Versten 1.0

Copyright 1998, Seme Assembly

Procyen [ne.

by

Required. Published

TABLE OF CONTENTS

Chapter 1:

INTRODUGCTION......ieeceeteeceeteeet et eeeseeseseesees s s s sn s 1
Thapter 2:

INSTALLATION. ..ot eesteeee s e s es e 3

INIT VEISION......cuouimiiireuiinieeeteietetnte s tsteseesse s eae e s e e e e s en s snesesssess s 5

SHEIL VEISION ..ottt et ee s et 7
Chapter 3:

PREPARING PROGRAMS FOR USE WITH SPLAT!........ 9

Chapter 4:
RUNNING SPLAT!L. .ot seseceessssssssesnesesssseneeneene] 3
Chapter S5:

COMMAND REFERENCE...........ieeeeeeeeeeeeeseseereresees e, 15
Program interface ... e, 15
Data value fOrmats.............ccoeiieiiiiniiieteececee et ees e 16
Window manipulation commands................cccecoovvienerenreeieeeeeeenn, 17
EXecution COMMANGS........c.cccevuiiicieiiectcecettciee et tee e eee e e 20
Program control commands...........ccccooueioimecuiieeceeeeeeeeeee e 21
Template COMMANAS ...ttt 26
Display COMMANASccccomiririeinieiiiieeeecee et eees e ee e 29
Miscellaneous CoOmmands...........cocooeveiiiciieiiceie e 29
Chapter 6:
COMMON PROGRAMMING ERRORS........coooooeeeeeteeeeeeeen, 35
Appendix A:
Command SUmMmary......eeeeeeeeeeeeee e 37
Appendix B:
Splat! support files information.........ovieeeveins, 39
TemPlate fIlES ..ot et er e 39
ASSIZNMENE FIlES ..ottt e 42

INIDEX : oottt et s ess s b ettt st st eenn 43

INTRODUCTION

Chapter 1: INTRODUCTION

While working on another program I was writing in ORCA/C for the Ilgs, I was finding it increasingly
difficult to debug this large C program with a machine-level debugger such as GSBug. I really needed
a source-level debugger, but the only one available, Prizm, was, at the time, terribly buggy and not
very good. So, Splat! was created to answer this need for a good source-level debugger for the Ilgs.
Originally, I was just going to whip together something simple for myself, but when Mike Westerfield
at The ByteWorks showed interest in the program (though he eventually went with his own), I decided
to go all out and make something truly impressive. This is when the text-based desktop-like interface
for the program was conceived.

The complications of coordinating a desktop-based debugger working with another desktop program at
the same time led me to decide that a text-based debugger would be easier to write. Also, I thought this
would allow me to debug text-based programs more easily. However, the final product (or rather the
one you have in your hands, as I don’t think this program will ever really be done), is far from being
a simple program. There are over 30,000 lines of code here, all of which is assembly code and
macros. Actually, quite an extensive macro system was created (which help me greatly reduce the
number of lines of code) to extend the assembler and fill in some of the important features missing in
the ORCA/M assembler.

Splat! works with any language that supports the ORCA debugging information format, such as
ORCA/C or ORCA/Pascal. The ORCA/M assembler, does not support source-level debugging, and
Splat! does not (yet) handle machine-level debugging. However, it can be used in conjunction with
Apple Computer’s machine-level debugger, GSBug, to provide you with the best of both worlds -
source-level and machine-level control.

Splat! requires roughly 128K or more memory to run comfortably, depending on the size of the
program you are debugging, above what you would normally need. Also, you should be running
System Software 5.0.4 or later (System Software 6.0 or later for use with GNO/ME).

This manual assumes that the reader has at least a good working knowledge of how to use their IIgs
system, and that you know, or at least have a good book on, the programming language you are using.
This manual does not make any attempt to teach you a programming language, nor does it discuss how
to use your chosen operating shell, apart from describing how to invoke the debugger and how to
prepare your programs for use with the debugger. Any technical details given are provided only for
those who need them or just want to know. If you do not understand these details, or do not expect
you will need to know about them, feel free to ignore them.

Also, those of you who are familiar with the graphical “desktop” interface used on the IIgs and
Macintosh should be able to get into the program very quickly, and can probably just skim over a good
deal of the manual. Splat!, though it runs on the text screen, simulates the desktop interface using the
special MouseText characters available on the IIgs. With the exception of a menu bar, and the lack of
mouse control, this interface is virtually identical to that available through the standard Toolbox
functions. Additionally, all of the program’s functions are accessible from the keyboard for those of
you who prefer this method of input. At this time, this is the only form of input available, though I
hope to add mouse control as well in the future.

There are a great many features this debugger could have had in it and many features that I would like
to have included, but priorities had to be set and some features had to be set aside for possible
inclusion in future versions. As I have said, this program will likely continue to grow over time, and I
am always interested in hearing users’ comments, criticisms and suggestions to help me to improve
Splat! and to help me to decide which new features should be added first. :

SPLAT! REFERENCE MANUAL

Included on your program disk are several addendum files that include up-to-date information about
the debugger. The “Release.Notes” file contains information on new features added since this manual
was printed, as well as anything additional that we forgot to put into this manual in time. This file will
also alert you to known problems with the supported compilers and environments. Please read this
over before you install or run the program. The “Bugs” file lists a history of all of the known bugs and
tells you when they were fixed or if they are still outstanding. Finally, the “Future. Thoughts” file lists
some of the possible features that might be added to the debugger in the future. In your feedback, you
can put in your votes for the things you would most like to see, or add new ideas to the list if what you
want is not listed there.

You can contact me at the address and phone number listed below, or via electronic-mail from the
Internet, America Online, or AppleLink at the address also listed below. If this fails, you can also get a
message to me through Procyon, whose address is also given below, following mine.

Finally, I'd like to thank Jawaid Bazyar for helping me get this program to you and for providing lots
of helpful information along the way. Also, David Empson for directing me on how to use SANE, and
Mike Westerfield for getting me started on the project. Finally, a big thanks to all of the beta testers for
this project, who helped me track down many errors quickly and who provided me with plenty of
good ideas on improving the program. Thanks for your time and patience.

Splat! was written by: and is publish ;

Michael Hackett

Some Assembly Required Procyon Enterprises, Inc.

102-234 Oakdale Avenue PO Box 620334

St. Catharines, ON L2P 2K6 Littleton, CO 80162-0334 USA

Canada

(905) 687-1657 (303) 781-3273

email: email:
Internet, America Online, Internet: bazyar@cs.uiuc.edu
AppleLink: America Online: GNO Jawaid
Mike.Hackett@uwo.ca GEnie: procyon. Inc

Delphi: JawaidB

Manual written by Mike Hackett, edited by Jawaid Bazyar
Cover art of one dead bug and program icons by Lynn Hackett

Splat!, a source-level debugger for the Apple Ilgs

Copyright 1993, Some Assembly Required and Michael Hackett.
All rights reserved.

“Apple Ilgs”, “GS/OS”, “APW”, “GSBug”, “Installer”, and “Finder” are trademarks of Apple
Computer, Inc.

“ORCA”, “ORCA/M”, “ORCA/C”, “ORCA/Pascal”, and “Prizm” are trademarks of Byte Works, Inc.
“GNO” and “GNO/ME” are trademarks of Procyon Enterprises, Inc.

Some of the programs (FixSplat and DebugSet) in this package contain material from the ORCA/C
Run-Time Libraries, copyright 1987-1993 by Byte Works, Inc. Used with permission.

INSTALLATION

Chapter 2: INSTALLATION

There are two complete versions of the debugger included in this package: a shell version and an INIT
version. Both are functionally identical but each version has its advantages and disadvantages. To
avoid placing any unnecessary limitations on the use of the debugger, I created both. The INTT version
will likely be the more popular of the two, but the shell version is there if your situation warrants it.

The main advantage of using the INIT version is that once it is placed in the “System.Setup” folder of
your boot disk or partition, it is always available no matter where you are. The shell version, as the
name suggests, can only be invoked from within the ORCA, APW, or GNO shells (or some other
compatible shell). Since most program development will normally take place within one of these
shells, this is not often such a great inconvenience, but using the INIT version will prevent you from
making the very common error of executing a program that has been compiled with debugging codes
without one of the versions of the debugger running. Doing so will invariably cause the program to
crash and force you to reboot the machine. In addition, with the INIT version, you can debug other
INITs (both permanent and temporary), as well as CDAs, NDAs, and Control Panels (CDevs).

On the other hand, if you are somewhat cramped for memory or use the debugger only occasionally,
using the shell version will leave some extra memory free that would otherwise be permanently
occupied by the debugger code, even when dormant (The debugger is about 80K in size, plus 1.5K
stack space). The shell version still requires the same amount of memory be available, but will only
need it when you are actually using the debugger. You will just need to be careful that you do not
forget to execute all programs containing debugging information explicitly through the debugger shell
command, to avoid crashing the computer. Note that programs without debugging information can be
run through the debugger command with no ill effects (other than that there will be less memory
available), though they will not cause the debugger to become active. If the INIT version is already
installed when the shell version is run, the shell version will abort and report the error. You can then
reexecute the program you wish to debug withour the debugger shell command.

Now to the details of installation. There are Installer scripts included for those of you who prefer to
use them, but we will also give you details here on how to install the necessary files by hand. This
may be a handy reference even to those who use the Installer scripts, just to let you know what the
Installer actually did.

Firstly, as always, you should make a backup copy of the program disk, even if you are just going to
be installing the program onto a hard drive and then putting the floppy away. There are so many ways
for accidents to happen, so it is better to take this extra step and be safe than to damage your original
program disk. Then, store the original disk in a different location from the backup disk, to protect it
from stray magnets, coffee/pop spills, and other such hazards.

If you want to use the Installer scripts, insert your backup of the Splat! program disk and launch the
Installer program. Click on the “Customize” button at the opening window. You will then be presented
with a list of installation options. Which ones you will select depends on which version you wish to
install and which shell environment you are using, if any. The chart below lists which script or scripts
you need to use for your particular setup.

SPLAT! REFERENCE MANUAL

INIT version with no shell:
Splat INIT

INIT version with ORCA shell:
Splat INIT
Splat INIT utilities for ORCA

INIT version with GNO/ME shell:
Splat INIT
Splat INIT utilities for GNO

Shell version with ORCA shell:
Splat shell version for ORCA

Shell version with GNO/ME shell:
Splat shell version for GNO

The destination for installation will vary depending on the script, so you should install only one script
at a time, just to be safe. Each script tells you what the destination should be in its “Help” window -
select the script and click on the “‘Help” button to view this.

