GQOLDER FLATES
¢ GREAT ESCAPES

How to Write Adventure Games

Delton T. Horn

Golden Flutes and Great
Escapes

Golden Flutes and Great
Escapes
How to Write Adventure Games

Delton T. Horn

dP

dilithium Press
Beaverton, Oregon

© 1984 by dilithium Press. All rights reserved.

No part of this book may be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or by any
information storage and rettieval system without permission in writing
from the publisher, with the following exceptions: any material may be
copied or transcribed for the nonprofit use of the purchaser, and material
(not to exceed 300 words and one figure) may be quoted in published
reviews of this book.

Where necessary, permission is granted by the copyright owner for libraries
and others registered with the Copyright Clearance Center (CCC) to
photocopy any material herein for a base fee of $1.00 and an additional fee
of $0.20 per page. Payments should be sent directly to the Copyright
Clearance Center, 21 Congtess Street, Salem, Massachusetts 01970.

10 9 8 7 6 5 4 3 2 1
Library of Congress Cataloging in Publication Data

Hotn, Delton T.
Golden flutes and great escapes.

Includes index.

1. Computer games. 2. TRS-80 (Computer)— Programming.
1. Tide.
GVI469.2.H674 1984 794.8'2 83-18994
ISBN 0-88056-089-4

Cover: Vernon G. Groff

TRS-80 is a registered tradematk of Tandy/Radio Shack.
Printed in the United States of America

dilithium Press

Suite 151

8285 S.W. Nimbus
Beaverton, Oregon 97005

An Important Note

The publisher and the authors have made evety effort to ensure that the
computer programs and programming information in this publication are
accurate and complete. However, this publication is prepared for general
readership, and neither the publisher not the authors have any knowledge
about or ability to control any third party’s use of the programs and
programming information. There is no watranty or representation by
either the publisher or the authors that the programs or programming
information in this book will enable the reader or user to achieve any
particular result.

Preface

Adventure games add a playful dimension to owning a home computer.
This book gives examples of action-filled games that bring you hours of
fun; soon you will be writing your own original games for fun —and profit.
These games were written on a 48K TRS-80 model III microcomputer
but can be easily adapted to any comparable home computer.
While you need not be a programming whiz to understand and enjoy
these programs, beginners will want to become familiar with BASIC

programming.

Table of Contents

Chapter 1 —DISCOVERING ADVENTURE GAMES
Getting Started 3

Chapter 2—CREATING A PLOT
Game Format
Naming Objectives
Naming The Monsters
Natural Obstacles

Chapter 3 — BEGINNING THE PROGRAM

O 00~ O\

Initialization 11
Introduction and Setting Values 14
Main Play Routine 20
First Test Run 24
Adding Commands 26
Finding the Objects 37
Inventory 44
Blast Off 45
Chapter 4 — COMPLICATING THE GAME
Mapping Monsters 51
Squeanly Serpent 53
Ghost 54
Brinchley Beast 56
KuFu 58
Grimph 58
Purofolee 60
River 61
Mountain/Ravine 61

Marsquake 62

viii Golden Flutes and Great Escapes

Storm 63
Funny Colored Sky 65
Dead Monsters 68
Moving Past Monsters 68
Moving Past Rivers and Mountains 71
Expanding the “EAT” Command 73
Expanding the “DRINK” Command 76
Adding the “FILL” Command . 77
Adding the “INFLATE” Command 79
Adding the “CLIMB” Command 80
Open Box 83
Expanding “PLAY” Command 84
“TOUCH” Command 88
Chapter 5— WRITING THE INSTRUCTIONS
Purpose 97
Chapter 6— THE COMPLETE “MARS” PROGRAM
Program Listing 101
Chapter 7—GRAPHICS, SOUND AND OTHER EXTRAS
Graphics 124
Applications for Graphics 125
Sound Effects 126
Real-Time Inputs 127
Chapter 8 — TREASURE HUNT
Programming 131
The Play 143
Encountering Obstacles 146
Possible Variations 149
Chapter 9—THE GOLDEN FLUTE
Characters 151
The Play 164
Playing the Game 171
Some Secrets of the Game 173
The Monsters 173
Expanding the Game 177
Chapter 10— THE GREAT ESCAPE
Gold Coins and Scoring 181
Obstacles 183
Batteries and Map 200

Aids for the Player 203

Table of Contents ix

Chapter 11 — MARKETING YOUR SOFTWARE
Software Markets 205

LOADING INSTRUCTIONS 209
INDEX 215

Chapter1

Discovering Adventure Games

You move cautiously down a long, dark corridor beneath the
castle of Nembuzur. You notice that your torch is beginning to
burn a little low. You'll have to find a new one soon.

At the end of the hall, you come to three closed doors. After
a moment’s hesitation, you open the third door. A saber-
toothed tiger leaps out at you and injures your left arm.
Quickly you draw your magic sword. . . .

