
Apple IIGS
#74: Top Ten List Manager Things 1 of 4

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#74: Top Ten List Manager Things
Revised by: Dave Lyons May 1992
Written by: Jim Mensch November 1989

This Technical Note presents a method for speeding up custom List Draw routines, with sample
source code for the APW assembler.
Changes since November 1989: Added information on memFlag and on shared rListRef
resources, and noted that System 6.0 already checks the clip region and calls your listDraw
routine only when needed.

Ten—More memFlag Bits

In each member record, bits 0 and 1 of memFlag indicate whether memPtr is a pointer, handle, or
resource ID. You don’t normally have to worry about that—a custom listDraw routine is one
place that you do. The complete definition of memFlag is as follows:

Bit Description
7 memSelected
6 memDisabled
5 memNever (Inactive)
4-2 reserved—set to zero
1-0 00 = memPtr is a pointer

01 = memPtr is a handle
10 = memPtr is a resource ID (type is rPString or rCString)
11 = reserved

Nine—Sharing rListRef resources

When listRef is a resource ID, the List Manager calls LoadResource every time it needs
your rListRef resource. If two or more lists share the same rListRef, they will get the same
handle from LoadResource and will interfere with each other.

To give each list its own copy of your the rListRef resource, load the resource yourself and use
DetachResource. Then feed the listRef to the List Manager as a handle. Repeat the
process for each list.

Apple II Technical Notes

2 of 4 #74: Top Ten List Manager Things

Eight—Custom listDraw Routines and the Clip Region

The custom listDraw routine below speeds up your list when running System Software earlier than
6.0. The System 6.0 List Manager already calls your listDraw routine only for members that
will not be completely clipped (but this is still a good starting point if you’re writing a custom
listDraw routine for some other reason).

To scroll text, the List Manager calls ScrollRect to scroll the list—then 6.0 redraws the newly-
exposed members, and older versions redraw all the visible members. On small lists this is fine, but
on larger lists it can cause the redrawing of much data that is already on the screen, which can take
time. If your application does not require 6.0, you may want to use a custom listDraw routine
like this one.

First, we check the current clipRgn (which the List Manager was kind enough to shrink down to
include only the portion of the list that needs redrawing) against the passed item rectangle. If the
rectangle is in any way enclosed in the clipRgn, then the member is redrawn; otherwise the
routine simply returns to the List Manager without drawing. This sample routine is designed to
work only with Pascal-style strings, but it can be easily modified to use any other type of string you
choose.

MyListDraw Start
;
; This routine draws a list member if any part of the member's
; rectangle is inside the current clipRgn.
;
; Note that the Data Bank register is not defined on entry
; to this routine. If you use any absolute addressing, you
; must set B yourself and restore its value before exiting.
;
top equ 0
left equ top+2
bottom equ left+2
right equ bottom+2
rgnBounds equ 2
;
oldDPage equ 1
theRTL equ oldDPage+2
listHand equ theRTL+3
memPtr equ listHand+4
theRect equ memPtr+4

using globals

phd
tsc
tcd

pha
pha

 _GetClipHandle
 PullLong listHand

 ldy #2
 lda [listhand],y
 tax
 lda [listhand]
 sta listhand
 stx listhand+2

 lda [therect] ; now test the top
 dec a ; adjust and give a little slack
 ldy #rgnbounds+bottom
 cmp [listhand],y ; rgnRectBottom>=top?

Developer Technical Support May 1992

Apple IIGS
#74: Top Ten List Manager Things 3 of 4

 blt skip2
 brl NoDraw ; if not don't draw..
Skip2 ldy #bottom ; now see if the bottom is higher than the top
 inc a ; give a little slack
 lda [therect],y
 ldy #rgnBounds+top
 cmp [listhand],y
 blt NoDraw
NoTest ANOP

PushLong theRect
_EraseRect ; erase the old rectangle

ldy #left
lda [theRect],y
tax
ldy #bottom
lda [theRect],y
dec a
phx
pha
_MoveTo
ldy #2
lda [memptr],y
pha
lda [memptr]
pha
_DrawString

ldy #4
lda [memPtr],y
and #$00C0 ; strip to the 6 and 7 bits
beq memDrawn ; if they are both 0 the member is drawn
cmp #$0080 ; member selected?
bne noSelect ; member not selectable
PushLong theRect
_InvertRect
bra memDrawn

; if we get here the member is disabled
noSelect PushLong #DimMask

_SetPenMask
PushLong theRect
_EraseRect
PushLong #NorMask
_SetPenMask

memDrawn ANOP

; exit here
pld
sep #$20
longa off
pla
ply

plx
plx
plx
plx
plx
plx
phy
pha
rep #$20
longa on
rtl

Apple II Technical Notes

4 of 4 #74: Top Ten List Manager Things

DimMask dc i1'$55,$AA,$55,$AA,$55,$AA,$55,$AA'
NorMask dc i1'$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF'

end

Seven through One—Reserved For Future Expansion

Further Reference
• Apple IIGS Toolbox Reference, Volumes 1 and 3