The “Splat INIT” script should be run with your startup volume as the destination, while all of the
ORCA-specific scripts should be run with your ORCA Utilities directory as the destination, and the
destination directory for the GNO-specific scripts should be any directory that is in your GNO/ME
search path, most likely the one in which other shell utilities are kept.

With some of the shell-specific scripts, there may be additional work that you will have to perform
yourself, as the Installer program is fairly limited in what it can do. For example, it does not have the
capability to modify an existing file, which is what is often needed here. When this is necessary, the
script will always display its “Help” window whenever you try to “Install” it, where the additional
instructions will be given. Write them down so that you will remember exactly what to do when you
quit the Installer. Please make sure that you complete these instructions, as the debugger or some
support utility may fail to function correctly if you do not.

You can, of course, install more than one version and choosing both the ORCA and GNO scripts for
either version, even if you install them in the same directory, will not have any harmful effects. In fact
the scripts for the two are very similar, but have been set up in this manner to make it easier for the
user. For details on what each script actually does, continue reading the sections below. If you don’t
really care, at least at the moment, and you have followed all of the instructions in the Installer help
windows for the scripts you have installed, then you can skip the remainder of this section and begin
using the program.

If you prefer to do things by hand, or just want to know what is happening behind the scenes, you can
read one or both of the following subsections for the two forms of the debugger. If you have problems
after the installation, the following information may also help you to diagnose the problem and to find
a cure.

INSTALLATION

INIT Version:

To install the INIT version, first copy the “Splat.INIT” file from the (backup) program disk into the
“System.Setup” folder inside the “System” folder on your boot disk or partition. The only
consideration you should make here is that the debugger must be loaded before any INITSs that you
might want to debug with it. So, it is probably safest to make sure it is one of the first files in the
“System.Setup” folder, after “Tool.Setup”. It is very important that “Tool.Setup” be the first INIT
loaded during bootup. If you are also using GSBug in conjunction with Splat!, you can install them in
any relative order, but again with GSBug, it should be one of the first INITs loaded. If you are unsure
how to rearrange the order of the files in a subdirectory (folder), one way is to move all of the files out
to another area and then move them back in one-by-one. Note, that using the Finder to move the files
to the desktop and then back will not work! You must move the files to another folder or disk to
remove the file’s entry from the original directory.

If at any time you wish to temporarily disable the loading of Splat!, you can use the Finder (or some
other file utility) to check the Inactive box (in the *“Icon Info” dialog) for the “Splat.INIT” file. To
remove the debugger permanently, simply delete the ““Splat.INIT” file, or use the “Remove” operation
in the Installer. If Splat! is still in memory at this point, you should restart (reboot) your machine as
soon as possible to completely purge the program from your machine.

Additionally, there is a small shell utility and a CDA (Classic Desk Accessory) that allow you to enable
and disable the debugger during a session. The shell utility, “DebugSet”’, must be placed in your
ORCA/APW Utilities directory, or anywhere in your search path if you are using GNO/ME. Also, if
you are using ORCA or APW, you must add the following line to your “SYSCMND” file (see your
ORCA or APW manual for information about this file).

DEBUGSET *U

Important: This line must be added whether or not you have used the Installer scripts! There is
currently no way for an Installer script to modify an existing file, and since each user may have
configured this file differently, we cannot simply replace the existing file.

The syntax of this command is:
debugset [onloff]

That is, to turn off the debugger, you issue the command “debugset on”; to turn it off, use
“debugset off”. Simply issuing “debugset” with no parameters will display the current setting
of the debugger flag. If the INIT version is not installed, the program will simply report that and exit
without any further action. Provided your shell allows aliases to be set up (and all of the ORCA,
APW, and GNO/ME shells do), you can easily create aliases for turning the debugger on and off, if
you like.

To use the CDA, copy the file “DebugSet.CDA” to the “Desk.Accs” folder inside the “System” folder
on your boot disk or partition. It will show up as “Splat! DebugSet” in the CDA menu. (To access the
CDA menu, press Apple-Control-Esc at any time - it will immediately appear unless an important
operation is in progress, in which case, the menu will appear when the operation is finished.) To open
the CDA, move the cursor bar to “Splat! DebugSet” with the up- and down-arrow keys, and then hit
<Return>. A message will appear on the screen informing you of the current setting of the debugger
flag, and then it will ask you if you wish to change the setting. Hit <Return> to accept the change, or
press <Esc> to cancel the operation. If the Splat! INIT is not installed at the time you open the CDA,

SPLAT! REFERENCE MANUAL

the situation will be reported and you will be asked to press any key to return to the menu.

When Splat! is turned off, programs with debugging codes will not cause’Splat! to become “active” -
that is, the full debugging environment will not be started up, saving a great deal of overhead and
allowing your program to execute much faster; faster than even the debugger’s fastest execution mode.
Splat! is still interpreting the debugging codes, but just skips over the information, allowing your
programs to execute normally, whether or not they have been compiled with debugger information
included.

Finally, there is one additional file, “FixSplat”, that GNO/ME v1.0 users need in order to make the
debugger operate correctly under this environment. This small program reconnects the debugger to the
necessary system vectors after the GNO/ME kemnel has disconnected it during startup. Copy this file
into your utilities directory with “DebugSet”, or into some other directory in your search path. If you
are using GNO/ME v2.0 or later, you will not need this program.

You will also likely want to place an additional line that executes “FixSplat” somewhere in your
“gshrc” file so that the debugger is reconnected automatically every time you start GNO/ME. FixSplat
works fine even when the INIT version has not been loaded. It first checks to see if the Splat! INIT
has actually been loaded before taking any actions, and does nothing if it does not find the debugger.
When it is run, it normally prints a one line message indicating its action, however this can be disabled
by using “FixSplat -s” if desired. “FixSplat” need only be run once after each time GNO/ME has
started up, and should never be run from outside GNO/ME.

(For those of you interested in the technical details, the debugger INIT posts a MessageCenter message
for use by these utilities. This is what FixSplat and the other utilities check for and use. The format of
this message is not fixed and may change in future versions so do not count on its format. This
message is for our use only!)

Remember, you have to reboot the system before any changes to files in the system folder will take
proper effect. In this case, this means that installing the debugger INIT file does not cause the
debugger to be loaded immediately. It will be loaded only during GS/OS startup. Similarly, deleting
the INIT does not remove the debugger from memory until a reboot. You can use an Apple utility
called “IR” (for “Init Restarter”), which is a Finder Extension that allows you to load and remove
INITs and DAs without resetting the computer, to install the debugger from the Finder, however, it is
not safe to remove Splat! with this program, and Splat! will report an error message if you attempt to
load it when it is already installed.

INSTALLATION

Shell Version:

Installing the shell version of Splat! requires only slightly more effort. First you must copy the
“Splat” program file from the program disk to your shell’s utilities folder. Where this is depends on
which shell you are using and how you have your setup configured.

If you are using the ORCA or APW shells, this would normally be the “Utilities” subdirectory in the
same directory as the shell program itself. However, you can change the location at which the shell
looks for utilities by changing the utilities prefix (17 for ORCA 2.0 and greater; 6 for APW and earlier
ORCA shell versions). Also, you must add the following new line to your “SYSCMND” file (see your
shell reference manual for more information about this file):

SPLAT *U

If you are using GNO/ME, you can place the program file anywhere in your search path. However, if
you have both ORCA and GNO/ME installed on the same volume and your GNO/ME search path
includes the ORCA Utilities directory, then this directory would be the most logical choice for the Splat
file. For more information on search paths, see the GNO/ME Shell Reference.

SPLAT! REFERENCE MANUAL

SPLAT! REFERENCE MANUAL

Chapter 3: PREPARING PROGRAMS FOR USE WITH SPLAT!

To prepare a program for use with Splat!, you compile the program as you usually would, except that
you must pass a flag to the compiler indicating that you want it to create debugging information along
with the code. For ORCA and APW shells, this is done with the “compile” command, and the addition
of the “+d” flag. This may also be true for GNO/ME users, if you are using a “compile” utility with the
same syntax as the standard ORCA/APW version. Here are some example commands:

compile +d mysource.c keep=$
cmpl +d -m onefile.pas keep=Test
compile +d -p +e hello.c keep=0bj/$

That is all there is to it. Now each source module that you have compiled with the “+d” will have
debugging information included, provided, of course, that you compiler supports source-level
debugging (see below). If you are using Prizm as a development environment, you should ensure that
the “Generate debug code” check box'in the “Compile...” dialog is checked when compiling programs
for Splat!. ‘Also, Prizm users can set breakpoints and auto-go ranges in source files with the Prizm
editor and Splat! will recognize these and act accordingly. However, the Prizm markers will not be
shown in the Splat! Source window. Also see the descriptions of the “Set/Clear Breakpoint” and *“Set
Auto-go Range” commands in Section 5 of this manual.

Note that is quite acceptable to have some source modules compiled without debugging information
and some with. As soon as the program reaches a subroutine that has been compiled with debugging
information, the debugger will be activated and you can begin tracing there. Any subroutines that this
code calls that have not been compiled with the required information will not be traceable. These will
just be executed at full machine-speed as if they were, for example, a system library call.

There are no other standard shells or ways of compiling programs at the time of this writing.
However, should future new shells or new compilation commands appear, you will have to check the
manual or help files of those shells for information on how to properly prepare your programs for
debugging.

At this time, the only languages that provide the information necessary for source-level debugging are
ORCA/C and ORCA/Pascal. Check the release notes that came on your program disk for updates to
this list.

Splat! allocates and uses its own stack space, so there is no need to allocate extra stack space for it.
This also allows Splat! to debug CDAs, for example, which are limited to 1 page of stack space of
their own, unless they allocate more.

Important: Do not try to debug code in dynamic segments under Splat!. The debugger keeps pointers
to certain structures embedded in your program code and it cannot handle having these structures
moved to another location (or being removed completely) in mid-program.

