
ZERO MEMORY COST: Beagle Ba­
sic's new commands cost you NO memory
since they use only the space formerly occu­
pied by obsolete Applesoft Cassette com­
mands (like SHLOAD, STORE, etc.).

GOTO & GOSUB may now be followed
by variables. Use understandable commands
such .as "GOTO COUNTER!'. or "GOSUB
SONG" (where COUNTER and SONG have
been assigned line-number values). GOTO
expressions too (as in GOTO X+100).
ESCAPE-CURSOR: Normally, you can't
tell if you are in Escape Mode (moving the
cursor). With Beagle Basic, ESC temporarily
changes the normal cursor to a flashing "+".
BETTER BEEP: Apple's ctrl-G Bell can be
turned into one of 256 more pleasing sounds.
Even Apple error messages sound better!
PLUS: New one-word commands to clear
text, replacing Call-958 and Call--868. New
command to SCROLL TEXT DOWN, not nor­
mally possible before Beagle Basic. And...

INVERSE REM STATEMENTS
Makes remarks appear as bold stand-out
headlines in your Applesoft listings.

UNLOCKED and
UNPROTECTED.
Compatible with
• Apple lie@)
• Apple 11+*
• Apple 11*

"APPLE II and 11+
require RAM Card.
(Apple lie does not.)

BEAGLE BASIC
APPLESOFT® ENHANCEMENT UTILITY

BY MARK SIMONSEN
REQUIRES APPLE@) lie / OR II or 11+ WITH RAM CARD (Language Card)

BEAGLE BASIC puts Applesoft into RAM,
letting you customize and enhance it-
RENAME ANY COMMAND or Error
Message. For program protection, encryp­
tion, or even foreign translation. Even the new
commands that follow are re-nameable-
ELSE: Common in many programming lan­
guages, but missing from Applesoft until
now. ELSE follows If-Then's, like this-
IF X=2 THEN PRINT "Yes": ELSE PRINT"No"

HSCRN: Read any Hi-Res point to deter­
mine its current color (off/on status). Fast and
simple- Useful in hi-res animation.
SWAP: Normally, to swap two variables'
values, you need a third variable and an extra
split-second. SWAP X,V exchanges variables,
arrays or strings in one quick step.
PAGE, MIX, RESL and MODE:
No more awkward graphics screen-switch
Pokes. For example, just type "PAGE1" or
"PAGE2" to switch pages, instead of POKE
-16300,0 or POKE -16299,0 (never look up
those hard-to-remember Pokes again!).
TONE: Beagle Basic's "TONE P, L" com­
mand plays a note of Pitch P, Length L. Irs
simple- No Pokes or Calls are necessary.
TXT2: Allows Text Page 2to act exactly like PLUS Apple Tip Book #6
Page 1, for printing, listing, catalogging, etc. Included in this manual-A new collection of
Switching text pages opens up all kinds of entertaining and useful Apple programming
new programming possibilities. tips. Plus an 11x17 PEEKS & POKES Chart.

INCLUDES FREE PEEKS, POKES & POINTERS WALL CHART
AND APPLE TIP BOOK #6

BEAGLE BASIC was written by Beagle Bros
programmer MARK SIMONSEN. Beagle Basic is compati­
ble with any APPLE lie computer (or any APPLE II or
APPLE 11+ with a RAM card or "language card").

Beagle Basic and APPLE TIP BOOK #fS (back half of
this book) are published by BEAGLE BROS Micro Soft­
ware Inc., 4315 Sierra Vista, San Diego, Ca 92103.

The Beagle Basic instructions and Apple Tip Book #6
were written by MARK SIMONSEN and BERT KERSEY.

Table of Contents
BEAGLE BASIC 2-20
How to Use Beagle Basic 2-3
Enhancing Applesoft 4

Command Editor 12
Error Message Editor 12
List Formatter 5
Adding Basic Commands 6

ELSE, SWAP, TONE 6-7
HSCRN, SCRLDN, TXT2, G2, CLRKEY 8-9
Text & Bell, Hi-Res and Cursor Commands 10

Other Features 11
ESCape Cursor, Modify Bell 11
Modify GOTO & GOSUB 11

Save and Quit 11
Beagle Basic and the Token System 18
Program Notes 19-20
Index 40
APPLE TIP BOOK #6 21-39
Free Cash. .. 49

Copyright © 1983, Mark S. Simonsen.

Technically.
"BASIC" should
always be capital­
ized. We'd rather not
conform.

