
Apple IIGS

#70: Fast Graphics Hints 1 of 4

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#70: Fast Graphics Hints

Written by: Don Marsh & Jim Luther September 1989

This Technical Note discusses techniques for fast animation on the Apple IIGS.

QuickDraw II gives programmers a very generalized way to draw something to the Super Hi-Res
screen or to other parts of Apple IIGS memory. Unfortunately, the overhead in QuickDraw II
makes it an unacceptable tool for all but simple animations. If you bypass QuickDraw II, your
application has to write pixel data directly to the Super Hi-Res graphics display buffer. It also
has to control the New-Video register at $C029, and set up the scan-line control bytes and
color palettes in the graphics display buffer. Chapter 4 of the Apple IIGS Hardware Reference
documents where you can find the graphics display buffer in memory and how the scan-line
control bytes, color palettes, and pixel data bytes are used in Super Hi-Res graphics mode. The
techniques described in this Note should be used with discretion—we do not recommend
bypassing the Apple IIGS Toolbox unless it is absolutely necessary.

Map the Stack Onto Video Memory

To achieve the fastest screen updates possible, you must remove all unnecessary overhead from
the instructions that perform graphics memory writes. The obvious method for achieving
sequential writes to the graphics memory uses an index register, which must be incremented or
decremented between writes. These operations can be avoided by using the stack. Each time a
byte or word is pushed onto the stack, the stack pointer is automatically decremented by the
appropriate amount. This is faster than doing an indexed store followed by a decrement
instruction.

But how is the stack mapped onto the graphics memory? The stack can be located in bank $01
instead of bank $00 by writing to the WrCardRAM auxiliary-memory select switch at $C005.
Bank $01 is shadowed into $E1 by clearing bit 3 of the Shadow register at $C035. Under these
conditions, if the stack pointer is set to $3000, the next byte pushed onto the stack is written to
$013000, then shadowed into $E13000. The stack pointer is automatically decremented so the
stage is set for another byte to be written at $E12FFF.

Warning: While the stack is mapped into bank $01, you may not call any firmware,
toolbox or operating system routines (ProDOS 8 or GS/OS). Don’t even
think about it.

Unroll All Loops

Apple II Technical Notes

2 of 4 #70: Fast Graphics Hints

Another source of overhead is branching instructions in loops. By “straight-lining” the code to
move up a scan-line’s worth of memory at one time, branch instructions are avoided. Following
is an example of this technique.

Developer Technical Support September 1989

Apple IIGS

#70: Fast Graphics Hints 3 of 4

lda |164,y ; accumulator is 16 bits for
pha ; best efficiency
lda |162,y
pha
lda |160,y
pha

In this example, the Y register is used to point to data to be moved to the graphics memory, and
hard-coded offsets from the Y register are used to avoid register operations between writes.

Hard-Code Instructions and Data

In desperate circumstances, it is necessary to remove overhead from the previous code example.
This can be accomplished by hard-coding pixel data into your code instead of loading pixel
values from a separate data space and transferring them to the graphics memory (as in the
example). If you are writing an arbitrary pattern of three or fewer constant values to the screen,
for example, the following method is the fastest known:

lda #val1
ldx #val2
ldy #val3
pha ; arbitrary pattern of pushes
phx
phy
phy
phx

In cases where many different values must be written to the screen, pixel data can be written to
the screen using immediate push instructions:

pea $5389 ; some arbitrary pixel values
pea $2378
pea $A3C1
pea $39AF

Your program can generate this mixture of PEA instructions and pixel data itself, or it could load
pixel data that already has PEA instructions intermixed (thus increasing the data size by one
half).

Be Aware of Slow-Side and Fast-Side Synchronization

Estimating execution speed by counting instruction cycles is always a challenging task on the
IIGS, but it is particularly tricky when one is writing to the graphics memory. The graphics
memory resides in the side of the IIGS system controlled by the 1 MHz Mega II chip, which
means that during all writes to this memory, the fast side of the system controlled by the Fast
Processor Interface (FPI) chip must be synchronized with slow side of the system controlled by
the Mega II, even if the system is running code at full native speed. This synchronization is
performed automatically and transparently by the FPI in the IIGS, and it isn’t normally of
concern to the programmer. Animation programmers must worry about synchronization delays,
however, because slight changes in graphics update code may change the frequency of these
delays, and hence the speed of the program. In practical terms, this means that one loop writing

Apple II Technical Notes

4 of 4 #70: Fast Graphics Hints

data to the graphics memory may run at the same speed as a second loop with a higher cycle
count.