For finer control over which parts of your program are to be debugged, you can use bit 1 of the
options code for the ORCA/C “#pragma debug” command to enable and disable the creation of
debugging information within a source file. If set, debugging information for Splat! will be generated
from that point on, up until another “#pragma debug” command clears the flag. If cleared, the code
following will not containing debugger codes. This can be tremendously handy when used to avoid
routines that would take the debugger a very long time to execute, such as code with long loops. Once
this code has been debugged, it is then safe to disable debugging code generation for the routine,

PREPARING PROGRAMS

allowing it to be executed at full speed with no debugger intervention, as if it were a standard library
routine. It is important to note that in the debugger command descriptions in Section 5, “full speed”
refers to full debugging speed - this is not full machine speed. There is a significant amount of
overhead involved in interpreting the debugging instructions embedded in the program’s code which
must be handled regardless of whether the debugger’s interface screen is being updated or not. As a
result, program execution speed is significantly reduced whenever debugging instructions are included
in the code. Therefore, disabling debugging code generation can greatly improve the speed at which
your program runs and thus reduce your development time.

Depending on the other options selected, the “#pragma debug” directive can also cause additional
code to be created to do various run-time checks on your code. You can use this directive in
conjunction with the “compile” command “+d” option, but you can also use these features without
compiling the code for source-level debugging (i.e. without the “+d” flag). However, if you turn on
bit 1, you must run the program through a source level debugger, otherwise it will crash upon reaching
the first debugging information block. Note that you cannot change “#pragma debug” options in the
middle of a subroutine.

Some of the other debugging features provided by the ORCA/C and ORCA/Pascal compilers can still
be quite useful even within Splat!. For ORCA/C, bit 0 of the “#pragma debug’” parameter controls the
generation of range checking code. In ORCA/Pascal range checking can be enabled with the
“{$Rangecheck}” directive. This is one of the features that Splat! cannot adequately provide, as the
compilers do not generate enough information for debuggers to handle range checking themselves. The
code generated by the C compiler (at the time of this writing) is limited to checking, at the start of each
function, that there is enough room left on the program’s run-time stack for all of the function’s local
variables. As such, it is of somewhat limited value, but still can be an important test. On the other
hand, the Pascal compiler generates a multitude of checks, from the same stack overflow checking
described above, to array bounds checking, math overflow errors, the use of NIL pointers, and more.
See you ORCA/Pascal manual for details.

Another feature useful in debugging C programs is the stack frame checking code enabled by bit 4 of
the “#pragma debug” parameter. The code generated here will check that the correct amount of data is
passed to a subroutine and report an error if too little or too much is passed. C programs are
particularly prone to these types of errors for two reasons. The first has been somewhat solved with
the ANSI C specification which provides for function prototypes which describe exactly the size and
types of parameters expected by a subroutine. If you are programming in ANSI C and are using
prototypes, you can use the C compiler’s “4pragma lint” directive to have the compiler check
function parameters for you. However, many older programs do not use prototypes and are prone to
frame errors. The other place where problems can occur is in functions which accept a variable number
of parameters (e.g. print£). A very common error is to pass a long integer value to printf when the
format string specifies that a short integer is expected, or vice-versa. Pascal, as it has much more
stringent subroutine parameter type checking and does not allow subroutines with a variable number of
parameters, has no need for such checking and there is no equivalent directive for that compiler.

Less useful, when working under Splat!, is the trace-back feature that both compilers provide. In C it
1s enabled by setting bit 3 of the “#pragma debug” parameter, and in Pascal you would use the
“($Names)” directive to enable the feature. The trace-back code keeps track of the subroutine execution
stack and provides this information to the previously described run-time error checking routines to
allow them to describe where the error occurred and the sequence of calls leading up to error. Under
Splat! this feature is not really needed, as you can see which line is executing in the debugger’s Source
window and you can examine the program’s call stack with the Subroutine Call Stack command.
However, if you are debugging programs outside of Splat!, this is an extremely valuable feature.

10

SPLAT! REFERENCE MANUAL

Finally, it should be mentioned that the profiler flag in the C compiler’s “#pragma debug” parameter
(bit 2) does not need to be set to do profiling under Splat!. Profiling information is always kept by
Splat! with no real performance penalty, so this flag should never be used when preparing programs
for use with Splat!.

For more information about the ORCA/C “#pragma debug” directive, see the chapter on “The

Preprocessor” in you ORCA/C manual. Information on the ORCA/Pascal directives mentioned here
can be found in the two “‘Compiler Directive” chapters of the ORCA/Pascal manual.

11

PREPARING PROGRAMS

12

RUNNING SPLAT!

Chapter 4: RUNNING SPLAT!

How you go about invoking Splat! very much depends on which version you are using, however,
either way it is very simple. If you are running GNO/ME v1.0 and the INIT version of Splat!, you
must first execute the “FixSplat™ utility to rehook the debugger to the necessary places. If you followed
the instructions in the Installation section and added this command to your “gshrc” file so that it would
be executed when the shell starts up, there is no need to run this again. However, if unsure, it is
perfectly safe to run the program any number of times. It checks first to see if the debugger is properly
installed, and only if there is a problem will it go through the reinstallation process.

Regardless of which shell you are running, if you are using the INIT version, you must first make
sure that the debugger is set to become active when required. By default it is, but if you want to check,
and you are running any of the supported shells, run “DebugSet” with no parameters. It will report the
current setting of the debugger flag. If it is “on”, Splat! will become active as soon as it detects a
debugger instruction being executed. If it is “off”, Splat! will still interpret debugger instructions, to
allow programs to run without crashing, but will not become active. This mode is useful when you
want to run your program a little more quickly than what is possible even under the debugger’s Go
mode, but you do not want to recompile your entire program to remove all of the debugging
instructions.

If the debugger is set to be “quiet”, you can enable it by entering the command “debugset on” at the
command line of your shell. To disable it again, enter “‘debugset off”.

Alternatively, whether you have the ORCA or GNO/ME shell or not, you can use the DebugSet CDA
to enable and disable Splat!, or determine its status, at any time. Any changes will not take effect until
the next time the debugger is invoked, so you cannot use the CDA to turn off the debugger while it's in
the middle of running a program.

Once you are sure that the debugger is installed and enabled, just execute your program (prepared as
described in Chapter 3) normally, either from a shell or any program launcher, such as the Finder. As
soon as the first debugging code is reached in the program, Splat! will become active and the first
program line will be highlighted. If your program runs but the debugger does not become active, either
the debugger is disabled or you have not prepared your program correcty. If the machine crashes, you
have probably not installed the debugger correctly. Assuming everything is alright, you are now ready
to run your program under Splat! - proceed to Section 5, the debugger Command Reference.

If you are using the shell version of Splat!, there is no set up required. Just get into your shell program
of choice and launch your program as you usually would except that you must prefix the command
with the name of the Splat! shell-version program file, normally “splat”. So, for example, to run a
program called “dummy” with a couple of command line arguments, you might type:

splat dummy -a -o test.obj

You can also redirect input or output to the program being debugged - just add these indications to the
command line as usual. Running the debugger on a remote terminal under GNO may be possible at
some future time, but for now the debugger always takes its input from the local keyboard and uses the
local screen for output, so all redirections will be taken with respect to the program being debugged,
not the debugger.

When using the shell version, you must be very careful not to forget to prefix your execution
command with the debugger’s command name (i.e. “splat”, unless renamed by the user). If omitted,

13

SPLAT! REFERENCE MANUAL

the machine will almost invariably crash immediately. That is the main reason why the INIT version is
recommended over the shell version unless your situation prohibits its use.

14

COMMAND REFERENCE

Chapter 5S: COMMAND REFERENCE

This section describes all of Splat’s commands in detail, grouped by the type of function they perform.
A command summary page is given in Appendix A which would make a handy quick reference sheet
as well, although the program’s help window also contains a complete list of commands. The
summary, though, also acts as a index of sorts, as the commands are listed in the order that they are
described in this section.

Before I get into the commands, however, an overview of the program’s interface and a description of
some of the common features that you will encounter is in order.

Program interface

Splat! uses a text-based desktop-like user interface, using MouseText characters on the 80-column
screen. If you are familiar with Apple’s standard graphical interface for the GS, then you should have
no problem figuring out the debugger’s interface. You cannot, at this time, however, use the mouse to
manipulate the debugger. This may change in future, but you will always be able to use every feature
of the debugger from the keyboard.

There are normally three windows on the main debugger screen, and any commands which require
further input or which provide you with information use standard dialog boxes with buttons, check
boxes, list boxes, and line edit items. Most of what you know about the desktop interface will also be
applicable in this program, although there are a few things missing. Most notable are the lack of mouse
control and menu bar, and the fact that windows cannot be moved or re-sized. In its favour, however,
Splat! allows you to access all of its features from the keyboard.

The debugger’s main three windows, and their functions, are as follows:

* a Source window, displaying the current file, normally with the next line to be executed centered in
the window. It can also be used to view any other text or source file you wish.

*a Variables window, listing the current subroutine’s local variables, as well as those global
variables accessed by the routine, and their values. Pointers to simple variables also have the values
they point to following the pointer’s value.

* an Output window, allowing you to view the program’s text output without flipping back and forth
between the debugger display and the 80-column text screen.

15

SPLAT! REFERENCE MANUAL

[FP——————————— Jource: DHRYSTONE.CC
finclude (sys/times.h)
fendif

main()

3
exl i

/3 Packa?e |
int IntGlob;
boolean BoolGlob;

E[:Ei::::::;;% Varia
stderr = 760638 (

bles] Output |
{ $lele/s, Lompiling Procd
Conpiling Procd
Conpiling Procd
Compiling Prock
Compiling Proc?
Compiling Proc8

Compiling Funcl
{

e
§

¢)
Figure 1 - Splat! main screen

b |

As described later, it is possible to remove the Output window to allow for a wider Variables window,
or two separate variables windows; one for local variables and one for global.

Data value formats

When Splat! displays the contents of a variable, either in the Variables window, in the structure view
dialog, or when placing a default value in an edit box, it uses certain standard formats. Also, when
accepting input, it expects values to be entered in certain formats. There are several types of data that
the debugger recognizes (integers, pointers, floating-point values, characters, and strings), and the
input and output formats for each of these types are described below.

For output, Splat! prints all integer values in decimal format, and all pointer values in hexadecimal
format. However, when accepting these values, the debugger recognizes several special character
prefixes to indicate a non-decimal base for the value. These symbols are the same ones used by the
ORCA/M assembler, which are ‘$’ for hexadecimal, ‘@’ for octal, and ‘%’ for binary. If there is no
prefix, the number is assumed to be a decimal (base 10) number.