Don't do this now.
Just read about it.

2

Beagle Basic Instructions
What Is BASIC?
BASIC is your Apple's native language. Apple lie's and 11+'s
are equipped with Applesoft Basic, while ancient (pre­
1980) Apple 11'5 came with Integer Basic hardware. Apple­
soft, by far the most common "resident" language,
determines exactly which words (or "commands") your
Apple understands. It also determines what actions your
Apple will take when each command or combination of
commands is typed. Since Applesoft is stored in ROM
(Read-Only Memory), it is normally unchangeable. The
abilities and vocabulary given to your Apple by Applesoft
are set in concrete. Permanent. Period.

What Is BEAGLE BASIC?
Beagle Basic is a set of programs that let you enhance
Applesoft and use new commands and features in your
programs. It also lets you rename standard commands and
error messages, for whatever reason you might have. Bea­
gle Basic gets around Applesoft's "permanency" by mov­
ing it from ROM into RAM (Random-Access Memory) or
changeable memory.

A NEW BASIC IN AUXILIARY MEMORY
When you boot a System Master disk on an Apple lie (or an
Apple II or 11+ with a RAM card), the Hello program loads
the "other" BASIC (Applesoft or Integer, whichever one is
not built into your Apple) into memory "above" Apple's
normal 48K. On an Apple lie or 11+, you would then have
Applesoft in ROM and Integer in RAM. You can switch
between these two languages with DOS's FP and INT
commands.

Well, don't tell anyone where you read this, but Integer
Basic is a worthless dinosaur! Nobody writes programs in
Integer anymore. Yeah, sure, it's faster than Applesoft and it
has a MOD function, but look at all it's missing. (See Appen­
dix M of the Applesoft II Reference Manual or Appendix L
of the equivalent lie Manual.)

There are two ver­
sions of NEWBASIC
on the Beagle Basic
disk-
·NEWBASIC liE" and
·NEWBASIC 11/11+".
Don't worry; the
appropriate version
willbeaccessed
according to the type
of Apple you are
using.

To make a back-up,
use the COPYA pro­
gram on your Sys­
tem Master disk.

Beagle Basic
requires 64K or
more.

So, let's not load Integer as oursecond language in RAM.
Instead, let's put an enhanced version of Applesoft, called
"NEWBASIC", there. Newbasic is loaded into memory by
the "NEWBASIC LOADER" program. Your first job is to run
the "CREATE NEWBASIC" program, select the Applesoft
enhancements that you want and save them on disk as
"Newbasic". Just like you can use cousin DOS Boss to
change DOS, you can alter Apple's Applesoft vocabulary,
and modify the way the Apple behaves when commands
are typed. Beagle Basic gives you options of twenty brand
new commands and two modified commands.

If you program in Applesoft, you're going to have some
fun with Beagle Basic.

How to Use Beagle Basic
Your original Beagle Basic disk is a normal DOS 3.3 disk.
You can boot it, catalog it, save to it... and ruin it- Make a
back-up copy please.

Beagle Basic requires your Apple to have at least 64K of
memory. If you have an Apple lie, you are set. If you have
an Apple II or 11+ (normally 48K), it must be equipped with
extra memory in the form of a RAM card (or "language
card").

USING NEWBASIC
To use your version of Newbasic (see top of this page), you
must run the program called "NEWBASIC LOADER", which
will load NEWBASIC into your Apple's auxiliary memory (our
way of saying "RAM card" or "language card" or "bank­
switched memory").
ENHANCING APPLESOFT
Applesoft (or Newbasic) may be changed to perform many
different functions. You must first enhance Applesoft, then
save the enhanced version on disk under the name "NEW­
BASIC". Here's what you do:

1. Boot the Beagle Basic disk.
2. Run the program called "CREATE NEWBASIC".
3. Use CREATE NEWBASIC to customize Applesoft by
changing its vocabulary and adding new commands.
4. Save your enhanced version of Applesoft on disk under
the name "NEWBASIC".

3

4

ENHANCING APPLESOFT
WITH BEAGLE BASIC

CREATE NEWBASIC
CREATE NEWBASIC is the program on the Beagle Basic
disk that lets you customize Applesoft and/or save it onto
disk under the name "NEWBASIC". Boot the Beagle Basic
disk and select (C), the CREATE NEWBASIC option, from
the menu, or (Q), Quit, and type:

RUN CREATE NEWBASIC (return)

Create Newbasic's first job is to load some form of Apple­
soft (modified or unmodified) into your Apple's auxiliary
memory. Here's what happens when Create Newbasic
runs:

A. Create Newbasic will look for some form of Applesoft
(normal or modified) in your Apple's auxiliary memory.
If found, step 0 is next.

