
Apple IIGS

#90: 65816 Tips and Pitfalls 1 of 3

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#90: 65816 Tips and Pitfalls

Revised by: Matt “Matt” Deatherage March 1991
Written by: Dave “Dave” Lyons September 1990

This Technical Note presents short 65816 assembly language examples illustrating pitfalls and
clever techniques.
Changes since November 1990: Added more explanations about the JSL table and corrected a
comment.

Dispatching Through an Address Table

The 65816 has a JSR ($aaaa,X) instruction for calling a selected subroutine from a table of
addresses, but it has no JSL ($aaaa,X) instruction. If you need to dispatch to one of several
routines that are not all in the same bank, you need an approach like the following. The idea is to
perform a JSL to a routine which does a long jump by pushing a three-byte “RTL address” on
the stack and then doing an RTL.

 jsl LngJmp ;go jump to the routine
 ...

 LngJmp asl a ;take routine number in A and
 asl a ; multiply it by 4
 tax ;put table index into X
 lda table+1,x ;get “middle” word of address
 pha ; and push it
 lda table,x ;get low word and
 dec a ; decrement it by one
 phb ;push a single throw-away byte
 sta 1,s ;store over low two of the 3 bytes
 rtl ;transfer control to the routine
table dc.l routine1 ;table of 4-byte subroutine addresses
 dc.l routine2
 dc.l routine3
 ...

This code is correct because RTL pulls three bytes off the stack and increments the two low bytes
without incrementing the high byte.

Note: This approach to a table-based JSL is more flexible than JML ($XXXX) because it does
not require any fixed-location storage or bank zero space, other than the stack.

Apple II Technical Notes

Apple IIGS

2 of 3 #90: 65816 Tips and Pitfalls

On the other hand, the following code is not correct. The approach here is to make a table of
addresses minus one.

 asl a W
 asl a R ;multiply index by 4
 tax O ; and put it in X
 lda table+1,x N ;get the “middle” word
 pha G ; and push it
 lda table,x ! ;get the low word
 phb W ;push a single throw-away byte
 sta 1,s R ;store over low two bytes
 rtl O ;transfer control to the routine
 table dc.l routine1-1 N ;table of 4-byte addresses minus one
 dc.l routine2-1 G
 dc.l routine3-1 !
 ...

This second sample code fragment fails if any of the routines in the table comes at the first byte
of a bank. For example, if routine1 is at $060000, the address pushed is $05FFFF, and RTL
transfers control to $050000, not $060000.

Dereferencing Handles Without Direct Page Space

When your code gets called with the D register undefined, you must not use direct page
addressing without setting D to a known good value. Preserving and restoring locations on the
caller’s direct page is not reliable, because D could be pointing at bytes below the stack pointer
(which can be destroyed by interrupts) or even at the $C0xx soft switches (that would make your
direct page accesses accidentally fiddle with hardware).

A common way to get temporary direct page space is to point D at part of your stack. This
following code dereferences a handle stored in the A and X registers (if the handle is $E01234
and refers to a block of memory at $056789, then on entry A=$00E0 and X=$1234, and on exit
A=$0005 and X=$6789).

 phd ;save caller’s direct-page register
 pha ;push high word of handle
 phx ;push low word of handle
 tsc ;get stack pointer in A
 tcd ;and put it in D
 lda [1] ;get low word of master pointer (no “,Y”!)
 tax ; and put it in X
 ldy #$0002 ;offset to high word of master pointer
 lda [1],y ;get high word
 ply ;remove low word of handle
 ply ; and high word
 pld ;restore the caller’s direct-page register

Developer Technical Support March 1991

Apple IIGS

#90: 65816 Tips and Pitfalls 3 of 3

Direct page addressing isn’t the only way to address through pointers. Here’s the same routine
as before, but using the Data Bank register (B) instead of fiddling with D. (Note that handles do
not have to be in bank $E0 or $E1, although they usually are.)

 phb ;save caller’s data bank register
 pha ;push high word of handle on stack
 plb ;sets B to the bank byte of the pointer
 lda |$0002,x ;load the high word of the master pointer
 pha ; and save it on the stack
 lda |$0000,x ;load the low word of the master pointer
 tax ;and return it in X
 pla ;restore the high word in A
 plb ;pull the handle's high word high byte off the stack
 plb ;restore the caller’s data bank register

Emulation Mode Has 65816 Features

You don’t have to switch into Native mode just to do an eight-bit operation with long addressing.
Most 65816-specific instructions and addressing modes work in emulation mode in
approximately the same way they work in eight-bit native mode. See the “Further Reference”
for details.

Further Reference
• Apple IIGS Hardware Reference
• Programming the 65816, Including the 6502, 65C02 and 65802 (Eyes and Lichty, 1986,

Brady)