Floating point values are always output with 6 decimal places of accuracy, but input values can be of
any precision and will be rounded by the conversion routine if the value cannot accurately be stored in
the destination variable. You can also specify a power of 10 multiplier in the standard ‘E’
representation (e.g. 1.23e10 = 12300000000) in an input value.

For characters and strings, Splat! uses the standard C escape sequence conventions to indicate control
characters, both in input and output strings. For those of you not familiar with the C conventions, the
table below lists all of the special escape sequences. Each sequence begins with the backslash character
(‘V), which is then followed by a single letter from the table, or, if no letter is assigned to the code,
you can encode a one to three digit octal number or an ‘x’ followed by a one or two digit hexadecimal
number. Any other character following the backslash will be included as is. Note that to code a
backslash character into a string, you must put two backslashes together (“\\"). This is used in output
strings so do not be alarmed if you see backslashes doubled in a variables listed value - there is really
only one there in memory. Note that, to avoid getting caught by an un-terminated or very long string,
Splat! only shows the first 40 characters of a C-style string. Other string formats that include a length
byte or word (such as Pascal strings or GS/OS Class 1 strings) are not trimmed in this manner;
however, the limits of a window or control may prevent the entire string from being seen.

16

s COMMAND REFERENCE

Sequence code ASCII code Meaning
\a 7 alarm bell
\b 8 backspace
\t 9 tab
\n 10 line feed (newline)
\v 11 vertical tab
\f 12 form feed (clear screen)
\n 13 carriage return

All of the debugger’s commands are now described, listed in what I felt was a fairly logical order,
divided into several groups of similar commands. Each command description begins with a line printed
in bold that lists, on the left, the key that invokes the command and, on the right edge, the name of the
command. The detailed description of the command is then given in the paragraph(s) that follow. In
the cases where the command is invoked with a Apple key sequence (e.g. Apple-A), you can always
substitute the Control key for the Apple key (e.g. use Control-A instead). This was done to allow more
flexibility to users in selecting “‘pass-through modifier keys” (see Set Preferences below). If you need
to use the Control key as a pass-through modifier, you can still invoke these commands using the
Apple key combination, and vice-versa.

Window manipulation commands

The following commands allow you to make full use of the debugger’s desktop-like interface.

<Tab> Select Next Window

The currently active window is indicated by having its title bar highlighted. This command cycles the
active window indicator forward (in left-to-right, top-to-bottom order) through the windows.
Specifically, in a standard configuration, if the Source window is active, the Variables window will be
made active by this command; if the Variables window is active, the Output window will be activated;
and, finally, if the Output window is active, the Source window will be reactivated.

Apple-<Tab> Select Previous Window

This command performs the opposite function to the previously described command, changing the
active window in the reverse direction. That is, Source to Output, Output to Variables, and Variables
to Source.

17

SPLAT! REFERENCE MANUAL

Up-arrow Move Up
Down-arrow Move Down

The exact function these keys provide varies depending on the currently active window. If the Output
window is active, the up-arrow key scrolls the window's view of its contents up one line, and the
down-arrow scrolls the window down one line, to the limits of the data being viewed (which, in this
case, is the size of the 80-column screen - 80 by 24 characters). For any of the other windows, these
commands move the selection arrow (shown on the left edge of the window) up or down one line,
respectively, scrolling the window's contents if necessary.

Left-arrow Move Left
Right-arrow Move Right

In all windows, these two keys perform the same function: to scroll the window’s view one column to
the left or right respectively, up to the edges of the data shown.

Apple-Up-arrow Page Up
Apple-Down-arrow Page Down

As with the Move Up and Move Down commands, this pair of commands function differently for the
Source and Variables windows than for the Output window. In either of the first two, Page Up will
move the cursor (o the top line of the window, leaving the contents unchanged, unless the cursor is
already on the top line, in which case the contents of the window will be scrolled down a windowful
and the cursor left on the new top line. The effect of the Page Down command is the same, in the
downward direction, moving the cursor to the bottom line or scrolling the data up one windowful.

In the Output window, the paging commands always scrolls the window’s contents one windowful,
up to the limits of the data displayed.

Apple-Left-arrow Page Left
Apple-Right-arrow Page Right

Again, as with the Move Left and Move Right commands, these two keys perform the same function
in all windows. They scroll the window’s view one windowful to the left or right respectively, up to
the edges of the data shown.

Apple-1 to Apple-9 Jump To Part

Pressing the Apple (or Control) key with any of the number keys (either those across the top of the
keyboard or those on the keypad) causes the active window to “jump” to the start of that numbered part
of that window’s contents. The contents are divided into 8 parts, so Apple-1 jumps to the start of the
contents, Apple-2 jumps to the start of the second division, and so on up to Apple-8 which jumps to
the start of the eighth and final part. Apple-9 jumps to the end of the window’s contents. This set of

18

COMMAND REFERENCE

commands will likely only be really useful in the Source window, however, the Apple-1 and Apple-
9 commands, to jump to the start and end of a window’s contents respectively, may be useful in any
window.

J Jump To Line

This command presents you with a dialog which requests that you enter the number of the line you
wish to jump to. To abort the command and remain where you are, hit the ““Cancel” button (selected
by hitting the <Esc> key). To jump to a specific line, enter a new number and hit “OK” (selected by
hitting <Return>). The first line of any window’s contents is numbered 1. Again, I expect this
command to be most useful when used with the Source window, as you will be able to use the line
numbers from your source file editor to get to those same lines while in the debugger. Note that there
is one difference between the line numbering used in the ORCA/Editor versus what the ORCA
compilers, and hence Splat!, use. Form feed characters (ASCII 12, or Ctrl-L), often used in C
programs to help break up paper printouts, are counted by the compilers and Splat! as ending a line,
and thus incrementing the line number counter. The ORCA/Editor (as of version 2.0) does not. Be
aware of this discrepancy when trying to match line numbers between the debugger and the
ORCAVJEditor.

This command can also be used to determine the number of the line which is currently selected in the
active window. When the dialog is brought up, the current line number is placed in the editing box as
a default. You can then check the line number and hit “Cancel” to abort the jump.

Apple-V Change Debugger Window Configuration

This command changes the debugger's window configuration. It cycles through three available
configurations: the standard one (shown above), and two variations of the variables window. The first
of these is a Variables window that takes up the whole bottom of the screen; the Output window
disappears. The second is two variables windows, one for locals and one for globals. The Source
window remains the same size in all these configurations. Note that the globals window does not
always work appropriately due to bugs in the compilers.

Locals 0 Globals
stderr = 638 ({ $|

f |)
Figure 2 - Split variables display

T 11 R e AT
stderr = , $0086C882, 00

Figure 3 - Variables only

19

SIPLAT! REFERENCE MANUAL

Execution commands
<Space> Step (using default stepping mode)

Once the default stepping mode has been set to your liking, using the space bar to step through the
program is usually the easiest way of following important parts of the code. Initially, the default mode
18 to step into all subroutines encountered, whenever that subroutine has also been compiled with the
necessary debugging codes. To check or to change the stepping mode, use the “Set Preferences”
(Apple-P) command (described later under “Miscellaneous commands”).

See the descriptions of the following two commands for the differences between the two stepping
modes. Note that if the line to be executed has no traceable function calls, all of the Step commands
perform identically. (A traceable function is one that has been compiled with the necessary debugging
information included.)

I Step Into Subroutines

This command is used to force the debugger to follow execution into any subroutines encountered on
the next line of code. That is, if the next line of code executed (the one highlighted in the Source
window) contains any calls to other subroutines also compiled with debugging code generation turned
on, execution will halt again at the first line of that subroutine, allowing you to trace through it. If the
subroutine called was not compiled with debugging information included, such as for a standard
library call, it will not be traced.

If the line contains more than one function call, all function calls are traced. However, upon entering
any subroutine that you are not interested in following, you can use the “Return” (R) command (see
below) to execute the function at full speed until it returns to the caller.

0] Step Over Subroutines

If you do not wish to trace the subroutine calls that the next line makes, use this command to force the
debugger to execute all subroutines at full speed. At any point during their execution, however, you
can still interrupt them to see what is happening. This can be particularly handy if a subroutine
requires rescuing atier it enters an endless loop or encounters some other problem.

If the line contains more than a single subroutine call, all are executed at full speed - you cannot
selectively step over only some of the calls.

T Trace

Trace mode automatically steps through the program a line at a time, using the current stepping mode
(that is, it uses the stepping mode to determine whether to follow subroutine calls or not). Pressing
<ESC> pauses execution again.

20

COMMAND REFERENCE

One good application for this command is to use it to skip ahead just a few lines without having to
repeatedly use one of the Step commands or setting a breakpoint and using the Go command. Tracing
moves slowly enough that you should be able to stop execution where you want to just by watching
the executed source lines being highlighted on the screen. It might also be desirable to follow a loop
using Trace mode while you watch the values of variables being updated.

G Go

Using the Go command sets the debugger to begin executing code at its fastest rate, by switching to
the program’s current video mode. Even if you return to the debugger screen, the Source and
Variables windows will not be updated while the code is executing. Full speed execution will continue
until the <ESC> key is hit or a breakpoint is reached (see the Set Breakpoint command below).

The video mode selected will be the last one that was active before the debugger screen was last turned
on. If this is not the correct mode, you can switch to another mode with the appropriate key (see later
section on display mode commands).

The speed of execution under the Go command is still nowhere near full machine execution speed.
The debugger still has to do a great deal of work to keep track of the executing program’s activities,
regardless of whether it reports these activities immediately or not. However, because the Go
command suspends the maintenance of the debugger’s interface, execution speed is significantly better
than under Trace mode.

R Return

The Return command causes the rest of the current subroutine to be executed at full speed, in a fashion
similar to the Go command except that the debugger display remains visible, though the Source and
Variables windows still do not get updated. Execution halts again at the next line in the subroutine that
called the current one, unless a breakpoint is encountered or the <ESC> key is used to pause
execution before this point is reached.

Program control commands
L Load Source File

The source window is not limited to displaying only the file in which the current line appears. Using
this command, you can load any text or source file into the Source window for viewing. However, as
soon as you use one of the execution commands (see above), the current source file is reloaded into the
window.