B. Create Newbasic will look on the disk for a modified
Applesoft file called "NEWBASIC" to be loaded into
auxiliary memory.
If found, step 0 is next.

C. Create Newbasic will give up and transfer Applesoft
from its normal ROM location into auxiliary memory.

D. Create Newbasic will now display its Main Menu.

The Main Menu
Create Newbasic's Main Menu offers you five Applesoft
change options on the screen, plus Save and Quit. Details
for each option are printed on the page shown:

(C) COMMAND EDITOR page 13
(E) ERROR MESSAGE EDITOR page 15

(L) LIST FORMATTER page 5
(B) ADD NEW BASIC COMMANDS page 6
(0) OTHER FEATURES page 11

(S) SAVE NEWBASIC page 11
(Q) QUIT page 11

You can usually return to this Menu from Create Newbas­
ic's various modes by pressing the ESC key or 1 (see
keychart notes on page 12).

MAIN MENU
OPTION C Command Editor

Every Applesoft command may be renamed to almost any
word you want. See "Changing Commands and Error Mes­
sages" on page 12 for instructions.

MAIN MENU
OPTION E Error Message Editor

Applesoft error messages may be reworded too, for clarity
or just for fun. See "Changing Commands and Error Mes­
sages" on page 12.

(B) CHANGE LIST WIDTH
The width of your listings can be altered to be from 1 to 40
characters wide. Normal is 33. Select option B and enter
the width you want to try. If you change the list-width to 40,
extra spaces won't be added in quote statements, and you
won't have to POKE 33,33 before ESCape editing,

(C) LIST INDENTATION
The list indentation under each program line number may
be changed from the standard 5 to any value from 0 to 39.
Select C and enter the number you want to try, The less the
indentation, the more code you can squeeze on the screen,

MAIN MENU
OPTION L List Fonnatter

Selecting option L from the Main Menu presents you with
three choices for changing Applesoft's rigid list format.
Typing the letter (A, B or C) turns the corresponding fea­
ture On or Off ("YES" or "NO" printed in inverse) in your
Apple's memory.

NOTE: If you want to (A) INVERT REM STATEMENTS
change something in
an invel1ie remark, This is the most useful list-format option. Turning this fea-
don't cursor-trace over ture On ("YES") causes your program remark statements
It You must Instead . I " h I' ed Th d
type over it, or re-type to be dlsp ayed In Inverse type w en 1St. e wor
it completely. "Rem" will be inverse too (try renaming it to "]" to tone it
Invel1ie Rems can b')
be aproblem in down a It.
printer listings. See
"Printer De-Bugger"
on page 33 for a
solution.

TO USE NEWBASIC
(after you have CREATED it and SAVED it),

RUN NEWBASIC LOADER.

5

MAIN MENU
OPTIONB

ELSE will not be
recognized by most
renumber programs.
You could use GPLE
to ctlange all ELSE's
to LISTs; renumber
as usual; then
change all LISTs
back into ELSE's!

6

Add New Basic Commands
Newbasic gives your Apple more power by offering twenty
all-new commands and two slighty-new ones, each one
completely optional. Since the machine-language instruc­
tions for every command must occupy a certain amount of
memory space (the amount depends on the complexity of
the command), memory is "stolen" by writing over the
space used by the least-used Applesoft commands. I'll bet
my $64.95 joystick that you never use the cassette
SHLOAD command. For that matter, who uses cassettes at
all? Applesoft has several cassette commands that waste
space. Let's put that space to better use.

Here is a list of optional Newbasic commands and the old
Applesoft ones that they replace. Type the letter to the left
of the command to turn it On or Off ("YES" or "NO" in
inverse). And remember, these commands may be re­
named any time you want. See page 12.