Is this a dream? No, you are a character in a computer adventure game, a
rapidly growing American pasttime. While so much of our entertainment
“these days is passive —television, movies, books, spectator sports—the
more active video games have caught on in a big way. Most of these games
are skill-oriented. They test your reflexes but not your creativity and
imagination. You either shoot down the aliens, or they shoot you down.
There are very few ways to vary the flow of a game.

Sure, it often takes considerable intelligence to aim and time your shots
and can be lots of fun. But they are still mentally passive activities.

Traditional board games like backgammon or chess engage our brains
more with logical thinking and strategy. They encourage creative, active
thinking. Even so, things are still pretty cut and dried. How can the
adventures of a checker fully capture your imagination?

A good adventure game in which you act out intrigue is far more
engaging. You determine the hero’s adventures until he either triumphs or
is killed. You can interact with a story and write it as you go. You
participate fully in the creation of the fantasy and, once hooked, might stay
with the game for hours. (One software manufacturer calls its series of
adventure programs “Interactive Fiction.”)

2 Golden Flutes and Great Escapes

Adventure games are ideally suited for computers. Non-computerized
adventure games have been around for quite awhile but tend to be rather
awkward and complicated to play. Thus they appeal to a relatively small
group of enthusiasts who are willing to tackle instruction books as long as
novels. Many of these games require an extra inactive player (often called
the Loremaster), who sets up the situation and plants the various monsters
and treasures to surprise the main player (or players).

Note that most adventure games, computerized or not, are designed for
a single hero/player. Too many creative participants can spoil the fantasy.

In computerized games, you still have to learn the basic rules, but you
can simply feel your way through the details by trial, error, and logic. The
computer simply won't accept an invalid move and will often prompt you
for the correct move. So you do not need an extensive rule book. Figuring
out the rules and what you can do with various moves can be part of the
fun.

The computer also keeps track of all the necessary details— your score,
the number of lurking monsters, your character’s current health, etc.
Computerized adventure games also eliminate complex score sheets. Of
the many fine adventure game programs commercially available, the best
can be a lot of fun but most suffer from significant disadvantages. One
disadvantage which they all suffer from is fixed details. That is, the game is
always the same with no random elements. The sack of gold is always
hidden behind the bird-god statue. Solving the puzzle can be fun, getting
a little closer to the final goal each time you play. But once you know the
solution, there is little point in playing anymore, and the program be-
comes a dust collector. After you know where everything is, it's not much
fun.

Many commercially marketed games are in machine language, which
speeds up the workings of the program but does not let you customize the
game in any way. Many of these programs are software protected (to
prevent copying), and you have no access to the program code at all.

This book hopes to provide an alternative. Good adventure games are
complex and, therefore, rather tricky to program. But with some funda-
mental rules and a few tricks that are outlined in the following chapters,
you should be able to program your own fantasies. They are fun to write
and fun to play, especially if you throw in plenty of randomness. And it’s
fun to swap programs with imaginative friends.

Moreover, there is a thriving market for good pre-written adventure
games, so you can sell your game for a little extra cash after you’ve had your

fun.

Discovering Adventure Games 3

GETTING STARTED

All you need to get started in writing adventure game programs is a
computer, your imagination and, pethaps, a little deviousness.

A printer is highly desirable so that you can get hard copies of your
incomplete programs as you go along. It is far easier to spot errors, that will
inevitably occur, in a hard copy than on a CRT screen. Without a printer,
the job will be more tedious and time-consuming.

You will also need plenty of memory space. Rarely is 4K or 8K enough
for advanture game programs unless they are quite simple and written in
machine or assembly langugae. In this book, you wotk exclusively with
BASIC. A little bit of inefficiency and slower calculations are acceptable.
Of course, if you are an advanced programmer, you could convert the
techniques discussed into assembly language.

For working in BASIC, 16K is really the bare minimum. Of the games
described in the following chapters, TREASURE HUNT and THE
GOLDEN FLUTE could be fit into 16K; THE GREAT ESCAPE requires
about 32K (for the complete version); and the full version of MARS takes
close to 48K.

Of coutse, you can strip any of these games down to a smaller memory
size if you eliminate certain features. Each game includes suggestions for
reducing memoty requirements.

All of the programs and examples in this book were written on a 48K
TRS-80 Model III. By comparing these commands with your computer’s
owner’s manual, you should be able to translate them to your machine.
Unusual, esoteric commands are avoided. When you write your own
games, feel free to use all of the features and programming tricks in your
computer’s repertoire.

You don’t need to be a whiz, but you should have some experience on
BASIC fundamentals to benefit from this book.

You could simply type in the complete programs included here and in
fact, are invited to do so. Right there you've got a bargain as most single
adventure game programs cost mote than this book. However, you will
cheat yourself if you stop with the four pre-written games. Creating
adventure games is three fourths of the fun.