21

SPLAT! REFERENCE MANUAL

To select the file to load, a dialog similar to the graphical Standard File (SF) dialog used in most
GS/OS-based programs, with which you should be acquainted, is presented. The current path is
shown at the top of the dialog, as well as the list of selectable files and the usual buttons. Only text
and source files (types TXT ($04) and SRC ($B0)) and subdirectories are listed, the latter being
marked with a folder icon to distinguish them. One notable difference between this dialog and the SF
dialog is that Splat!’s dialog does not keep checking AppleShare volumes and does not notice when
ejectable media (such as 3.5” disks) have been changed.

Otherwise, this dialog is virtually identical functionally to the Standard File dialog. The up- and down-
arrows move the selection bar up and down, and additionally, holding the Apple key down with the
arrow key either moves the selection bar to the top or bottom of the displayed list or causes the list to
scroll one windowful in the appropriate direction. Only one file can be selected at a time.

Select source file to open:
+left:srciusr:games: dhrystone:

MaKetlle

=)

Figure 4 - Standard File Dialog
Working from top to bottom, the buttons and their keyboard equivalents are as follows:

The Volumes button (sclected by pressing the <Tab> key) brings up the current list of volumes
available online. You can then select a new volume from the list. Note that this listing does not get
updated when you insert a new disk, unlike the SF dialog. However, you can hit the Volumes button
again to manually force an update.

The Open button (<Return> key) performs one of two functions depending on the type of the file
selected. If the file selected is a subdirectory or volume name, the name of the selected directory or
volume is added to the current directory pathname and the new directory is listed. If the selected file is
a text or source file, that file is loaded and displayed in the Source window.

The Close button (<Delete> key) removes the last subdirectory from the current directory pathname
and displays the contents of the parent directory. If the directory path consisted only of a volume
name, closing will bring up the Volumes list described above.

Finally, the Cancel button (<Esc> key) aborts the load command and removes the dialog without
further action.

The load commands use prefix 8 to hold the current directory pathname.

22

COMMAND REFERENCE

A Set Auto-go Range

If there is a section of your code that you want to repeatedly run at full speed, you may find it
convenient to set up an auto-go range for this section. This would be primarily useful on a piece of
code inside a larger loop; for blocks that will be executed only once or twice, it would be simpler to
just set a breakpoint at the end of the block. This command is only available when the Source window
is active.

The initial position of the cursor when the command is given is used as the anchor point for one end of
the range, and you can set the other end using the up- and down-arrow keys (with the Apple key for
“page” moves). As you set the range, the selected lines are marked by a highlighting bar in the
window border to the left of the text.

Hitting <Return> accepts the range, while pressing <Esc> cancels the operation. If the new range
overlaps or lies adjacent to another range, the ranges are merged into one. The only visible implication
of this is that you will be unable to remove just the new range - you will instead remove the entire
combined range.

Lines which are marked as part of an auto-go range will have a vertical bar in the left-hand margin of
the Source window beside the line. You can easily see the extent of the range by the extent of the
continuous vertical margin line.

When execution reaches any line in an auto-go range, the line is executed at full speed (see the
description of the Go and Return commands above) regardless of the current execution mode. You
can, of course, interrupt execution with the <ESC> key while the program is in an auto-go range.

Note, also, that you can set a maximum of 16 auto-go ranges in each source file. However, because
of their limited usefulness, this is not likely to be a serious limitation.

For Prizm users: During execution, Splat! does recognize lines marked in the Prizm editor as auto-go
and will execute them as such, however, the lines will not be marked in any special way in the Source
window. In fact, using Prizm’s auto-go and breakpoint markers may actually be a more convenient
way of setting up these markers as you will not have to reset them every time you reenter the
debugger.

Apple-A Remove Auto-go Range

To remove an auto-go range, simply move the cursor somewhere into the range and select this
command. This command is also only available when the Source window is active.

B Set/Clear Breakpoint

Often, when debugging a large or tairly large program, you will want to quickly get to a certain point
in the program to test a new piece of code or to locate the source of an error. Setting a breakpoint at or
just before the important section of code will let you do this very easily.

To set a breakpoint, simply move the cursor to the desired line, loading the appropriate file into the
Source window first, if necessary, and select the Set/Clear Breakpoint command. You will see that the

23

SPLAT! REFERENCE MANUAL

line is now marked with a diamond in the left margin. To remove the breakpoint, place the cursor back
on the same line and choose the Sev/Clear Breakpoint command again. As with auto-go ranges, you
may have a maximum of 16 breakpoints set in any one source file.

Whenever the executing program reaches a line marked with a breakpoint, regardless of execution
mode, the debugger will halt execution and sound a beep. Note that breakpoints have precedence over
auto-go ranges so any breakpoints hit will still cause execution to halt. As a reminder of this, the
diamonds that mark lines with breakpoints set on them show through the vertical line that marks an
auto-go range.

For Prizm users: During execution, Splat! does recognize lines marked in the Prizm editor as
breakpoints and will stop upon reaching the line just as if the breakpoint had been set within Splat!.
However, the lines will not be marked in any special way in the Source window. In fact, using
Prizm’s auto-go and breakpoint markers may actually be a more convenient way of setting up these
markers as you will not have to reset them every time you reenter the debugger.

[FP———————— Source: OHRYSTONE.CC

tines(Eins); , . .
' ngl}tine = tus.tms_utime - starttinme; /% Computes overhead of loopi
endi

t it = (KecordFtr) malloc(sizeot(Kecordlupe))
Pirilb = (RecordFtr) malloc(sizeof (R

PtrGlb-)PtrComp = PtrGlbNext;

Ptrilb=>Discr = Identl;

PtrGlb=>EnunConp = [dentd;

PtrGib-)IntCoug = 48,
strepy(PbrGlb-)StringComp, "DHRYSTONE PROGRAM, SOME STRING);

Figure 5 - Debug breakpoint marker

S List Subroutine Call Stack

This command brings up a list of the active function invocations in order from most recent to least
recent; in other words, the program stack. Each line lists the subroutine’s name as well as the source
file and the line number from which the call was made. Then, if you want to view one of these calling
lines, you can move the selection bar to the desired call and select the “Open” button (‘O’ key). This
will load the appropriate source file into the Source window and display the line from which the call
was made. To remove the list without changing your current position in the Source window, use the
“OK” button (<Return> key).

Subroutine call stack

Subroutine Source file Line

C3 O

Figure 6 - Subroutine call stack window

24

COMMAND REFERENCE

= Assign Value

This command allows you to change the value of any simple variable (that is, one that is not a structure
or an array). This command is only available when one of the variables windows is active and the
selection arrow is pointing to a simple variable. The current value is placed in the editing box and you
can use all of the standard line edit features to edit the value. See the information on editing and on
value formats at the start of the “Command Reference” section. A word of caution: when changing the
value of strings, be careful not to overflow the space allocated for the string - no check is made by the
debugger.

To change the value of a structure field or array element, you must first expand the structure or array
with the View Structure command - see below.

<Return> View Structure

The View Structure command allows you to view a structure or array variable in an expanded format,
as opposed to the single line, condensed form shown in the variables window. A dialog is brought up
which includes a large list box and four buttons along the bottom. In the list box, each field or array
element (which I will hereafter group together as an element) is displayed on a separate line, with the
field name or element number on the left and the element’s contents on the right. You can use the
standard list box keys to scroll the contents if there are more elements than can be displayed at once.

When you first invoke the command on a variable, its first (topmost) “level” of elements will be
displayed. Any elements which are also structures or arrays will be displayed as in the Variables
window, and can be further expanded by moving the selection bar to that element’s line and clicking
the “Expand” button (selected by pressing the <Return> key). To back up to a previous (higher)
level of the structure, use the “Backup” button (<Delete> key). To finish viewing a structure, select
the “Done” button (<Esc> key). Notice the similarity to the file selection dialog - the buttons have
different names, but the keys perform similar functions in both situations.

The other button (the third in the row) is the “Assign” button (‘=" key) which performs identically to
the Assignment command described above, but allows you to change the value of any simple structure
field or array element. You simply move the selection bar to the appropriate line and select assign,
which brings up the same dialog box as described in the Assignment command above (please refer to
that description for details). Non-simple elements must be further expanded before they can be
changed.

Structure and array expansions can be intermixed freely, so you can expand the elements of an array of
records, for example, and structures can have fields which are arrays of any number of dimensions,
etc. Pointers (or pointers to pointers, etc.) to structures or arrays can be expanded as well, being
automatically dereferenced to get to the structure data. Objects, too, can be viewed in this manner.
Only simple variables and pointers to simple types are non-expandable, as they are already in their
most basic form.

After you have assigned a template to a pointer variable (see the Template commands section below),
you can also then use the View Structure command to view the data at the address pointed to by the
variable in the format given in the structure template. As before, the Variables window must be active

25

SPLAT! REFERENCE MANUAL

and the currently selected variable must be a pointer, and you must have already assigned a template to
the variable. Also, the template you assigned must be currently loaded into memory. Finally, the
current value of the pointer must represent a possibly valid value, and any values out of the valid
memory range of the Ilgs or which point to “dangerous” areas of memory, such as the I/O
softswitches, will be refused. This final restriction also applies in the above case where pointers to
structures are expanded. No expansions will take place if the debugger determines that data may
overlap an invalid memory region. However, the debugger cannot always determine the size of a
structure or variable, and so may expand something even though it is partially in a dangerous area.
The effect varies, but may cause the machine to crash, so remember to use caution when expanding
pointer variables.

For convenience, character pointers and byte pointers have a default template assigned to them which
allows you to view the value pointed to as a C-style (null terminated) string. Of course, this default
template can be overridden with an actual template assignment.

0 Source: DHRYSTONE.CC
NeToritty IntLoc;
REG OneToFifty [ntIndex;

]

Intloc = IntParll ‘ 5

F
ArraylParCintloc + 1) = rraE rarCintloct;

nrra?iPar{IntLoc + 301 = Intloc;

for Clnbindex = IntLoc; Intlndex <= (IntLoc + 1) ++IntIndex)
Array2ParLintlocICintIndex] = IntLoc;

++ArrauParlintloc]lintloc - 11;

3 ArrayerarCintloc + 281CIntLoc] = ArraulParCintLocl; ‘i
' Locals

0| Globals

ntloc = stderr = 638 ((Slm
IntIndex = 116
IntParll = 3

HrraylPar = [22647, 27, -27849, 7
IntPari2 = 7

ArraycPar = [[-27849, 27, 3, 7, 4

Figure 7 - Unexpanded array

DHRYSTONE . CC!Proc8!frraylPar DRRYSTONE.CC!Proct !PtrParin
Field/Index Value FieldsIndex Value
$160563 (L $160574, -23280. -32i32, 343,
] -27849 EnunConp é
3 o7 IntCon 4
g ; StringEonp "DHRYSTONE PROGRAM, SOME STRING®
6 29934
7 -18508

Figure 8 - Expanded array and structure

Template commands
Apple-L Load Template File

26

COMMAND REFERENCE

Selecting this command brings up a file selection dialog as described earlier under the “Load Source
File” command. From this you can select a new template file to load. If you cancel the selection,
nothing happens. However, if you Open a new file, all of the currently loaded templates are purged
from memory to be replaced by the ones in the new file.