(A) ELSE (replaces cassette SHLOAD command)
We've saved the best for first. ELSE is acommon command
in many programming languages, but missing from Apple­
soft until now. It completes the IF-THEN statement but
remains optional. This is how you use ELSE:
10 PRINT "TYPE Y OR N ";: GET AS
20 IF AS = "Y" THEN PRINT "YES": ELSE PRINT "NO"

ELSE makes Applesoft more "English-like" and friendly. It
omits the need for another program line after an IF
statement.
Notice how ELSE's may be nested just like for-next loops:

10 PRINT "TYPE Y OR N: ";: GET A$: PRINT
20 PRINT "TYPE 1 OR 2: ";: GET B$: PRINT
30 IF A$ = G1R$ (3) OR B$ = G1R$ (3) WEN END
40 IF A$ = "y" THEN PRINT "YES":

IF B$ = "1" WEN PRINT "ONE":
ELSE PRINT "'!WO":

ELSE PRINT "NO":
IF B$ = "1" THEN PRINT "ONE":
ELSE PRINT "'!Wo"

50 GOTO 10

Turn to "Tone
Tunes" on page 34.

The next two new commands replace the cassette LOAD and
SAVE commands, not DOS's LOAD and SAVE. The commands
"LOAD filename" and ·SAVE filename" will still work fine.

(B) SWAP (replaces cassette LOAD command)
Here's the normal way to swap variable values X & Y:

TEMP=X: X=Y: Y=TEMP

Notice how a third variable was necessary (and an extra
split-second of execution time). SWAP makes swapping
(common in many sorting routines) much simpler:

10 A = 1.11:B = 2.22: PRINT A,B
20 ~P A,B: PRINT A,B
30 SWAP A,B: PRINT A,B

Notice that you can SWAP not only variables, but integers,
strings, array values, and combinations of the above:
10 A% = l:B% = 2: PRINT A%,B%
20 SWAP A%,B%: PRINT A%,B%
30 SWAP A%,B%: PRINT A%,B%

10 A$ = "A":B$ = "B": PRINT A$,B$
20 SWAP A$,B$: PRINT A$,B$
30 SWAP A$,B$: PRINT A$,B$

10 A(l) = l:B(l) = 2: PRINT A(l),B(l)
20 SWAP A(l) ,B(l): PRINT A(l) ,B(l)
30 SWAP A(l) ,B(l): PRINT A(l) ,B(l)

10 A(l) = l:B = 2: PRINT A(l) ,B
20 SWAP A(l),B: PRINT A(l),B
30 SWAP A(l),B: PRINT A(l),B

(e) TONE (replaces cassette SAVE command)
Use TONE to play music without having to use any clunky
Pokes or Calls. To playa note. use this command:

TONE P, L

The note's pitch P may be any value from 0 to 255. The
length L may range from 0 to 65535. Some complete song
recipes are printed in the tips section of this book.

7

Notice that HSCRN
requires two
commands.

Scrolling up can be
done by PRINTing
at Vtab 24.

8

(D) HSCAN (replaces cassette RECALL command)
HSCRN tells you the "color" of any hi-res coordinate. It
performs similarly to Io-res's SCRN(function. Just type
"HSCRN" followed by the hi-res coordinates you want to
check. Then "PRINT PEEK(234)". 0 (zero) means the point
is black (off). 1 means the point is white (on). For example,
to check location 275 (X), 10 (Y), do this:

HSCRN 275,10: PRINT PEEK(234)
Here is a program that shoots awhite "bullet" at a white line.
Give it a try:

HI HOME: TEXT : HGR : PRINT "POWl l l": PRINT
15 X : 17:Y: INT (RND (1) * 99) + 5
20 HeOLOR: 3: HPLOT 0,Y TO 279,y
30 FOR Y : 159 TO 1 STEP - 1
40 HSCRN X,Y:HIT: PEEK (234)
50 IF HIT THEN PRINT "A HITl": HPLOT 12,Y - 3 TO

18,Y + 3: HPLOT 12,Y + 3 TO 18,y - 3: END
60 HCOLOR: 0: HPLOT X,Y + 1
70 HCOLOR: 3: HPLOT X,Y: NEXT

Since Apple's hi-res colors are made up of black and white
dots (the program below proves it by reading each dot in a
green line), you won't be able to determine any colors with
HSCRN.
10 HOME: TEXT : HGR
20 HCOLOR: 1: HPLOT 0,99 TO 279,99
30 FOR X : 0 TO 279: HSCRN X,99
40 PRINT PEEK (234);: NEXT

(E) SCALDN (replaces cassette STORE command)
Each SCRLDN command scrolls the text screen down one
line, not a common occurence these days.
10 TEXT: HOME : NORMAL
20 PRINT "STAND BY. I'M POLISHING THE TV SCREEN ••• "
30 FOR I : 1 TO 23: SCRLDN : NEXT : VTAB 24
40 FOR I : 1 TO 23: PRINT : NEXT : GOTO 30

NOTE: Selecting "YES" to add a new function automati­
cally replaces some old command in the Command Editor.
After that, you may rename the new command if you want.
View changed commands with options C (from the Main
Menu) and 6 or 7 (see keychart).

