
Apple IIGS

#34: Low-Level QuickDraw II Routines 1 of 8

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#34: Low-Level QuickDraw II Routines

Revised by: Dave “Evad Snoyl” Lyons, C.K. Haun, Keith Rollin,
Steven Glass, Matt Deatherage & Eric Soldan January 1991

Written by: Steven Glass May 1988

This Technical Note describes the low-level routines which QuickDraw II uses to do much of the
work in standard calls and mechanisms for calling these routines and accessing their data.
Changed since November 1990: Added a Note on custom bottleneck procedures and updated
information on ShieldCursor and UnShieldCursor.

QuickDraw II lets you customize low-level drawing operations by intercepting the “bottleneck
procedures.” QuickDraw II calls an appropriate “bottleneck proc” every time it receives a call to
draw an object, measure text, or deal with pictures. For example, if an application calls
PaintOval, QuickDraw II calls StdOval to do the real work, and if an application calls
InvertRgn, QuickDraw II calls StdRgn to do the work.

Installing your own bottleneck procedures is a little bit tricky. The QuickDraw II
SetStdProcs call accepts a pointer to a 56-byte ($38 hex) record and fills that record with the
addresses of the standard bottleneck procedures of QuickDraw II. You may modify this record
by replacing those addresses with the addresses of your own custom bottleneck procedures
minus one. (QuickDraw II pushes the address on the stack and executes an RTL to it, so the
address in the record must point to the byte before the routine.)

Note: A custom bottleneck procedure must not begin at the first byte of a segment. If it
does, then the segment could load at the beginning of a bank, and the address
minus one would be in the wrong bank and RTL would transfer control to the
wrong location. (See Apple IIGS Technical Note #90, 65816 Tips and Pitfalls.)

After installing your own procedures, you use SetGrafProcs to tell QuickDraw II about
them. The format of this call is as follows (taken from the E16.QUICKDRAW file in APW):

 ostdText GEQU $00 ; Pointer - QDProcs -
 ostdLine GEQU $04 ; Pointer - QDProcs -
 ostdRect GEQU $08 ; Pointer - QDProcs -
 ostdRRect GEQU $0C ; Pointer - QDProcs -
 ostdOval GEQU $10 ; Pointer - QDProcs -
 ostdArc GEQU $14 ; Pointer - QDProcs -
 ostdPoly GEQU $18 ; Pointer - QDProcs -
 ostdRgn GEQU $1C ; Pointer - QDProcs -
 ostdPixels GEQU $20 ; Pointer - QDProcs -
 ostdComment GEQU $24 ; Pointer - QDProcs -

Apple II Technical Notes

Apple IIGS

2 of 8 #34: Low-Level QuickDraw II Routines

 ostdTxMeas GEQU $28 ; Pointer - QDProcs -
 ostdTxBnds GEQU $2C ; Pointer - QDProcs -
 ostdGetPic GEQU $30 ; Pointer - QDProcs -
 ostdPutPic GEQU $34 ; Pointer - QDProcs -

The following code fragment shows how you might replace the StdRect procedure with your
own for a given window:

 pha ; open a test window
 pha
 PushLong #MWindData ; standard setup for NewWindow
 _NewWindow
 _SetPort

 PushLong #MyProcs ; get a record to modify
 _SetStdProcs

 ldy #ostdRect ; get the low word of my rectangle routine
 lda #myRect-1 ; (minus one) and patch it in to the record
 sta myProcs,y
 lda #^myRect ; do the same for the high word
 sta myProcs+2,y

 PushLong #MyProcs ; install the procs
 _SetGrafProcs

The interface to bottleneck procedures is different from the interface to other QuickDraw II
routines; you do not make calls via the tool dispatcher and you pass most parameters on the
direct page and in registers (rather than on the stack). To write your own bottleneck procedures,
you have to know where the inputs to each call are kept and how to call the standard procedures
from inside your own procedures.

The standard bottleneck procedures are accessed through vectors in bank $E0.