When Splat! starts running a new program it checks the program’s directory (prefix 9) for two files,
“Splat.tmpl” and “Splat.asgn”, loading them automatically if they are found. “Splat.tmpl”
should contain any structure templates that you will be commonly using with this program, and
“Splat.asgn” should contain template-to-variable assignments. This latter file can be created using
the Write Template Assignments command (described below) or manually using the format described
in Appendix B.

Template files have been made practically obsolete by the addition of structure information in the
debugging code generated by the newer ORCA languages with version numbers of 2.0 or greater. If
you are still running a pre-2.0 version of an ORCA language, then templates may be a satisfactory
alternative. However, the amount of effort involved in creating template and assignment files for each
of your programs may be enough that buying the upgrades would be worthwhile. Templates can also
be used to provide work-arounds for any problems or inadequacies still present in the new compilers,
so they may still find use even for those with the upgraded compilers.

For more information on template files see the GSBug manual and also Appendix B in this manual
describing our extensions to the format.

\Y% Assign Template

Once you have a set of templates loaded, you can then assign the templates to variables to view the data
stored there, or pointed to by that variable, in structure format. To use this command, the Variables
window must be active and a pointer variable must be selected. When the command is invoked, a
dialog window is presented containing the list of available templates from which you may choose the
template to assign.

Along the top of the window, the variable’s complete identitier is shown, which consists of the source
file's name, followed by the function’s name, followed by the variable’s name all separated by
exclamation points (‘!” - e.g. “source.c!main!name”). This name is used to differentiate local variables
with the same name but from different functions. When saving your assignments to disk, this name
(with space separators instead of exclamation points) is stored in the file (e.g. “source.c main name”).
Unless you intend to make your own assignments file by hand or write an automatic generation
program, you need not really be concerned with this format. For global variables, the source and
function name fields will be empty (e.g. **!!global”) and these tields are replaced in the assignment file
by an asterisk ("*’) followed by just the variable name (e.g. ‘* global’).

The list box is pretty standard, but you should note that the templates are listed in the order that they

were loaded from the template file, instead of being sorted alphabetically. This was done so that you

would have control over the order, thus allowing you to place your most frequently used templates at

the start of the list. Also it allows you to group templates as you wish, such as is done in the GSBug

;tandard Toolbox templates file, “GSBug.Templates”, which, by the way, can be loaded and used by
plat!.

27

SPLAT! REFERENCE MANUAL

a
NewL ineRec
Openkec
PathnameRec
Pref ixRec
Quitkec
UplumeRec

CE 3 Ceceld

Figure 9 - Assign Template dialog

Once you have selected the desired template, select “OK” (<Return> key) to confirm the selection.
To abort the selection, use the “Cancel” button (<Esc> key).

w Write Template Assignments

Once you have gone to all the trouble of setting up a bunch of template assignments, you will probably
not want to have to go through the same procedure again every time you run the program, especially if
you will be working on the project for a while. Well, you don’t have to. Splat! allows you to write all
of your currently defined template-to-variable assignments to a file, named “Splat.asgn”, which will be
loaded automatically every time you start the debugger from the directory holding the file. Also, you
can edit this file by hand, though this is not recommended and is not likely to be necessary. However,
should you feel the need, the file format is defined in Appendix B.

Apple-S Change Variable Type to C-string Pointer
Apple-C Change Variable Type to Character Pointer
Apple-B Change Variable Type to Byte Pointer

These commands allow you to change the way certain pointer variables are displayed in the variable
windows (as opposed to templates which are used with the View Structure dialog). Because ORCA/C
cannot determine whether you intended a variable defined as "char ** to represent a pointer to a
character or to a string, it always takes the safe road and calls them character pointers in the debugger's
symbol table. As a result, even if the variable does point to a string, Splat! normally only displays the
first character of this string in the variable windows. To work around this, Splat! provides two
methods of viewing character (or byte) pointers as string pointers.

Firstly, there is in effect a default template assigned to all character and byte pointers. This allows you
to view the string pointed to using the View Structure (<Return>) command, as described above.
However, this is not very convenient when, for example, you want to watch the contents of a string
change as you trace through the code. For those instances where you want to be able to see the
contents of a string pointer in one of the variable windows, you can use the Apple-S command to
change the variable's type, for the duration of the program's execution, to a C-string pointer.

To use these commands, select the variable to change in one of the variable windows, and then choose
the appropriate command for the type of pointer you would like. To change the pointer to a C-string
pointer, use Apple-S. To change the variable back to a character or byte pointer, use the Apple-C or

28

COMMAND REFERENCE

Apple-B commands, respectively. These commands are only available for simple byte, character, or C-
string pointers (not for structure fields or array elements) and they do not affect the way the pointer's
data is displayed in the View Structure dialog.

Display commands
D Turn on Debugger Display

Use this command to return to the debugger display or to redraw the display if it has been overwritten.
This could happen if a program writes directly to the 80-column screen space instead of using one of
the support /O hooks (i.e. the Text Tools, the GS/OS Console Driver, or the ORCA shell ConsoleOut
command), or perhaps if you discover a (gasp!) bug in the debugger.

Display Hires Page 1
Display Hires Page 2
Display Double Hires Screen
Display 80-column Screen
Display Super-hires Screen

SWRWN =

These commands allow you to view the output on the respective video mode displays at a given
moment or while the program executes. Note that program execution can automatically cause one of
the other display modes o be displayed. However, this does not prevent you from changing the mode
back and continuing execution. To return to the debugger display, use the Debugger Display
command above.

Miscellaneous commands
P View Program Profile

Anyone who has been programming for any length of time, or has taken a course or read a good book
on programming, will likely have come across the famous “10/90” rule of programming. Roughly,
this rule states that about 90 percent of your program’s running time will be spent in only about 10
percent of the code. What this means is that it is usually an unnecessary waste of time trying to perfect
every piece of your program when you will not likely see any great improvement in running time in a
good deal of your code. The trick is to determine where your program spends most of its time - to find
the *hot spots”. This is the function of a profiler.

While your program is running, Splat! is constantly keeping track of which subroutine is currently
active and is watching the amount of time it takes to execute each line. At any time you can view the
current time breakdown of your program by selecting the View Program Profile command. The dialog
that is presented lists all of the traceable subroutines that have been invoked at some time during this
execution, listed in descending order of total execution time. That is, the routine in which the most
time has been spent will be listed first.

Each line shows the name of the subroutine, followed by the total execution time of the subroutine thus
tar (in milliseconds), and the percentage of the program’s total running time that this subroutine has

29

SPLAT! REFERENCE MANUAL

occupied. This last figure is probably the most important one. It allows you to see, at a glance, which
subroutines you should concentrate on.

A few words of caution must be given, however. First of all, although the timing method used in
Splat!, which counts at a rate of about one “tick” every 127 microseconds, is of much greater
resolution than, for example, Prizm, which only counts at 60 ticks per second, it is still not very
precise. Also, program execution can be delayed by interrupts, especially if you are running under
GNO. The debugger simply determines the time from when it started the line executing until that line
finishes. If the current subroutine calls another traceable subroutine (one compiled with debugging
information), even in Go mode, the time spent in this new subroutine will be accounted to it, not to the
caller.

On the other hand, time spent in a library call, toolbox or GS/OS call, or in an untraceable subroutine,
will be accounted to the caller. This includes prompted keyboard input, which can therefore seriously
throw off the timing percentages. For this reason, if you wish to properly profile a program that uses
standard keyboard input, it is recommended that you prepare an input file containing the proper input
responses and then redirect that input file into the program using the appropriate shell command line
syntax. This way, your program will not spend time waiting for keyboard input, producing a more
accurate profile of the rest of the program.

For the technically inclined: Splat! uses the most significant 8 bits of the vertical video counter as a
subdivision of the 60 Hz tick counter to obtain its 7860 Hz timing counter. (If you are running on a 50
Hz system, the counter actually runs at 7800 Hz but the millisecond counter will still be accurate.) It
installs a dummy Heartbeat Queue task to ensure that the tick counter is incremented even when the
Event Manager is not active. Subroutine times are stored in long words, allowing the debugger to
profile programs for up to about 40 hours! If the program runs longer than this time, however, the
profiler will breakdown and its information will be useless.

Subroutine profile
Subroutine Time (ng) Called %

19
36
.48
A3
36
16

Figure 10 - Profile display

Apple-P Set Preferences

The name of this command is, I admit, a bit of a misnomer. However, the term “Preferences” is a
fairly standard title in the Apple Ilgs world, so I decided to stick with it. The function of the dialog
presented by this command is to allow you to set some of the debugger’s options to suit your
requirements,

COMMAND REFERENCE

At this time, there are five settings for the user to adjust: the current stepping mode, how structures are
displayd, the pass-through modifier keys, the default window configuration, and the size of the
tabbing fields.

The current stepping mode is indicated by the presence or absence of a check beside the option. A
check mark means that the default stepping mode for the Trace and the basic Step command is to
follow the flow of the program into subroutine calls. If there is no check, subroutines will be executed
at full speed and not traced. You can toggle this setting using the ‘I’ key.

By default, structures and arrays are expanded to show their contents in the variable windows. You
can disable this feature by turning off the "(E)xpand structures/arrays in variable windows" option. If
this option is not checked, the right side of a structure or array variable's line will show only empty
brackets; square ones for arrays, curly ones for structures. Turning off expansion reduces the amount
of time needed to update the variable window(s), especially if there are a number of complex variables
present, but you will then have to use the View Structures dialog to see the contents of these
structures. This option is toggled using the 'E' key.