In immediate mode,
PR# and IN# are
always DOS
commands.

Namina this com­
mand ''GR2'' would
be a problem; see
page 14.

Same re-Iocation
commands as in
program above.

BefOfe you can I~

res PLOT on page 2,
you need to execute
a TXT2 command.

Similar example on
page 'E.

The following two commands replace BASIC's IN# and PR#
oommands, not to be confused with DOS's IN# and PR#. It is
always best to use the DOS versions of these commands from
within programs. For example, PRINT CHR$(4)"PR#1 "

(F) TXT2 (replaces Basic IN# command)
TXT2 reveals page 2 of text and lets you do everything there
that you can do on page 1.
Since Applesoft programs normally use the same memory
space that text page 2 uses, you must make your programs
re-Iocate (actually re-RUN) themselves. Do that by adding
the first line shown in this example. Warning: SAVE before
you RUN!
10 IF PEEK (104) < 12 THEN POKE 104,12: POKE 3

072,0: PRINT CHR$ (4) "RUN TEXT TEST": REM
THIS PROGRAM

20 A$ = "PAGE ONE.": TEXT: HOME: GOSUB 90
30 A$ = "PAGE 'lWO.": TXT2 : HOME : GOSUB 90
40 VTAB 23: HTAB 22: GET A$: PRINT A$
45 IF A$ = "1" THEN TEXT: GOTO 40
50 IF A$ = "2" TI-lEN TXT2: GOTO 40
60 PRINT: PRINT "HUH?": END
90 FOR I = 1 TO 93: PRINT A$;: NEXT: VTAB 22: PRINT

: PRINT "SELECT PAGE (lOR 2) :": RETURN

(0) G2 (replaces Basic PR# command)
G2 works like GR but lets you access page 2 of Io-res. The
same rules apply for Io-res page 2 as for text page 2 (see
above).
10 IF PEEK (104) < 12 THEN POKE 104,12: POKE 3

072,0: PRINT CHR$ (4) "RUN LO-RES TEST": REM
THIS PRCGRAM

20 TXT2 : HOME : G2 :X = 8:Y = 9
30 FOR H = X TO 30 STEP 4: IF H < > 24 THEN FOR

V = Y TO 13: COLOR= 5: HLIN H,H + 2 AT V: NEXT
: COLOR= 0: PLOT H + 1,10: PLOT H + 1,12

40 NEXT H: FOR I = 1 TO 10: READ H,V: PLOT X + H
,Y + V: NEXT: DATA 1,4,2,3,2,4,5,4,9,2,10,1
,14,1,14,3,20,1,22,3

(H) CLAKEY (replaces Applesoft WAIT command)
Use CLRKEY instead of POKE -16368,0 to clear the
keyboard buffer. Like this:

10 TEXT: HOME: PRINT ")";
20 KEY = PEEK (- 16384): IF KEY < 128 THEN 20
30 CLRKEY : REM TEST WITHOUT THIS COMMAND.
40 PRINT CHR$ (KEY - 128);: GOTO 20

9

DONT USE ANY OF
THE COMMANDS ON
THIS PAGE IF YOU
WANT TO PROGRAM
INL~ES.

Since options I, J, and K (below) replace the same set of Io-res
commands, only ONE of these options may be used at a time.
(For example, if option K displays "---INO" insteadof "YESINO';
you need to turn OFF option I or J before you can use K.)

(I) TEXT & BELL COMMANDS
(replace PLOT, HUN, VUN and COLOR=)

CLLN (for "CLear LiNe") replaces CALL -868 or ESC­
E. Clears a text line from the cursor position to the right
edge of the text window.

CLDN (for "CLear DowN") replaces CALL -958 or ESe­
F. Clears text from the cursor position to the bottom of
the text window.

SCRLUP replaces CALL -912. Scrolls text up a line.

BELL replaces CALL -198 or PRINT CHR$(7). Rings
Apple's control-G bell. You can even customize the bell
itself; see next page.

(J) HI-RES COMMANDS
(replace PLOT, HUN, VUN and COLOR=)

MODEi replaces POKE -16304,0 (graphics switch).
MODE2 replaces POKE -16303,0 (text switch).