All techniques and tricks in this book are simply suggestions. There are
no absolute right ways to program. Experiment freely. The worst that could
possibly happen is you’ll be left stating at an error message. Simply locate
and correct the error, and try again. Every programmer has to debug. Turn
your imagination loose and enjoy the fun.

Golden Flutes and Great Escapes

Chapter 2

Creating a Plot

The first step in writing an adventure game is to determine the kind of
adventure you'd like to have. The possibilities are infinite when you use
your own intetests and imagination.

Explore a haunted house. Rescue a medieval princess from a dungeon.
Recteate an historic battle and change the course of history. Build a galactic
empire. Do anything you like.

This chapter works up a sample game plot. The actual program is written
in the next few chapters.

Since space-oriented games tend to be quite popular, let’s write a game
about exploring the planet Mars. The name of the game is MARS.

When real-life scientists explore Mars, they’re sure to find plenty of
scientifically interesting information. But in the adventure game sense,
rock collecting doesn’t thrill the average person.

Fortunately, you are not limited to the realistic or probable. So imagine
there was once a glorious ancient civilization on Mars. It has long since died
out, but explore the planet for valuable relics and artifacts in the course of
the game.

Already you have a basis for scoring in the game. Each relic we find is
worth X number of points. The object of the game is to gather up as many
Martian treasures as possible, return them to the space ship, and blast off
for Earth.

To create even more interest, seed the planet with worthless items that
don’t add to the score. In fact, to pick up a piece of junk could cost you Y
points to be subtracted from the score.

You can also decide which supplies to take aboard your space ship at the
beginning of the game. Supplies shouldn’t have any direct influence on the
score, but they can greatly influence the explorer’s chances of survival.

6 Golden Flutes and Great Escapes

Arbitrarily, set up an even dozen treasures, 12 pieces of junk, and 12
supply items for a total of 36 items the player might carry. As an extra
touch, make it impossible for the player to carry more than 15 items at one
time. This will force the player to pick and choose carefully and plan his
strategy.

An object hunt isn’t too terribly exciting, so let’s throw in some mon-
sters. The player will have to deal with each type of monster in a different
way to ensure variety. Add some natural obstacles like rivers, mountains,
and ravines. While we're at it, weird Martian storms and/or marsquakes
(the equivalent of earthquake) can liven things up. Our game plot is now
pretty well outlined. Things arestill rather vague, but the possibilities are
beginning to appear. Now fill in some of the details.

At this point you are still not pinning anything down. You can still
change your mind about some things. Other ideas may occur to you as we
write the program itself. But start tentatively defining things. Afterall, you
have to begin somewhere.

THE GAME FORMAT

First off, consider the basic game structure. Until you determine the
format you can’t do anything else.

Since MARS is a search game through unknown territoty, you should
establish a playing board or map in the computer’s memory. A 10 by 10 grid
(see Figure 2.1) is convenient and gives you 100 areas to explore. Any more
could make the game too long and drawn out and take up too much
memory space. Any less would make the game too easy.

Figure 2.1 Playing Grid for Mars.

1 2 3 4 5 6 7 8 9 10

=TI QOEEmIOw>

X = player’s position

You can define four possible moves within the grid. North would be up
(from c-5 to b-5), south would be down (from ¢-5 to d-5), east would be to
the right (from c-5 to c-6), and west would be to the left (from c-5 to c-4).

Creating a Plot 1

Diagonal moves, like southwest (c-5 to d-4) could also be used but
would call for more complicated programming. Since there are a lot of
other things we want to put into this program, it is a good idea to conserve
memory space by limiting ourselves to the four basic directional moves. If
you find you have enough memory space once the program is finished to
add diagonal moves, add them at that point. For the time being, however,
ignore that particular possiblility.

Whenever you use a playing board map format, make provision for the
chance of the player moving outside the defined grid area. For example, if
the player is at e-10 and moves east, his location becomes undefined. This
could bomb out the program completely, or it may result in weird,
unpredictable scores and plays. You must include some form of protection
in any game program that uses the map format.

There are four ways to deal with this problem, and you may dream up yet
another approach. Feel free to try out any ideas you come up with. The
following ideas will give you a start:

1. The simplest way to deal with an off the board move would be to have
the computer recognize and refuse such a move. An error message could be
then displayed, such as “INVALID MOVE” or “YOU CAN'T GO THAT
WAY”. The computer would then prompt the player for another move.

2. A more drastic way of dealing with an off the map move is for the bad
move to result in instant death, or loss of the game. For example, the
computer could print out, “YOU HAVE WANDERED OUTSIDE OF
THE KNOWN TERRITORY. YOU WANTER AIMLESSLY ABOUT,
HOPELESSLY LOST, UNTIL YOU DIE. GAME OVER.”

