
Apple IIGS

#91: The Wonderful World of Universal Access 1 of 4

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#91: The Wonderful World of Universal Access

Revised by: Dave Lyons May 1992
Written by: Don J. Brady, Matt Deatherage, & Ron Lichty September 1990

This Technical Note discusses how your applications can be compatible with Universal Access
software.
Changes since July 1991: Added caution against reading the keyboard with interrupts disabled.

What’s “Universal Access?”

Universal Access is the name given to software components designed to make Apple computers
(in this case, the Apple IIGS) more accessible to people who might have difficulty using them.
The Apple IIGS is very dependent on graphic objects, a keyboard and mouse; not all people can
use these things very easily.

There are several components to Apple’s Universal Access software:

• CloseView. CloseView magnifies the Apple IIGS screen so that it’s more easily
seen by those with visual impairments. The hardware screen contains a
magnification from two to twelve times as large as the “real” 32K Super Hi-Res
graphics screen.

• Video Keyboard. Video Keyboard is a New Desk Accessory that emulates a
keyboard. A picture of a keyboard appears on the screen; a mouse-down event in
any “key” makes Video Keyboard post a key-down event, so you can use a
pointing device as a keyboard. ADB hardware is available to allow people to use
head gear or other devices instead of mice; Video Keyboard lets these same
devices replace the keyboard as well.

• Easy Access. Easy Access comes in two parts: Sticky Keys and Mouse Keys.
Sticky Keys makes the keyboard easier to use for those who have trouble
pressing more than one key at a time; while Sticky Keys is activated, modifier
keys may be released and still apply to the next keystroke. Mouse Keys allows
the numeric keypad to be used as a mouse substitute. Sticky Keys and Mouse
Keys are included in all ROM 03 Apple IIGS computers. The software versions
allow all Apple IIGS computers to provide these functions, and provide additional
icon feedback (in the upper right menu bar) for Sticky Keys.

Apple II Technical Notes

Apple IIGS

2 of 4 #91: The Wonderful World of Universal Access

Developer Technical Support May 1992

Apple IIGS

#91: The Wonderful World of Universal Access 3 of 4

How It Works (Access Nothing and Checks For Free)

Universal Access generally works by replacing Apple IIGS toolbox functions. For example,
CloseView patches QuickDraw so you do not draw to the actual screen, but to another buffer that
CloseView can then magnify. Video Keyboard patches the Window Manager so that its
keyboard window is always frontmost and fully visible (and accessible). Easy Access uses the
ADB tools and the Event Manager to alter the way the hardware responds.

Since Universal Access changes the way the tools behave, your applications do not have to work
very hard to be accessible to a broad range of physically challenged people. Just by following
the rules, you have an accessible application. There are, however, a few guidelines you should
keep in mind when designing your programs to make them as accessible as they can be.

Universal Access Compatibility Guidelines

• Don’t disable interrupts and then try to read the keyboard. Easy Access on ROM 1
works at the Apple Desktop Bus level—if ADB interrupts are not being serviced, no
keypresses will show up at $C000/$C025. Even Reset will not work, so the user may
have to power down to regain control of the machine.

• Try to avoid using modal dialogs. Not only do lots of modal dialogs make for a
cumbersome interface for everyone, they are especially annoying to those who have
to move the mouse to a lot of OK buttons. More importantly, users cannot open
NDAs like Video Keyboard while modal dialogs are frontmost.

Video Keyboard can also be dragged in front of modal dialogs. If you are in the habit
of using QuickDraw calls to draw items in Dialog Manager modal dialogs instead of
creating custom dialog userItems, Video Keyboard users can drag the keyboard
window in front of your dialog and erase the items (since the only items redrawn are
those redrawn by the Dialog Manager’s update routine). You can easily test this in
all of your dialogs by obscuring each dialog with the Video Keyboard window a piece
at a time, then moving Video Keyboard away, to be sure that all areas are completely
redrawn.