The list of pass-through moditiers shows the combination of modifier keys required to send a
keystroke to the executing program’s Event Manager queue, if the Event Manager is active. When text
input is requested through the normal hooks, the debugger is suspended and all keystrokes are sent to
the input routine. However, if GetNextEvent or TaskMaster are being used to obtain input, that input
is never prompted for through those aforementioned channels. So, this mechanism was provided to
allow you to test your program's keyboard handling functions as well. To send keystrokes to the
program, you must hold down all of the checked moditier keys along with the keystroke that you wish
to send to the program. Note that these modifiers are stripped off of the key code before it is passed to
the event queue. You should keep this in mind, since you will not be able to use the Apple key as a
pass-through modifier if you want to send menu item keyboard equivalents, as these codes usually
include the Apple key.

The currently selected modifier keys are those with check marks beside the label. The key used to
toggle each of these settings is the letter that is parenthesized in the label. Briefly, these are: ‘A’ for the
Apple key; ‘O’ for the Option key; *C’ for the Control key; ‘S’ for the Shift key; and ‘L’ for the Caps
Lock key. The default setting is to use only the Option key to send keystrokes. If no modifiers are
checked, keys are never passed to the Event Manager.

There are three windows configurations selectable through the Apple-V command. If you find you
prefer to use one of the alternate configurations over the standard one, you can make that one your
default configuration and it will be selected automatically every time Splat! starts up. Under "Default
display configuration”, choose the set-up that you prefer by entering the parenthesized letter. The
check mark indicated which configuration is currently selected. Note that changing this value does not
have any immediate effect on the display - it is only used when you start debugging a new program. If
you would like this setting to remain intact after you shutdown the machine, you must make sure you
save the settings, as described below.

The last setting allows you to set the spacing for tab stops in the Source window. When files with
hard tabs are loaded into the Source window, this value is used to determine in which column the text
following a tab character will be placed. This value can be set to any number from 1 to 99 by typing
the value into the edit box. All editing keys and all numeric output will automatically go to the edit box
as, at this time, all of the other controls in the dialog are buttons.

To accept the changes made, but only for this session, select "OK" (<Return> key). The settings will
only remain in effect until the computer is rebooted, in the case of the INIT version, or only until the

31

SPLAT! REFERENCE MANUAL

current program finishes executing, for the shell version. To save the settings, choose "Save" (Apple-
<Return>). This button causes the settings to be written to Splat!'s resource fork so that they can be
retrieved the next time the debugger is loaded. Note that each version of Splat! (INIT and shell) has its
own set of preferences, so changing the settings for one version will not affect the settings for the
other. Finally, to restore the settings to the way they were before the dialog was invoked, select the
"Cancel" button (<ESC> key).

Set Preferances

-y - Step = Step (Dinto
- ¢ - (E)xpand structures/arrays in variable windows

Pass=thru nodifier keys: Default display cunfiguratiom

5 (n)pile key - v - (U)ariables/Qutput
=y = (Qption key = = (W)ide Variables
= = (C)ontrol key = = Locals/(G)labals

= = (S)hift kea
= = (aps (L)ock key

Tabs stops every B | characters

Cr3 Cocedld el

Figure 11 - Preferences Window

U Display Program Name and User ID

It may occasionally be usetul to know the user ID assigned to the program you are debugging, perhaps
for checking purposes or maybe for use with other programs, such as Nifty List (by David Lyons).
This dialog displays the user ID of the code block from which execution was last interrupted. If all is
going well, this will be part of your program’s code. This user ID is then used to obtain the name of
the owner of the block. If the name displayed is not that of the program being debugged, something
has likely gone wrong with your program.

It is also possible, although not recommended, to debug two or more programs at once with Splat!.
For example, you may want to determine why a particular NDA and application are not cooperating
properly. This command can tell you which one of the programs is currently "active", if you are
unsure.

Active Progran
*dhrystone"
User1D = $1886

L

Figure 12 - Program Name and User ID display

32

COMMAND REFERENCE

N Display Address of Next Program Line

This command helps you use the GSBug and NiftyList debugging utilities with Splat!. When you hit
'N', Splat! displays an address in hexadecimal notation. This address points to the first machine
language instruction in the next line of code (the line the highlight bar is over in the source code). With
this address, you can view the actual code with GSBug or NiftyList. This feature is useful to help
view variable data in the rare case that Splat! cannot find it, or to help locate compiler errors in the
output code. The address that is printed out points to the actual code, not the compilers debugger
instructions that precede it.

Q Quit Splat!

You can abort the execution of an active program at any time using the debugger’s Quit command. I
have attempted to safely shutdown the most common things an unfinished program may have left
hanging, but there are too many cases to be able to take care of them all. Among the things the
shutdown operation does handle are tasks like shutting down started tools, closing opened files,
removing tool patches, and freeing allocated memory. This covers most of the most common
conditions and should work for most programs. However, if you do anything “tricky”, you may have
problems aborting that program early.

For example, you should not abort a program that has changed any of the bank $E1 vectors either
directly (which you should never do anyway) or with the SetVectors tool call. Any Out-of-memory
(OOM queue), HeartBeat queue, Run queue, or GS/OS Notification handlers must be removed before
shutting down a program. Also, new user IDs should be deleted, unless the program is intentionally
leaving a piece of code or data permanently in memory. Some of these situations may be handled in a
future version, but at the time of this writing they were not. Check the release notes on your program
disk for updates.

If you are unsure whether a particular situation will be handled or not, feel free to ask (consult the
Introduction for information on how to contact us), or, if you are brave enough, try it out. If it doesn’t
work, you will have to code an early exit option into your program. The above is by no means an
exhaustive list of the possibilities, so if you have any further suggestions as to what should be
included, please let us know.

? Display Help Window

A complete list of commands and the keys tied to them is available at any time by hitting the ‘?’ key
(shifted or unshifted). Currently, the command information presented spans three "pages” (windows).
To view the second and third (and possibly subsequent pages, in future versions), select the "Next
Page" button (<Return> key). When you reach the last page, this button's label changes to "First
Page". Selecting it again will return you to the first page of information. When you are finished
viewing the dialog, select "Finished" (<ESC> key).

33

SPLAT! REFERENCE MANUAL

34

COMMON PROGRAMMING ERRORS

Chapter 6: COMMON PROGRAMMING ERRORS

This chapter is designed to give you a sampling of the most common programming errors that many
programmers tend to make one or more (often many) times during their careers. If you are new to
programming, the examples given will help you to learn what to look for when debugging your own
programs. Experienced programmers should at least get a couple of good chuckles as they recall the
times when they spent hours trying to track down some tiny little error, probably because they were
looking for the wrong thing. Plus, they may even pick up a couple of tips from the experience of
others.

This discussion is limited to errors that come up during run-time, as opposed to language syntax errors
normally caught by the compiler. In that area, missing semicolons, brackets and comment delimiters,
incompatible types in expressions, and misspelled names are the first things to look for. One nasty
problem that is worth mentioning, in that it is not something most people will often think of checking,
is that when creating constants or macros with the C language “#define” construct, be sure to not to
put a semicolon (*;’) after the definition. If you do, then when you use the constant or macro in your
code, the definition will be expanded, including the extraneous semicolon, generating a syntax error.
This one I have seen bring several people to the point of practically giving up on a compiler, thinking
that is where the error lies.

Beyond that, you are on your own. Your programming language text should give you information on
some other tricky areas that might catch you up.

In any language, incorrectly set pointers are a fairly common occurrence. Whether you tried to use a
pointer before it was set, after the memory it pointed to was freed, or when its value was NULL or
NIL, the result is the same - wrong. Depending on where in memory you ended up accessing, you
may even cause the computer to crash or at least behave unusually. On the IIgs, which has absolutely
no memory protection scheme thus allowing any program to write to any location in memory, an
erroneous memory write can easily corrupt the operating system software or some other resident piece
of code. The existence of this kind of error may not be immediately evident, since the damaged piece
of code may not be accessed until some later time, if at all during that session. Accessing a memory
block that has already been deallocated is another error that may not show up often during testing. Use
of dynamic memory allocation routines must be done carefully to make sure your program does not
have unintended side effects, perhaps clogging or corrupting memory, and possibly bringing down the
system.

Another thing to watch are loop conditions, especially in counted loops like “for” loops, or whatever
the equivalent may be in the language you are using. A common mistake is to iterate the loop once too
often or once too few, such as when your exit condition expression uses less than (‘<’) instead of less
than or equal to (‘<="), or vice-versa. Counted loop conditions are not the only places where errors
can occur, though, so check all of those loop conditions carefully. Also, watch that the parts of the
expression that might not be valid under some conditions are tested only after the required condition is
found to be true. This is a function of the language’s subexpression evaluation ordering. For
example, suppose that you have a variable, x, that is used as a loop index on an array, values, of size
MAX. To sum all of the elements up to the first non-zero value, you could use a block like this (given
in C code):

X = sum = 0;
while (x < MAX && values [x] != 0)
sum += values [X];

35

SPLAT! REFERENCE MANUAL

Notice that in the condition for the ‘while’, the value of x was checked before accessing the array. We
know this will always be checked first because the C language definition states that certain operators,
such as ‘&&’, “II", and *,", always force the expression to the left of the operator to be evaluated first,
then the right expression only if necessary. Since the logical AND is guaranteed to be false once the
left expression is found to be false, the right expression is not evaluated. In contrast, the following
statement is incorrect, although you might not ever notice any ill effects resulting from it:

while (values [x] !'= 0 && X < MAX)

If x is equal to or greater than MAX, then the loop will terminate as in the version above, but not
before accessing the non-existent MAX'th element of the array.

When using the IIgs Toolbox, you should be careful not to assume that tool calls will always succeed,
even if made correctly. Many Toolbox functions make hidden calls to other functions, which, for one
reason or another, could fail, especially in the case of Memory Manager calls. Though it can seem
tedious to check for errors after every call, failing to check often enough may result in a bug that seems
unpredictable, or may never even occur on the programmer’s machine. Generally, the description of
the function in the appropriate Toolbox Reference Manual will tell you what errors are possible for a
particular function, however, you should also check the Apple II Technical Notes for updates. In
summary, it never hurts to check, except to slow down your program a tiny bit. If speed is an issue,
you can remove the checks later after the program has been well tested.