3. A less drastic penalty would be to randomly relocate the player
somewhere within the map grid—possibly up to his neck in trouble.
Similarly, in an object gathering game like MARS, you could lose treasures
by making an invalid move. You could then hide the forfeited treasures
again within the grid.

4. The fourth approach is to simply loop around the map. For example,
moving north from a-7 would position the player at j-7. Moving west from
h-1leaves the player at h-10.

Since in the game of MARS the player explores an entire planetary
globe, the loop around method would be the most appropriate. This is the
method used in the program.

NAMING OBJECTS

You could simply wander about, picking up OBJECT #1, and OBJECT
#17, etc. Because much of the charm of adventure games comes from the

8 Golden Flutes and Great Escapes

imaginative details, name all objects within the game environment, being
as creative as you can.

An occasional bar of gold, or diamond is OK,, but it's more fun to throw
in some novelty. In the case of MARS where the player chooses between
treasures and junk, some of the choices should be a little tricky and not too
obviously valuable.

Table 2.1 suggests names for treasures and junk. Notice that each
category has 12 items. These are the object names that will be used in the-
program throughout this book. If you like, you may change any or all of
these.

Creating names for the supplies is a bit more straightforward. An
explorer needs certain items like food and a laser gun. However, we can also
throw in a few oddball items like the old magazines. Include a few
ringers—supplies that serve no purpose in the game, except to load the
unwary explorer down. Remember, he can only carry up to 15 objects at a
time.

Table 2.2 gives a sample list of supplies. Decide what each of these items
is good for, if anything, as you write the program.

Table 2.1 Suggested Names for Treasures and Junk Objects in the Game of “Mars”.

Treasure Junk

1 Copper Bowl Old Shoe

2 Gold Coins Gaudily Ornate Ring

3 Fossilized Slide Rule Rock

4 Statue of a Martian God Fossilized Undetshorts

5 Silver Cup Clot of Dirt

6 Glass Orb Old Bone

7 Scroll Sharpened Stick

8 Glimmering Stones Chipped Urn

9 Humming Box Petrified Wad of Bubble Gum

10 Large Sword Colorful Flower

11 Bleached Skuil Dead Butterfly

12 Blueprint for an Ancient Martian ~ Indescribable Slimy Thing (?)
Palace

NAMING THE MONSTERS

Dreaming up monsters to plague the player can be one of the most fun
parts of creating an adventure game. Let your imagination run wild.

For now, simply name the foes. You can work out their individual
characteristics in a later stage of the program development.

Creating a Plot 9

Table 2.2 Suggested Supply Objects for “Mars”.

Item

1 Food

2 Bottle of Water
3 Knife

4 Gun

5 Laser

6 Coil of Rope

7 Inflatable Raft
8 Flashlight

9 Metal Pipe

10 Old Magazines
11 Compass

12 Spacesuit

Keep in mind that your monstets should be a varied lot. Too much of the
same kind of battle, even if the opponents have different clever names, can
very quickly become tedious.

Some monsters could be more powerful than others. Vary the ways they
can be killed. Make a few beasts immune to, or even strengthened by, laser
gun blasts. Some of the monsters could be beneficial if the player figures
out how to take advantage of the situation and/or is lucky enough.

Table 2.3 lists the monster names used in writing the sample game of
MARS.

Table 2.3 Suggested Monsters for “Mars”.

Brinchley Beast

Ghost of an Ancient Martian
Grimph

Kufu

Squeanly Serpent

Purofolee

NATURAL OBSTACLES

While the heart of an adventure game is usually battling assorted
monsters and villains, inanimate obstacles can add to the fun and the
challenge as in MARS where the player explores an alien planet. Prob-
lematic landscapes are a natural feature of this game.

10 Golden Flutes and Great Escapes

Set up a few mountains and rivers. Yes, even though Mars is an arid
world, this is a fantasy game, so fudge a little. Throw in a few hidden
ravines for the player to fall into. The fall could weaken the character and/
or cause him to drop some of the objects he is carrying. You can rehide
these dropped objects somewhere in the general vicinity.

Storms and marsquakes will complete the game.

SUMMARY

To create an adventure game, start by writing the story of the game.
Where will it take place? Who is the hero/player? What is his goal? Are
there any other characters?

In the initial stages of creating a plot, start thinking about some of the
problems and obstacles that will make the playert’s task harder and, there-
fore, more intersting and fun.

For the sample game, MARS, the following features were considered:

® Game location— the planet Mars
® Hero/player character—an explorer from Earth

© His mission—to locate various ancient Martian treasures, and bring
them aboard his spaceship to return to Earth

o Additional characters— various monsters

Now that we have a fair idea of where the game will be going, we can
start writing the actual program.