Let’s say, for example, that you have a custom text item that changes between
invocations of the same modal dialog. You might choose to draw the text yourself
with LETextBox2 after creating the dialog with GetNewModalDialog but
before letting the Dialog Manager handle events with ModalDialog:

phx ; port: hi word from GetNewModalDialog
pha ; port: lo word from GetNewModalDialog
_SetPort

lda OurText+2 ; pointer to text to draw in modal dialog
pha
lda OurText
pha
lda OurTextLength ; Text length
pha

Apple II Technical Notes

Apple IIGS

4 of 4 #91: The Wonderful World of Universal Access

pea OurTextRect>>16 ; Text rectangle
pea OurTextRect
pea 0002 ; Text justification (2 = fill)
_LETextBox2

Developer Technical Support May 1992

Apple IIGS

#91: The Wonderful World of Universal Access 5 of 4

To be Universal Access–friendly, you would, instead, implement a userItem
routine like the following:

; .
DrawDialogText
;
; DrawDialogText draws text pointed to by OurText into the Dialog.
; This userItem routine is called only by the Dialog Manager,
; when it’s implementing/updating the dialog.
; .

lda >OurText+2 ; pointer to text to draw in modal dialog
pha
lda >OurText ; (long addressing: data bank unknown)
pha
lda >OurTextLength ; Text length
pha
pea OurTextRect>>16 ; Text rectangle
pea OurTextRect
pea 0002 ; Text justification (2 = fill)
_LETextBox2

lda 1,s ; get return address
sta 7,s ; move to proper location
lda 2,s ; above input parameters
sta 8,s

pla ; move stack pointer up
pla ; to new return address location
pla
rtl

It will be called as a result of adding a template item like the following to the dialog
template (note use of Item Value for the text length, since template Value fields are
not used by userItems):

TextTemplate dc.w 3 ; ID
OurTextRect dc.w TTop,TLeft,TBottom,TRight
 dc.w UserItem+ItemDisable ; Type
 dc.l DrawDialogText ; Pointer to our userItem routine
OurTextLength ds.w 1 ; Text length (cheap place to put

it)
 dc.w 0000 ; Item flag

 dc.l 00000000 ; Item color

Note that this is a simple example of a custom item routine; if you really had custom
text that changed from invocation to invocation, you could use the existing Dialog
Manager ParamText and longStatText2 item mechanisms.

• Use the Event Manager routines for event information. Do not access any hardware
directly or use the lower-level Miscellaneous Tools routines for user event
information—you steal that information from Universal Access. For example, use
the Event Manager routine GetMouse to find the mouse location. Do not use
ReadMouse or you steal mouse movement information from Universal Access.

• Call GetNextEvent or TaskMaster often. Long delays between calls do not let
NDAs like Video Keyboard get events. If you cannot make these calls, at least call
SystemTask.

Apple II Technical Notes

Apple IIGS

6 of 4 #91: The Wonderful World of Universal Access

• Do not assume that the hardware location of the screen is $E12000. Universal Access
components that manipulate the entire screen (like CloseView) move the virtual
screen so the hardware can be used for the magnified screen image.

To find the screen location, look at the ptrToPixImage field in a grafPort after
calling OpenPort (or in your window’s window record after NewWindow). The
image pointer gives the correct location of the screen.

Assuming the current port is on screen, the following code finds the
ptrToPixImage value:

pha
pha ;made space for port pointer
_GetPort
phd ;save direct page location
tsc
tcd ;port pointer is now at 3..6 on direct page
ldy #4 ;offset to high word of ptrToPixImage
lda [3],y ;got high word
tax ; in X
ldy #2 ;offset to low word of ptrToPixImage
lda [3],y ;got low word
tay ; in Y
pld ;restored direct page location
pla
pla ;removed port pointer

The X and Y registers now contain the base address of the screen.

• Do not assume things about being the frontmost window. Even if FrontWindow
says you have the frontmost window, your visRgn may have pieces missing. For
example, the title bar of your window may be partially under the menu bar. Or there
may be a floating “windoid” (like Video Keyboard’s window) over part of your
window.

For these reasons you should not draw directly to the screen without first examining
your window’s visRgn. Do not just check for rectangularity—your visRgn could
be rectangular and parts of your window still be obscured. If you use QuickDraw for
all your drawing, QuickDraw automatically clips drawing activity to be entirely
within the visRgn, so this is not a problem.

• Don’t access QuickDraw data directly; use QuickDraw routines instead. For
example, to access SCB data, use the QuickDraw routines GetSCB and SetSCB
instead of reading the hardware at $E19D00. CloseView may have those SCBs
changed to reflect a magnified portion of the screen. Also use GetColorEntry,
SetColorEntry, GetColorTable, and SetColorTable. Don’t access the
hardware directly.

• Try to allocate memory after starting the tools. If you want to allocate memory
before starting tools, do not use special memory. (Set the attrNoSpec bit in the
attributes.)

Developer Technical Support May 1992

Apple IIGS

#91: The Wonderful World of Universal Access 7 of 4

Further Reference
• Apple IIGS Toolbox Reference
• Apple IIGS Firmware Reference
• Apple II Video Overlay Card Development Kit (APDA)