Of course, there are many more errors that can crop up, but the best way to learn about them is to
discover them yourself. Also take a look at Chapter 3 for information on how the compilers can help
you catch some common errors. As you gain more experience, you will learn what errors you are
prone to make and be able train yourself to look for these first, or preferably to stop making them at
all. Debugging is a skill (or, if you like, an art) that, like programming, must be developed over time.
There is no substitute for experience. While related to programming, debugging is a separate skill,
often neglected by otherwise good programmers. Everyone makes mistakes. (If they didn’t, we
wouldn’t need debuggers.) However, a good debugger used by someone with good debugging skills
can help you find those mistakes quickly and more easily, so you can spend more time working on the
real features of the program.

36

APPENDICES

Appendix A: Command Summary

Window manipulation commands:

<Tab>
Apple-<Tab>
Arrows
Apple-Arrows
Apple-1 ..
Apple-9

J

Apple-V

xecution commands;
<Space>

~JQOH0o

Select next window (in left-to-right, top-to-bottom order)
Select previous window

Move selection arrow or scroll window contents

Page in selected direction

Jump To Part

Jump To Line
Change Debugger Window Configuration

Step using default stepping mode (see Set Preferences)
Step Into - step, follow execution into subroutines called
Step Over - step, skip over any subroutines called

Trace - continuous stepping using default stepping mode
Go - execute code at full debugging speed (no code tracing)
Return - execute at full speed until end of subroutine

Note: You can stop execution at any time by pressing <Space>.

Program control commands:

L
A
Apple-A
B

S

<Return>
Template commands:
Apple-L

\%
W

Apple-S

Apple-C
Apple-B

Display commands:

S oW — T

Load a source file into the source window

Set auto-go range

Remove auto-go range

Set or clear (i.e. toggles) a breakpoint on the selected line

List subroutine call stack

Assign a value to a variable (simple variables only)

View the contents of the currently selected structure or array variable

Load a new set of templates from a template file (clears currently
defined templates from memory)

Assign a loaded structure template to the selected pointer variable
Write the current list of structure template assignments to the
“Splat.asgn” file.

Assign "C-string" template to pointer variable

Assign "Character pointer” template to pointer variable

Assign "Byte pointer” template to pointer variable

Turn on debugger display, or redraw display if already on
Display hires page 1

Display hires page 2

Display double hires screen

Display 80-column screen

Display super-hires screen

37

SPLAT! REFERENCE MANUAL

Miscellaneous commands:

P
Apple-P

U

z> 0

View program profile

Set preferences for current stepping mode and pass-through modifier
keys

Display the name and user ID of the program currently being
debugged

Quit debugger, aborting program being debugged (if not already
terminated)

Display help window

Display the program name and memory manager user ID.

38

APPENDICES

Appendix B: Splat! support files information

Template fil

Splat!, like GSBug allows you to make use of templates to view data structures separated into
their appropriate fields. These templates are loaded from a specially formatted text file, the
format of which is identical to GSBug’s, with the addition of a few more supported data types.
If you are already familiar with the GSBug template format, then the only things you really
need to know are the new data types and their declaration tokens.

Type Meaning

float single precision (4-byte) floating point value
double double precision (8-byte) floating point value
extended extended precision (10-byte) floating point value
truefalse Boolean value (2-bytes)

If you are new to templates, and would like to create some of your own for use with your
programs, then read on. The file format for templates is very simple. The file is created like
any other text file and, while Splat! will recognize and load a file of any text or source file type,
the recommended file type is TXT ($04). Hard tabs are handled and will simply be treated as
field separators just as spaces are.

Each file can contain any number of templates, or at least up to the number that can be loaded
into memory. You should try to keep your templates specific to each program you are working
on to keep the number of templates in each file to a minimum. The more templates you have in
a file, the longer it will take to load the file, and the more templates you will have to scroll
through in the Assign Structure dialog’s list. Also, you should put your most used structures
near the top of the file, as the list is given in order of occurrence in the input file.

Each template begins with a line

_Start <template_name>
where <template_name> is the name of the template, as it will appear in the selection dialog.
The “_Start” token, as with all of the defined tokens, can appear in any combination of

uppercase and lowercase letters.

The body of the template consists of zero or more lines listing the names of the record fields in
the structure, and assigning a type (and thus a size) and a repeat count.

<label> <type> <count>

The label is the name displayed for the field in the View Structures dialog, and must start at the
left edge of the line (column 1). You can leave a field nameless by omitting the label and
starting the line with one or more spaces or tabs.

The field’s type must be chosen from one of the types in the list below. Only the first letter of
the type is significant, as in GSBug, so you can abbreviate the type by giving only the first
letter. Because of this I had to contrive another name for a Boolean variable ("truefalse”) since

39

SPLAT! REFERENCE MANUAL

the “B” was already used for “‘byte”. If you omit the type field, Splat! ignores the line and
does not include it in its internal structure table. At this time, all integer fields are considered to
be signed, as there is no provision for specifying that a field should be unsigned.

Type Meaning

byte single-byte integer

word 2-byte integer (e.g. C: “‘short int™)

long 4-byte integer (e.g. C: “long int”)

ascii single ASCII character

cstring null-terminated string (C language standard)
pstring byte-prefixed string (Pascal language standard)
instring word-prefixed string (GS/OS input string)
outstring GS/OS output string (input string prefixed by a buffer size word)
float single precision (4-byte) floating point value
double double precision (8-byte) floating point value
extended extended precision (10-byte) floating point value
truefalse Boolean value (2-bytes)

In addition, you can create a 4-byte pointer to any of the above types by prefixing the type
token with an asterix (‘*’) - for example, ‘“*word” or “*cstring”. There should not be a space
between the asterix and the type name.

If you want to use your templates with GSBug and Nifty List (or any other program that does
not expect our format extensions), to keep your template files compatible with these programs,
you should choose only from fields listed in the first group and you should not use pointers.

The repeat count corresponds to the array size in a C or Pascal program, for example.
Finally, a line beginning with just

End

marks the end of the structure definition.

Additionally, any line beginning with a semicolon (‘;’) is a comment line and is ignored. Blank
lines can be placed anywhere in the file and are also skipped. Template definitions without any
accepted fields (lines with at least a type declared) are thrown out. The help templates included
in the “GSBug.Templates” file that comes with GSBug fall into this category. These templates
are not needed in Splat!, as all of the available template are displayed in a list box so you never
have to remember exact template names.

Now that you have everything you need to make your own templates, lets look at a couple of
sample templates, one taken from the “GSBug.Templates” file included with GSBug,
containing templates for most of the IIgs Toolbox and GS/OS structures, and one of my own
creation.

40

APPENDICES

_START EventRecord

what . WORD
message LONG
when LONG
where WORD 2
modifiers WORD
_END

_START MyStruct
intField word
floatval float
emptyFlag truefalse
stringPtr *cstring
next *byte
_END

41

SPLAT! REFERENCE MANUAL

Assignment files

Once you have assigned a number of structure templates to variables, you will want to save
your efforts for continued use as you develop your program. Splat! provides a command,
Write Template Assignments (described on page 26), that allows you to do just this. All of the
current assignments are written to a file called “Splat.asgn” in the program’s directory (prefix
9). This file is then read back in when Splat! starts debugging this program again, provided
the program and the file remain in the same directory.

Using Splat!’s built-in template assignment commands should be the easiest, and thus
preferred method of setting up template-to-variable assignments. However, for those of you
who really want to create assignments by manually editing the file, or for someone who wants
to write a program for automatically generating an assignments file from a source file, the
following information will be useful. s

Each line in the file contains a single assignment. The format of the line is
<filename> <sub_name> <variable_name> <template_name>

where <filename> is the name of the source file (the filename portion only) in which the
subroutine appears, <sub_name> is the name of the subroutine in which the assignment is to
apply, <variable_name> is the name of the variable, and <template_name> is the fiame
of template being assigned to the variable.

As with template files, blank lines and lines beginning with a semicolon are ignored. Below is
a sample line, as created by Splat!. Despite the debugger’s output conventions, the interpreter
1S NOt case-sensitive.

SAMPLE.C main EVENTRECPTR EventRecord

Any number of assignments may be included in an assignments file, but no two lines should
refer to the same variable. If this does happen, the first line will take precedence. This will get
confusing if you should change the assignment though. When this happens, the first entry will
be deleted and a new entry will be added to the end of the list, but the entry that will now be
used will be the old second entry, now the first one remaining in the list.

42

INDEX

“10/90” rule, 29
“for” loops, 35
active window, 17
ANSIC, 10

array expansion, 25
Assign Template, 27
Assign Value, 25
auto-go, 23

auto-go "range, 23
ByteWorks, 1
C-string pointer, 28
C-style string, 16
call stack, 10, 24
Change Variable Type, 28
commands, 15
current directory, 22
Debugger Display, 29
DebugSet, 5, 13
DebugSet.CDA, §
desktep, 15

display, 29

dynamic segments, 9
escape sequence, 16
Event Manager, 30
FixSplat, 6

Form feed, 19
GNO/ME, 7

Go command, 21
GSBug, 1, §, 27, 33
HeartBeat queue, 33
Help, 33

Init Restarter, 6
IR, 6

Jump To Line, 19
Jump To Part, 18
languages, 9

Load Source, 21
Load Template, 26
memory, 1
MouseText, 15
Move Left, 18

Move Right, 18
Nifty List, 32
NiftyList, 33
Objects, 25

OOM queue, 33
ORCA, 1

Output window, 15
Page Down, 18

Page Left, 18

Page Right, 18

Page Up, 18

pass-through modifiers, 31
pointer variables, 28
pointers, 35
Preferences, 30
Prizm, 9, 24

Profile, 29

profiler, 29

profiler flag, 11
program stack, 24
Quit, 33

redirect, 13
Release.Notes, 2
Remove - Auto-go, 23
Return, - 21

Run queue, 33
scrolling, 18
semicolon, 35
SetVectors tool, 33
shells, 9

Source window, 15, 19
Splat.asgn, 27
Splat.INIT, 5
Splat.tmpl, 27

stack frame checking, 10
Step, 20

Step Into, 20

Step Over, 20

stepping mode, 20, 31
structure templates, 27
SYSCMND, 5,7

tab stops, 31

template files, 27
templates, 27, 42
Toolbox, 36

Trace, 20

trace-back, 10

user ID, 32

Variables window, 15
video mode, 29

View Structure, 25
Window Configuration, 19
Write Template, 28
{$Names}, 10
{$RangeCheck}, 10