Of course, you are always free to change anything in your plot as we work
up the program. Sometimes you will find it difficult to implement a
specific idea. Sometimes you'll come up with better ideas in mid-program.
Stay flexible, although in this book the plot holds as outlined.

Even though you may change your plot at a later stage, a preliminary
plot is essential. Without at least a rough blueprint, you’re likely to end up
with a rambling, incoherent and pointless game that’s not much fun.

Chapter 3

Beginning the Program

This chapter begins to write the program for the game MARS. Monsters
and the complications will come in the next chapter. (See Figure 3.1 for
programming flow chart.)

The best approach to writing a complex adventure game program is to
break everything down into steps, or programming modules; then concen-
trate on one module at a time. This minimizes the chance of getting lostin
a maze of program statements and makes the task seem less intimidating.

INITIALIZATION

First identify the program and the programmer. Do this with a simple
REM (remark) statement, like this:

1REM * MARS--DELTON T. HORN *

The first segment of a game program usually initializes the program
variables. It’s a good idea to identify program modules with REM state-
ments. For the first module, use a separate REM statement, or add the
information to the program identification remark:

1REM * MARS—DELTON T. HORN * INITIALIZE *

Figure 3.2 shows a flow chart for the initialization module of the MARS
program. Initialization procedutes are usually quite straight forward, but
there are a few things to note.

Many computers (including the TRS-80) let you define how much
memory space to resetve for string variables. In some programs, you will
have to reserve more space to prevent “out of memoty” or “out of string
space” etrors that could cause the program to bomb. On the other hand,
some programs won't requite much string space, so more memoty is open
for actual programming.

12 Golden Flutes and Great Escapes

BEGIN)

INITIALIZE
PRESET

|

YES

CARRYING DISPLAY
COMPASS? LOCATION

NO

DISPLAY
OBJECTS
PRESENT

NO

YES

DEAD

LEGAL

COMMAND APPROPRIATE

ACTION

CALCULATE
& DISPLAY
SCORE

ERROR

{ END MESSAGE

Figure 3.1 Flow-chart of the Chapter 3 Programming.

Obviously, to know how much string space you'll need to reserve, you’ll
have to estimate what string variables will be used in the program. In
MARS you need strings to hold the player’s name, and the selected
commands. You'll probably also want a few additional substrings for
convenience in command identification and sorting. At a guess, you
should not need more than 100 characters. Since most computer systems

Beginning the Program

13

BEGIN
INITIALIZATION (TABILE 3.2)

CLEAR
STRING
SPACE

DIM
ARRAYS

PRESET (TABLE 3.3)

CLEAR EX(x,y)
SET LC(x,y)

PLACE
ROCKETSHIP

PLANT
OBJECTS

DISPLAY
INSTRUCTIONS

—

INSTRUC-
TIONS?

AUTO SET
VALUES

MANUAL

DISPLAY
INPUT CHARACTER
VALUES VALUES

TO NEXT ROUTINE

Figure 3.2 Flow-chart for INITIALIZATION and VARIABLE PRESET Routines.

14 Golden Flutes and Great Escapes

(including the TRS-80) automatically clear more than that, you don’t
necessarily need a CLEAR statement. However, MARS will be a fairly long
program, so don’t waste any memoty space by resetving it for unused
strings. Therefore, begin the program with this statement:

5 CLEAR 100

Remember, a CLEAR command should be the first active command
(other then REMarks) in any program. The CLEAR statement cancels out
any previous commands.

You might want to clear different values other than 100 which is suffici-
ent. If you clear too small an amount of string space, you may get an “out of
string space” error message, and the program could bomb. If you sub-
stitute a smaller value in the CLEAR statement, bear in mind that someone
else might enter a name that’s longer than yours. also, inexperienced
players could easily type in needlessly long commands, and it would be
annoying to bomb out in mid-game because the player accidentally typed
in too many characters. Don’t waste memory space, but leave some elbow
room.

Re-use string variables throughout the program to minimize the amount
of string space used.

Next, dimension all of the arrays used in the program.

How many arrays do you need? You may not be sure at this stage, but
that really isn’t too much of a problem. You can always add more DIM
statements as you realize the need for them. (But place all DIM statements
near the beginning of the program — after the CLEAR statement, if used.)

Similarly, you may occasionally find that you’ve dimensioned an array
that you end up not using. In this case, simply erase the unneeded DIM
statement and recover the memory space reserved for that array.

In the game of MARS, I have already worked out the necessary arrays,
summarized in Table 3.1.

The initialization segment of the MARS program is listed in Table 3.2.

Table 3.1 Arrays Used in the “Mars” Program.

array size function

A 12 supply horizontal location
B 12 supply vertical location

C 12 junk horizontal location

D 12 junk vertical location

E 12 treasure horizontal location
F 12 treasure vertical location

J 12 junk carried

Beginning the Program 15

S 12 supplies carried

T 12 treasures carried
LC 10,10 complete map

EX 10,10 explored areas map

Table 3.2 Initilization Portion of the “Mars” Program.

