape subrou-
tine. Although I wrote my shape sub-
routine with animation in mind, the
subroutine is useful in any graphics
applications where detailed shapes
must be drawn. Using the graphics
editor as a development tool, virtual-
ly any shape can be easily displayed
on the hi-res screen.m

Richard T. Simoni Jr. (29 Farnham Park Dr.,
Houston, TX 77024) is currently enrolled as a senior
electrical engineering/computer science/math science
major at Rice University in Houston, Texas.

August 1983 © BYTE Publications Inc 309