MIXO replaces POKE -16302,0 (full-screen graphics)
MIXi replaces POKE -16301,0 (split graphics & text)

PAQEi replaces POKE -16300,0 (page 1 switch).
PAGE2 replaces POKE -16299,0 (page 2 switch).

REaLi replaces POKE -16298,0 (Io-res switch).
REaL2 replaces POKE -16297,0 (hi-res switch).

(K) CURSOR COMMANDS
(replace PLOT, HUN, VUN and COLOR=)

CRSU moves the cursor up one line.
CRSD moves the cursor down one line.
CRSL moves the cursor left one character.
CASR moves the cursor right one character.

10 TEXT: HOME : HTAB 6: SPEED= 255
20 PRINT "(USELESS DATA. PLEASE FILE>"
30 VTAB 11: FOR I = 1 TO 40: PRINT "-";: NEXT :SPEED= 150
40 N = INT (RND (1) * 3): IF N THEN S = PEEK (49200)
50 IF N = 0 THEN CRSU: REM CURSOR UP
60 IF N = 1 THEN CRSD: REM CURSOR DCWN
70 PRINT "+";: IF NOT PEEK (36) THEN 10: ELSE 40

10

MAIN MENU
OPTION 0

ATTENTION
GPLF__
DONT USE THIS
FEATURE.~

WW"s

MAIN MENU
OPTIONS

MAIN MENU
OPTION Q

Other Features
Two of the features below aren't really Applesoft changes;
they are monitor changes. But Newbasic doesn't care; add
them to your repertoire.

(A) ADD ESCAPE-CURSOR
(Won't work properly with GPLE in memory)
The escape cursor indicates escape mode (moving the
cursor for editing with ESC, then I, J, K, and M) by chang­
ing the cursor to a flashing plus sign. Any non-eursor key
returns the normal cursor unharmed.

(B) MODIFY BELL
Newbasic lets you change Apple's bell value to make
control-G sound lower with a longer duration, or higher
with a shorter duration. Any number, 1-99. may be entered,
but the most interesting values are between 10 and 30.

(C) MODIFY GOTO/GOSUB SYNTAX
Normally the GOTO and GOSUB commands must be
followed by a line NUMBER (as in GOTO 12345). Selecting
YES to this option lets GOTO and GOSUB precede a
variable (as in GOTO JAIL) or an expression (as in GOSUB
X+10).
10 LOOK = 100:BOOGIE = 200:MARINE = 300:HALT = 66
20 GOSUB LOOK: GOSUB BQ(x:;IE: GOSUB MARINE
30 FOR I = 1 TO 3: GOSUB I * 100: NEXT : GOTO HALT
40 PRINT "DON'T PRINT THIS."
66 STOP: REM PRINT "BREAK IN 66"
100 PRINT "THIS IS LINE 100.": RETURN
200 PRINT "THIS IS LINE 200.": RETURN
300 PRINT "THIS IS LINE 300.": RETURN

Save Newbaslc
Once you have configured Applesoft the way you want it,
you can save the set-up on disk under the name "NEW­
BASIC". Select S from the Main Menu. (If you already have
a file named "Newbasic" that you want to keep, exit the
program now, RENAME it, type "RUN" and select SAVE
from the Main Menu.)

Quit
You may exit Create Newbasic by typing a from the Main
Menu. If you haven't saved the current Basic, you will be
notified after quitting. To save after quitting, type "RUN"
and then select option S.

11

Changing Commands and
Error Messages
One of Beagle Basic's most interesting features is the abil­
ity to change Applesoft's usually rigid commands and error
messages. Run the CREATE NEWBASIC program and
select C or E from the Main Menu (see page 4).

~-:;;. (I)

TO~N'PU.aFT:

~: =~e:i~~:=~h~::;'8=:~~:':;1~
3. Sll~ M.i~ ~tll\U OIlbon "5" lO s.."", f/'ltlanced A~eIOlI on "lSk as "NEWBASIC
TO LOAD. USE NrwaASIC:

~~;;:~~~:.~~tt'~.'.\=~~I~
2. R"." "NEWBASlC LO.-.o€A" '" IoMl ""IEWBASlC' irrIo ... ilory """""'"Y
ITo __ ~lBaoc..I>OOl."""maI11!$l<J

Koycho<l~
1 -..u: ReI..., ... }IOU 10 !he M&W1 Meon" f,om any l*1 oI n CREATE NEWe.'$IC"
2 EOlT: !,loYe CtlraorO to comtl\llrod 0< ..-ge 10 boe edi1ed. EnlM .-. nlrne ~lIlurn)