 StdText $E01E04
 StdLine $E01E08
 StdRect $E01E0C
 StdRRect $E01E10
 StdOval $E01E14
 StdArc $E01E18
 StdPoly $E01E1C
 StdRgn $E01E20
 StdPixels $E01E24
 StdComment $E01E28
 StdTxMeas $E01E2C
 StdTxBnds $E01E30
 StdGetPic $E01E34
 StdPutPic $E01E38

When you call any of the standard procedures, the first direct page of QuickDraw II is active. If
you pass variables on any direct page other than the first (direct page locations greater than $FF),
you can use a simple trick to access them. For example, to access TheFillPat ($10E) without
changing the direct page register:

 ldx #$100 ;offset to second DP
 lda >$0E,X ;gets "DP" location $10E

Developer Technical Support January 1991

Apple IIGS

#34: Low-Level QuickDraw II Routines 3 of 8

Certain locations on the direct page are always valid:

PortRef $24
MaxWidth $28
MasterSCB $08
UserID $0A

Apple II Technical Notes

Apple IIGS

4 of 8 #34: Low-Level QuickDraw II Routines

DrawVerb is usually valid, but not always:

DrawVerb $38

Each of the bottleneck procedures uses the direct page differently.

QuickDraw II has an interesting bug relating to the standard conic bottleneck procedures. If you
replace any of the standard procedures with your own, QuickDraw II does not perform some of
the setups it normally would before calling the standard conic procedures (stdRRect,
stdOval, stdArc). For example, if you replace StdRect with a custom rectangle routine, but
leave the other conic pointers alone (as shown in the code fragment above), QuickDraw II will
not do all of the normal setups when calling the standard conic routines. To deal with this bug of
QuickDraw II, you must patch out the additional bottleneck procedures and set up those direct
pages locations yourself, or the results will not be what you expect. The QuickDraw II direct-
page variables you must initialize yourself in this instance are bulleted (•) below.

StdText
DrawVerb $38 Describes the kind of text to draw. There are three

possible values:
DrawCharVerb 0
DrawTextVerb 1
DrawCStrVerb 2

TextPtr $DA If the draw verb is DrawTextVerb or
DrawCStrVerb, TextPtr points to the text buffer
or C string to draw.

TextLength $D8 If the draw verb is DrawTextVerb, TextLength
contains the number of bytes in the text buffer.

CharToDraw $D6 If the draw verb is DrawCharVerb, CharToDraw
contains the character to draw.

StdLine
Y1 $A6 Starting Y value for the line to draw
X1 $A8 Starting X value for the line to draw
Y2 $AA Ending Y value for the line to draw
X2 $AB Ending X value for the line to draw
Rect2 $AE Exactly the same thing as Y1, X1, Y2 and X2 in the

top, left, bottom, and right of the rectangle

StdRect
DrawVerb $38 One of the following five drawing verbs:

Frame 0
Paint 1
Erase 2
Invert 3
Fill 4

Rect1 $A6 The rectangle to draw in standard form (top, left,
bottom, right)

Developer Technical Support January 1991

Apple IIGS

#34: Low-Level QuickDraw II Routines 5 of 8

TheFillPat $10E The pattern to use for the rectangle if the verb is Fill

Note: The QuickDraw II Auxiliary SpecialRect call does not use the rectangle bottleneck
procedures.

Apple II Technical Notes

Apple IIGS

6 of 8 #34: Low-Level QuickDraw II Routines

StdRRect
DrawVerb $38 One of the following five drawing verbs:

Frame 0
Paint 1
Erase 2
Invert 3
Fill 4

Rect1 $A6 The boundary rectangle for the round rectangle
OvalRect $295 A copy of the boundary rectangle for the round

rectangle
OvalHeight $208 The oval height for the rounded part of the round

rectangle
OvalWidth $20A The oval width for the rounded part of the round

rectangle
• ArcAngle $D2 Must be 360
• StartAngle $D4 Must be zero
TheFillPat $10E The pattern to use for the round rectangle if the verb

is Fill

StdOval
DrawVerb $38 One of the following five drawing verbs:

Frame 0
Paint 1
Erase 2
Invert 3
Fill 4

Rect1 $A6 The boundary rectangle for the oval
OvalRect $295 A copy of the boundary rectangle for the oval
• OvalHeight $208 Must be the height of the oval
• OvalWidth $20A Must be the width of the oval
• ArcAngle $D2 Must be 360
• StartAngle $D4 Must be zero
TheFillPat $10E The pattern to use for the oval if the verb is Fill

StdArc
DrawVerb $38 One of the following five drawing verbs:

Frame 0
Paint 1
Erase 2
Invert 3
Fill 4

Rect1 $A6 The boundary rectangle for the arc
• OvalWidth $20A Must be the width of the boundary rectangle for the

arc
ArcAngle $D2 The number of degrees the arc will sweep
StartAngle $D4 The starting position of the arc
TheFillPat $10E The pattern to use for the arc if the verb is Fill