1 REM * MARS * Delton T. Horn *
5 CLEAR 100:DIM A(12): DIM B(12): DIM C(12): DIM E(12): DIM F(12)
10 DIM $(12): DIM J(12): DIM T(12): DIM LC(10,10): DIM EX(10,10)

INTRODUCTION AND SETTING VALUES

It is convenient, though not essential, for the computer to display some
kind of introduction to the program. In the case of a farily complex game
program like MARS, it will take some time for all of the variables to be
preset. This makes an introductory display even more desirable. If the
screen simply remains blank until all of the variables are preset, the player
would wonder if the program is running, or if the computer has locked up
in an error condition and could not tell without BREAKing the program,
or just waiting. An introductory display, printed out correctly, however, it
would indicate that the program is indeed running properly.

The variable preset routine for the game of “MARS” is listed in Table
3.3. As the flowchart in Figure 3.2 demonstrates, this section of the
program is fairly straightforward.

First clear the screen, print out the name of the game, and ask for the
player’s name. Extra blank lines printed out make the display neater and
easier to read. The player is also asked if he will want instructions for the
game. This is all done in lines 20 and 30:

20 CLS: PRINT: PRINT* ”,“MARS”: PRINT: INPUT “YOUR
NAME”;N$

30 PRINT: INPUT “WILL YOU NEED INSTRUCTIONS”;Q$:
Q$ =LEFT$(Q$.1)

The player’s name is assigned to the variable N§, which will be used
throughout the game.

The string variable Q$ takes on different values throughout the pro-
gram. It is used to record most of the player’s commands. By re-using the
same variable for a number of temporary values, you can save a consider-
able amount of memory space.

Q#$ is reduced to just its first letter with the command Q$ = LEFT$
(Q$.1). This variable will now contain a value of “Y” if the player responds

16 Golden Flutes and Great Escapes

“YES” (or “YEAH", or “YEP”, etc.). The computer will check and act
upon the contents of this variable in a few lines.

Table 3.3 Variable Preset Routine for the “Mars” Program.

20 CLS: PRINT: PRINT* " ,“MARS”: PRINT: INPUT “YOUR NAME";N$
30 PRINT: INPUT “WILL YOU NEED INSTRUCTIONS”;Q$:Q$ =
LEFT$(Q$,1)
40 FORX=1TO 10: FORY =1TO 10: EX(X,Y)=0
50 PRINT"* 7;:Z=RND(17): IFZ>12THEN Z=0
60 LC(X,Y)=Z: NEXT: NEXT
70 PRINT“ PLEASE BE PATIENT, ":N$
80 R1=RND(10):R2=RND(10): L1 =R1: L2=R2
90 EX(R1,R2)=20: LC(R1,R2)=20: PRINT: PRINT “I'M BUILDING AN
ENTIRE PLANET HERE!”: PRINT
100 FORX=1TO 12: A(X)=R1: B(X)=R2
110 Y =RND(10): Z=RND(10): IFY =R1 AND Z=R2 GOTO 110
120 C(X)=Y:D(X)=Z
130 Y =RND(10): Z=RND(10): IFY =R1 AND Z=R2 GOTO 130
140 EX)=Y:FX)=Z
150 S(X)=0:JX)=0:T(X)=0
160 NEXT: GOSUB 10000: INPUT “Please press ENTER’ ”;Q$
170 IFQ$ =“Y” GOSUB 10010
180 INPUT “ENTER 1 FOR AUTOMATIC CHARACTER OR 2 TO CREATE
YOUR OWN";X
190 IFX=1GOTO 210
200 IFX=2GOTO 230 ELSE GOTO 180
210 AX=RND(50)+50: DX =RND(100)+100: SX = RND(50)+ 50:
PX =RND(50)+50
220 GOTO 300
230 INPUT“HEALTH”;DX: IFDX <1 OR DX>100 GOTO 230
240 DX =DX*2: INPUT “SPEED”;SX: IF SX < 1 OR SX > 100 GOTO 240
250 INPUT “POWER”;PX: IFPX <1 OR PX > 100 GOTO 250
260 INPUT “AIM”;AX: IF AX<1OR AX>100 GOTO 260
300 CLS: PRINT: PRINT“ ”,N$: PRINT
310 PRINT “HEALTH”,DX/2;“%"
320 PRINT “SPEED”,SX;“%"
330 PRINT “POWER"”,PX;“%"”
340 PRINT “AIM” AX;“%”
370 DG=DX
380 INPUT “Please press ENTER' to play ”;Q$:CLS:PRINT: PRINT