3 l'1ND: Entercon1mand nllm8 (f""l Of pa<1ialj lobol found IRelurnl
.. SORT: T arity .~iZl'S oornmends on IICI'Mn (Ulie opIlO<l 0 10 "'lnr)
• Ct)It(lr. to oomtllIIOd DoIplIyll"oeA" tl&c token ~Ilue
• T....lXI<A1)'_ol_C<lmfNl1(I.or8frDl..-.ges.
7 T...,penry"-"'~O"9ItW....ords_tlIrYfIbMtlcNnglllO

• <l'l:.d~Of"or"-"'9""""""""""-"~)
• CUrl'8l'f." 3Underdoommand5OtIO'fOf~lQpnntIlr
O""""~DtSend5:t>e<:u<qnI_~lOpn_

·AppleIV.--K~_II'>6CUrJO'l.-A&Zlo<uo&_onnon-lIeAOl)I.)

(6) (7) (8) (9) (0)

The keychart is
needed only for mak­
ing changes to com­
mands and error
messages. not for writ­
ing programs with
Beagle Basic.

12

The Beagle Basic Key Chart
Both the Command Editor and Error Message Editor utilize
the keychart that came with your Beagle Basic disk. Fold
and insert the chart behind the top row of keys on your
Apple. Following are descriptions of each of the ten key­
chart commands and instructions for changing Applesoft
commands and error messages.

1: MAIN MENU
Return to the Main Menu (see page4) from Create Newbas­
ic's various modes by typing 1 as noted on the keychart or
by pressing ESC.

2: EDIT (Commands or Error Messages)
While in the Command or Error Message Editor, move the
cursor to the command or message you want to edit
(change), select keychart option 2 and type a new word or
words and press Return. The new command or error mes­
sage will immediately be in effect. To confirm this, you may
return to the Main Menu (1), quit (0) and give it a try.
Usually you can return to Create Newbasic by typing
"RUN". If you somehow zapped it with your test, you may
have to type "RUN CREATE NEWBASIC."

Changing Commands
To change any Applesoft command, or to see the com­
mands currently in effect, type C from the Main Menu. You
will enter the COMMAND EDITOR and the screen will be
filled with the current Applesoft commands or
"keywords"- that is, every word that you can type that
your Apple will understand (except disk or DOS com­
mands like CATALOG, UNLOCK, INIT, and so on).

MOVE MODE: In the upper-left corner of the screen you
will see the word "MOVE". This means you are in the
"Cursor-Move Mode". The cursor is the inverse bar over
one of the commands. To move this cursor, use the Left &
Right Arrow Keys and the Up & Down Arrow keys (or use A
& Z for up & down if you don't have an Apple lie). Move the
cursor around now. I'll wait here...

FREE CHARACTERS: The number after the word
"FREE" in the upper-right corner of the screen indicates the
number of spare characters remaining in the command
table. For example, if you shorten the INVERSE command
to "INV", you increase the number of free bytes by 4. If you
change LET to "ASSIGN", you reduce the number of free
bytes by 3. You cannot lengthen a command if you have no
spare characters; you must shorten another command
first. No command longer than the cursor, seven charac­
ters, is allowed.

EXPERIMENT: Change the HOME command to "CLS"
(many languages use CLS to mean "Clear Screen").-

1. After running Create Newbasic, select the Command
Change Mode (C) from the Main Menu. You will see the
current 107 commands on the screen.
2. Use the Arrow Keys or the FIND option (page 16) to
move the cursor to HOME (the 5th command down in
the 4th column).
3. Type 2 to edit the word. The word "EDITING" will
appear in the upper-left corner of the screen, and the
bar-eursor will change to a blinking square.
4. Type "CLS" as the new command, and press Return.

That's it! You have changed the HOME command to "CLS".
You are now back in Move Mode and the free characters
(upper-right of the screen) have been increased by one
because "CLS" is one character shorter than "HOME".

13

Use the "SORT"
option to compare
current command
names.

Tokens are
explained more on
page 18.

14

Later on, typing "CLS" will clear the screen. If you type
"HOME", your Apple will grumble "?SYNTAX ERROR"
(Computerese for "Never heard of it!').