Developer Technical Support January 1991

Apple IIGS

#34: Low-Level QuickDraw II Routines 7 of 8

Apple II Technical Notes

Apple IIGS

8 of 8 #34: Low-Level QuickDraw II Routines

StdPoly
DrawVerb $38 One of the following five drawing verbs:

Frame 0
Paint 1
Erase 2
Invert 3
Fill 4

RgnHandleA $50 The handle to the polygon data structure
TheFillPat $10E The pattern to use for the polygon if the verb is Fill

StdRgn
DrawVerb $38 One of the following five drawing verbs:

Frame 0
Paint 1
Erase 2
Invert 3
Fill 4

RgnHandleC $70 The handle to the region to draw
TheFillPat $10E The pattern to use for the region if the verb is Fill

StdPixels
SrcLocInfo $CC The LocInfo record for the source pixel map
DestLocInfo $0C The LocInfo record for the destination pixel map
SrcRect $DC The source rectangle for the operation in local

coordinates for the source pixel map (as described
in the source LocInfo record)

DestRect $1C The destination rectangle for the operation in local
coordinates for the destination pixel map (as
described in the destination LocInfo record)

XferMode $E4 The mode to use for data transfer
RgnHandleA $50 The handle to the first region to which drawing is

clipped (usually the C l i p R g n from the
GrafPort) A NIL handle is not allowed. To
signify no clipping, pass a handle to the WideOpen
region, which is defined as 10 bytes:

Length $A (word)
-MaxInt -$3FFF (word)
-MaxInt -$3FFF (word)
+MaxInt +$3FFF (word)
+MaxInt +$3FFF (word)

RgnHandleB $60 The handle to the second region to which drawing is
clipped (usually the VisRgn from the GrafPort)
A NIL handle is not allowed. To signify no
clipping, pass a handle to the WideOpen region.

Developer Technical Support January 1991

Apple IIGS

#34: Low-Level QuickDraw II Routines 9 of 8

RgnHandleC $70 The handle to the second region to which drawing is
clipped (usually the mask region from the
CopyPixels or the PaintPixels call) A NIL
handle is not allowed. To signify no clipping, pass
a handle to the WideOpen region.

Apple II Technical Notes

Apple IIGS

10 of 8 #34: Low-Level QuickDraw II Routines

StdComment
TheKind $A6 The kind of input for the comment
TheSize $A8 The number of bytes to put into the picture
TheHandle $AA The data to put into the picture

StdTxMeas
DrawVerb $38 Describes the kind of text to draw. There are three

possible values:
DrawCharVerb 0
DrawTextVerb 1
DrawCStrVerb 2

TextPtr $DA If the draw verb is D r a w T e x t V e r b or
DrawCStrVerb, TextPtr points to the text
buffer or C string to draw.

TextLength $D8 If the draw verb is D r a w T e x t V e r b ,
TextLength contains the number of bytes in the
text buffer.

CharToDraw $D6 If the draw verb is DrawCharVerb,
CharToDraw contains the character to measure.

TheWidth $DE The resulting width should be put here.

StdTxBnds
DrawVerb $38 Describes the kind of text to draw. There are three

possible values:
DrawCharVerb 0
DrawTextVerb 1
DrawCStrVerb 2

TextPtr $DA If the draw verb is D r a w T e x t V e r b or
DrawCStrVerb, TextPtr points to the text
buffer or C string to draw.

TextLength $D8 If the draw verb is D r a w T e x t V e r b ,
TextLength contains the number of bytes in the
text buffer.

CharToDraw $D6 If the draw verb is D r a w C h a r V e r b ,
CharToDraw contains the character to draw.

RectPtr $D2 Indicates the address to put the resulting rectangle.

StdGetPic
This call takes input on the stack rather than the direct page. This is the one standard
bottleneck procedure which you call with the direct page register set to something other
than the direct page of QuickDraw II; it is set to a part of the stack.

Stack Diagram on Entrance to StdGetPic
Previous Contents
DataPtr Pointer to destination buffer
Count Integer (unsigned) (bytes to read)
RTL Address 3 bytes

Developer Technical Support January 1991

Apple IIGS

#34: Low-Level QuickDraw II Routines 11 of 8

----------------- Top of Stack

Stack Diagram just before exit from StdGetPic
Previous Contents
RTL Address 3 bytes
----------------- Top of Stack

StdPutPic
This call takes input on the stack rather than the direct page; however, unlike
StdGetPic, the direct page for QuickDraw II is active when you call this routine.