A careful analysis of the synchronization problem leads to the following tables, which are useful
as a rough estimate of the speed attained by different pieces of code. Each entry is based on the
number of cycles consumed during consecutive write instructions. For example, a series of PEA
instructions requires five cycles for each 16-bit write. A short PHA instruction followed by a
branch requires six cycles for each 8-bit write.

Fast Cycles per Write (byte) Actual Speed (µsec./byte)
3 to 5 2.0
6 to 8 3.0
9 to 11 4.0

Fast Cycles per Write (word) Actual Speed (µsec./word)
4 to 6 3.0
7 to 8 4.0
9 to 11 5.0

The times given in the tables apply only if the same number of fast cycles separate each
consecutive write operation. The first write operation in a set of write instructions usually takes
longer than subsequent writes, because the potentially long synchronization operation is
accomplished at that time. Unpredictable delays caused by memory refresh slow things down
further, although refresh delays byte-wide writes more often than word-wide writes. Therefore,
it is usually preferable from a speed standpoint to use word-wide writes to the graphics memory.

For more information on synchronization cycle timing within the IIGS, see Chapter 2 of the
Apple IIGS Hardware Reference and Apple IIGS Technical Note #68, Tips for I/O Expansion Slot
Card Design.

Use Change Lists

The timing data given in the preceding section shows that it is not possible to perform full-screen
updates in the time it takes the IIGS to scan the entire screen. In fact, it would be difficult to
update more than one-sixth of the screen in one scan time. Therefore, it is necessary to update
only those pixels which have actually changed from the previous frame of animation. One
method of doing this is to precalculate the pixels which change by comparing each frame against
the preceding frame. For interactive animation, fast methods must be developed for predicting
which areas of the screen must be updated (a determination of the exact pixels might require
more computation than the actual update would require).

Using the Video Counters

To achieve “tear-free” screen updates, it is necessary to monitor the location of the scan-line
beam when writing to graphics memory. As described in Apple IIGS Technical Note #39, Mega
II Video Counters, the VertCnt and HorizCnt Mega II video counter registers at $C02E-
C02F allow you to determine which scan line is currently being drawn.

Developer Technical Support September 1989

Apple IIGS

#70: Fast Graphics Hints 5 of 4

By using only the VertCnt register and ignoring the low bit of the 9-bit vertical counter stored
in HorizCnt, you can determine within 2 scan lines which scan line is currently being drawn.
The VertCnt video counter contains the number of the current scan line divided by two, offset
by $80. For example, if the scan-line beam was currently refreshing either scan line four or five,
VertCnt would contain $82 (4/2 + $80 or 5/2 + $80). Vertical blanking happens during
VertCnt values $7D through $7F and $E4 through $FF.

Apple II Technical Notes

6 of 4 #70: Fast Graphics Hints

Clever updates can modify twice as many pixels on the screen by sacrificing some smoothness,
running at 30 frames per second instead of 60. The technique is as follows:

1. Wait for the scan line beam to reach the first scan line.
2. Start updates from the top of the screen, being careful not to pass the scan line

beam.
3. Continue updates while the scan line beam progresses toward the bottom of the

screen, then goes into vertical blanking, then restarts at the top of the screen.
4. Finish the update before the scan line beam catches the update point.

Careful use of this method allows a frame to be updated during two scans of the screen instead of
just one. If you are not sufficiently careful, tearing results.

Note: The Apple IIGS main logic board Mega II-VGC registers and interrupts are not
synchronous to the Apple II Video Overlay Card video and therefore should not
be used for time synchronization with the Apple II Video Overlay Card video
output. However, they can be used for time synchronization with the Apple IIGS

video output. See the Apple II Video Overlay Card Development Kit for more
information.

Interrupts

It is not possible to support interrupts while sustaining a high graphics update rate, unless
jerkiness or tearing is acceptable. Be aware that many system activities such as GS/OS and
AppleTalk depend on interrupts and do not function if interrupts are disabled.

Further Reference
• Apple IIGS Firmware Reference
• Apple IIGS Hardware Reference
• Apple II Video Overlay Card Development Kit
• Apple IIGS Technical Note #39, Mega II Video Counters
• Apple IIGS Technical Note #40, VBL Signal
• Apple IIGS Technical Note #68, Tips for I/O Expansion Slot Card Design