9999 STOP
10000 FORTT=1TO 321: NEXT: RETURN
10010 PRINT “INSTRUCTIONS NOT READY”: RETURN

Beginning the Program 17

The next step is to clear the explored map and plant the various random
obstacle marker values throughout the main location map. The explored
map is represented by the array EX(10,10), and the main location map is
stored in array LC(10,10). Since these ate two-dimensional arrays of equal
size, combine the two operations in a single pair of nested loops (X and Y).
For each step through the loops, set the value of EX(X,Y) is set to zero. A
random number (Z) is selected. This number may have a value of 1to 17,
but if the value is greater than 12, it is set back to 0 to represent a clear (no
obstacle) space in the map. A value of 0 is five times more likely than any
other specific value, but the odds are 12 to 5 that any given map location
will contain some obstacle. A series of asterisks is printed to reassure the
player that the program has not gotten latched up. You may omit the
PRINT statement in line 50, but do not omit the rest of the line.

All of this is programmed in three lines, numbered 40 through 60:

40FORX = 1TO10:FORY = 1TO 10: EX(X,Y)=0
50 PRINT* * ”;: Z=RND(17): IF Z<12 THEN Z = 0
60 LC(X,Y) = Z: NEXT: NEXT

The explorer’s rocket ship serves as home base for this game. Remember,
the object is to return the treasures to the ship and blast off to Earth.
Determine a location for the rocket ship. It could always be at a fixed point,
such as location 1,1, but it’s more interesting to have a different randomly
selected landing point for each game you play.

Since you are dealing with a two dimension map grid, identify the rocket
ship’s location with two simple variables, called R1 and R2. Similarly, the
player’s current location will be stored as L1 and L2. Since the explorer
naturally starts out aboard his rocket ship, begin the game with L1 = R1and
L2=R2.

The rocket ship’s location should be marked in the map arrays. Afterall,
we don’t want to have a grimph attack on board the ship. We can do this by
inserting the dummy obstacle value 20 into the appropriate map location.
Any earlier value will be replaced by this value:

70 PRINT“ PLEASE BE PATIENT, ”; N$

80 R1= RND(10): R2 = RND(10): L1=R1; L2=R2

90 EX(R1,R2) = 20:LC(R1,R2) = 20:PRINT: PRINT “I'M BUILDING
AN ENTIRE PLANET HERE!”: PRINT

Moving on down the flow chart, the next step is to plant the supply,
junk, and treasure items. Since there are 12 of each stored in arrays, use a
FOR...NEXT... loop to step through each one.

18 Golden Flutes and Great Escapes

The supply object locations are stored in arrays A(x) and B(x). Since the
supplies should naturally start out aboard the rocket ship, simply insert the
values of R1and R2 into each space in these arrays:

100 FOR X = 1TO 12: A(X)=R1: B(X)=R2

The junk item locations are stored in arrays C(x) and D(x). Scatter these
objects randomly throughout the map area, but should not appear aboard
the ship. AnIF. . "THEN. .. check is used to force the computer to select
new map coordinates if it happens to duplicate the rocket ship’s location:

110 Y = RND(10):Z = RND(10): IF Y = R1 AND Z =R2 GOTO 110
120 C(X)=Y: D(X)=Z

Plant the treasure objects in the same way, except use arrays E(x) and
F(x):

130 Y = RND(10): Z=RND(10): IF Y =R1 AND Z = R2 GOTO 130
4OEX)=Y: FX)=Z

Notice that thete is no provision to prevent multiple junk and/or
treasure items from appearing in a single location. Statistically, this won’t
happen very often.

Three additional 12 space arrays (S(x), J(x), and T(x)) are used to keep
track of the items the explorer character is carrying. Since at the start of the
game he shouldn’t be carrying anything, we’ll place zeros into each of these
array locations, and close the loop with the NEXT statement:

150 S(X) = 0: J(X) = 0: T(X)=0
160 NEXT: GOSUB 10000: INPUT “Please press 'ENTER’ ”:Q$

Line 160 also calls a subroutine. This is a simple timing delay loop:
10000 FOR TT = 1TO 321: NEXT: RETURN

The time delay subroutine included here gives the player a better chance to
appreciate the humorous message in lines 70 and 90. Eliminate the
GOSUB command from this line if you prefer, but be sure to type in the
subroutine line itself. The time delay subroutine will be used throughout
the program.

The structure of a computer program is usually clearer if the subroutines
are kept separate from the main program. Usually, the subroutines are
placed after the rest of the program. By placing the first subroutine at line
10000, you can be reasonably sure you'll have enough lines open for the
main body of the program.

The line number 10000 is somewhat arbitrarily choosen, but is a good
choice because it is easy to remember. Since in most game programs, a time

Beginning the Program 19

delay subroutine will probably be the most frequently called, place it first
at the easy to remember address.