Stack Diagram on Entrance to StdPutPic

Previous Contents
DataPtr Pointer to source buffer
Count Integer (unsigned) (bytes to read)
RTL Address 3 bytes
----------------- Top of Stack

Stack Diagram just before exit from StdPutPic

Previous Contents
RTL Address 3 bytes
----------------- Top of Stack

Dealing with the Cursor

The cursor can get in your way when you want to draw directly to the screen. QuickDraw II has
two low-level routines which help you avoid this problem: ShieldCursor and
UnshieldCursor. ShieldCursor tells QuickDraw II to hide the cursor if it intersects the
MinRect and to prevent the cursor from moving until you call UnshieldCursor.

There is a bug in ShieldCursor for System Disks 4.0 and earlier. This bug is related to the
routine ObscureCursor. When the cursor is obscured, ShieldCursor does not prevent
the cursor from moving; therefore, the user is able to move the cursor during a QuickDraw II
operation, and this movement may disturb the screen image.

Calls to ShieldCursor must be balanced by calls to UnshieldCursor. You may not call
ShieldCursor successively without calling UnshieldCursor after each call to
ShieldCursor. There is no error checking, so careless use of these routines will result in an
unusable system.

MinRect is the smallest possible rectangle which encloses all the pixels that may be affected by
a drawing call. You keep MinRect on the direct page and usually calculate it by intersecting
the rectangle of the object you are drawing with the BoundsRect, PortRect, boundary box
of the VisRgn, and the boundary box of the ClipRgn. You must set up MinRect yourself.

Apple II Technical Notes

Apple IIGS

12 of 8 #34: Low-Level QuickDraw II Routines

ShieldCursor also looks at two other fields on the direct page of QuickDraw II. ImageRef
is a long word located at $0E. If ImageRef does not point to $E12000 or $012000, QuickDraw
II assumes you are not drawing to the screen, so it does not have to shield the cursor.
BoundsRect is a rectangle located at $14, and QuickDraw II uses it to translate MinRect into
global coordinates. These values are generally correct, but under the following known
circumstance, they are not and ShieldCursor does not function properly:

1. You have just drawn to an off-screen GrafPort with QuickDraw II.
2. You switch to a GrafPort on the screen.
3. You call ShieldCursor.

ImageRef and BoundsRect are not updated until QuickDraw II is actually committed to
drawing, thus, these values are still for the off-screen GrafPort in this case, even though you
switched to a GrafPort on the screen. Therefore, when you call ShieldCursor, you have to
make sure that these values are current. (If these values are current, ShieldCursor will work
correctly, no matter what the circumstances.)

You can find the location of the QuickDraw II direct page with the GetWAP call. For speed
reasons, you may not want to make the GetWAP call for each ShieldCursor call. You may
wish to get the work area pointer value after starting QuickDraw II and store it for future
reference.

Calling ShieldCursor:
1. Set direct page for QuickDraw II.
2. Save the existing values of MinRect, ImageRef, and BoundsRect.
3. Set MinRect, ImageRef, and BoundsRect.
4. Let QuickDraw II know you’ve changed the contents of its direct page by clearing the

“dirty” flags bits 14 to 0:

DirtyFlags equ $EC

ldx #$200 ;index to QD’s third page of work space
lda DirtyFlags,x
and #$8000
sta DirtyFlags,x

5. JSL to ShieldCursor.
6. Restore the previous values of MinRect, ImageRef, and BoundsRect.

Note: Saving and restoring these values was not previously mentioned in this Note
and in most circumstances it is not necessary. Saving and restoring is now
recommended. In particular, if ShieldCursor is called inside a
QuickDraw II bottleneck procedure, the system can crash if you fail to restore
the contents of direct page.

Calling UnshieldCursor:
1. Set direct page for QuickDraw II.

Developer Technical Support January 1991

Apple IIGS

#34: Low-Level QuickDraw II Routines 13 of 8

2. JSL to UnshieldCursor.

ShieldCursor $E01E98
MinRect $00
ImageRef $0E
BoundsRect $14

UnshieldCursor $E01E9C

Further Reference
• Apple IIGS Toolbox Reference, Volume 2