You should add a STOP statement just before the subroutines begin to
prevent the program from accidentally crashing through to a RETURN
without 2 GOSUB command. This can occur through an error in the
programming ot in sample test runs of the incomplete program. Ideally
you should be able to remove this line from the finished program, but it
usually stays. By giving the STOP command an odd number (9999 is used
here), the beginning of the subroutines is easier to find in the line listing.

Returning to line 160, there is also an INPUT command that requests the
player to press ENTER’ without entering any data. This handy little trick
lets the player manually determine how long the current information will
be displayed on the screen.

You need a string variable to accept the null input. On the TRS-80 a null
input (pressing ‘ENTER’ without typing in anything) leaves the variable
with its previous value without any change. The Q$ should still hold the
answer to the instructions question of line 30. If you feel uncomfortable
with this, use another variable name in line 160.

By this time you have preset most of the game variables. We now check
Q#$ and display or skip the instructions, as appropriate:

170 IF Q$ = “Y” GOSUB 10010

Notice that this subroutine is placed immediately after the time delay
subroutine already entered.

Since you often don’t know all the details of a game this early in the
programming, it is a good idea to leave actual instruction writing until
later. The instructions for MARS are handled in a later chapter.

For now, just include a dummy subroutine to prevent bombing out
during program test runs:

10010 PRINT “INSTRUCTIONS NOT READY: RETURN

To make the game more interesting, the character’s success at vatious
tasks can be dependent on certain characteristics changed from game to
game. For MARS, assign ratings up to 100 for Speed, Aim, and Power (or
Strength), with the variables SX, PX, and AX.

Episodes throughout the game will affect the character’s health, either
decreasing it (i.e., being attacked by a monster), or increasing it (i.e.,
eating food). You need two health variables, one to indicate the character’s
maximum health rating (up to 200 —also his initial rating) (DX), and his
constantly changing health rating (DG).

The computer can either select random values for each of the ratings or
allow the player to set up his own character. A beginning player can make

20 Golden Flutes and Great Escapes

things a little easier by entering 100, the maximum acceptable input, for
each of the characteristics (DX is multiplied by two). Programming for
both of these approaches is done in lines 180 through 260 in Table 3.3,

Display the four characteristics in percent in lines 300 to 340.

The current health rating (DG) is set equal to the maximum health
rating (DX) in line 370. Line 380 is another dummy input (press ‘ENTER’)
command so the player may study the character ratings as long as he likes
before beginning the game itself and clearing the display screen.

Begin keeping a chart of all subroutines at this point. So far we only have
two:

10000 TIME DELAY
10010 INSTRUCTIONS (temporary dummy)

But the number of subroutines will quickly increase and become difficult
to keep track of unless you take notes.

Make up a chart of all variables used in the program to prevent reusing a
variable that shouldn’t be changed. The variables used thus far in the
MARS program are summarized in Table 3.4. Figure 3.2 is a flow chart for
the initialization and variable preset portions of the program (Tables 3.2
and 3.3).

Table 3.4 Variables Used in the Initialization and Preset Routines of the “Mars”
Program (see Tables 3.2 and 3.3).

AX Character’s Aim Rating

DG Character's Current Health Rating
DX Character’s Maximum Health Rating
L1,L2 Current Location Coordinates

PX Character’s Power Rating

R1,R2 Rocket Ship Location Coordinates
SX Character’s Speed Rating

T Timing Loop

X\Y,Z misc. calculations

N$ Player’s Name

Q$ Instructions? / dummy

Arrays used are outlined in Table 3.1.

BEGINNING THE MAIN PLAY ROUTINE

Now that the basic variables of the game have been preset, start pro-
gramming the active part of the game —the play itself.

‘The main play routine is summarized in the flow chart of Figure 3.3 and
is listed in Table 3.5.

Beginning the Program

21

FROM PREVIOUS ROUTINE

L

1

SETQ

!

DISPLAY
LOCATION

— 1

:1
Ivo

MOVE
YES SOUTH
(L1+1)

| no
MOVE
B EAST
@2-1)

NO

o

DISPLAY
ERROR
MESSAGE

Figure 3.3 Flow-chart for MAIN PLAY routine.

YES MOVE 7
WEST
L2+1)

22 Golden Flutes and Great Escapes

As the flow chart shows, each round begins by revealing the current
location, that is, telling the player where on Mars he is. This can be done
quite simply as follows:

400 Q=LC(L1,L2): PRINT: PRINT* ”,“Your current coordinates
are ”;
410 PRINT L1, : ;12

Line 400 also sets variable Q equal to the obstacle number of the main map
array location.
Of course, this could be combined into a single line:

400 Q=LC(L1,L2): PRINT: PRINT* ”, “Your current coordinates
are ";L1;" ;L2

However, you may recall from Chapter 2 that one of the supply objects is a
compass. In a more advanced stage of the program, we will alter this
routine slightly so that the coordinates are displayed only when