To shorten INVERSE to "INV", move the cursor to
INVERSE (7th word in the 1st column), and press 2 to edit.
Use the Right Arrow key to trace over the I, N and V, and hit
Return. Easy, right? And you have gained four more spare
characters. Later on, typing "INV" will create inverse type as
expected. Typing "INVERSE", however, will print "?SYN­
TAX ERROR" in inverse, because your Apple tokenized
"INVERSE" into two words; "INV" (which it recognized and
executed) and "ERSE". "Erse" means nothing to most
Apples, so ?SYNTAX ERROR.

COMMAND RULES: New commands may contain no
spaces, lower case or control characters. Other than that,
all characters are legal. The position of the Caps Lock key
on the lie has no bearing on input; all keystrokes are
interpreted as upper case. Pressing Return will accept
whatever has been entered up to the cursor. If the cursor is
on the leftmost character in a command when you press
Return, no change will occur.

COMMANDS WITHIN OTHER COMMAND NAMES
can be a problem if you don't watch out. For example,
notice how HGR2 comes before HGR in the command
table. If it didn't, and you typed "HGR2", Applesoft would
scan the table, find "HGR" first, quit scanning and "parse"
HGR2 into two words, "HGR" and "2". If you want to create
a command name (like "GONOW") that starts with the
same characters as another command (say "GO"), always
put the longer command first in the command table. Com­
mands that end with the same characters (like PLOT and
HPLOT) are no problem.

NOTE: You can test new commands and functions by
quitting Create Newbasic (Main Menu option Q). Re-enter
the program--by typing "RUN" or "RUN CREATE NEW­
BASIC". Be sure to SAVE (Main Menu option S) any ver­
sion of Newbasic that you want to keep.

See page 32 for
ways to test your
new error messages.

Changing Error Messages
Selecting option E from the Main Menu will enter the
ERROR MESSAGE EDITOR which displays and lets you
change Applesoft error messages, the words your Apple
prints when an error is encountered. Operation of the Error
Message Editor is similar to that of the Command Editor.
Differences are pointed out below.

EXPERIMENT: Change the message ?SYNTAX ERROR
to "?TYPING GOOF!"-

1. Select the Error Message Change Mode, E, from the
Main Menu. You will see the current 17 Applesoft error
messages on the screen, as well as the words "ERROR",
"IN" and "BREAK".
2. Use the Arrow Keys to move the cursor to SYNTAX
(the 2nd error message down). Notice that word
"ERROR" appears near the bottom of the screen and
must be changed separately. (The "?" that precedes
Applesoft error messages may be changed too. See the
tip on page 32.)
3. Type 2 to edit the message. The word "EDITING" will
appear in the upper-left corner of the screen, and the
bar-cursor will change to a blinking square.
4. Type "TYPING" and hit Return.
5. Move the cursor to ERROR, third word from the bot­
tom, type 2 to edit, type "GOOF!" and hit Return.

You have officially changed the ?Syntax Error message to
"?Typing Goof!". Later on, typing an illegal statement (my
favorite is "sdjaflkjfd") will produce a well-deserved ?Typ­
ing Gooft message and a beep. The word "Gooft" will now
follow every Applesoft error message. Since "?IIIegal Quan­
tity Gooft" and "?Out of Data Gooft" don't make a lot of
sense, you may want to not change the word "Error".

ERROR MESSAGE RULES: The Error Message Editor is
not concemed with spare characters, because there are no
spare characters; each error message is already at its maxi­
mum length (the length of the cursor). Other rules are the
same as for commands, except spaces are legal in error
messages.

"IN" and "BREAK" appear in messages like BREAK IN
1234, and may be changed.

15

16

3: FIND (Commands only)
From the Command Editor, typing a 3 will print the word
"FIND:" on the screen. Enter any command's name and the
cursor will move to that command. If the search is unsuc­
cessful, the cursor will stay where it was. It's not necessary
to type an entire command. For example, if you type "X"
and press Return, the cursor will position itself at the first
command that starts with an "X".

4: SORT (Commands only)
Pressing 4 will temporarily sort (alphabetize) the com­
mands on the screen. If you want to send this list to your
printer, press 0 (see next page). Pressing any key (like the
Space Bar) returns the command order to normal, the
order (left to right) in which they are stored in memory.

Sorting lets you check to make sure you have not given
the same name to two or more different commands. Doing
so would disable one of those commands.

~ Giving a BASIC commanda DOS command name couldpossibly
• - have the same effect. To play it safe, never give a BASIC com­

mand a word that DOS uses- APPEND, BLOA0, BRUN,
BSAVE, CATALOG, CHAIN, CLOSE, DELETE, EXEC, FP, INIT,
INT, INN, LOAD, LOCK, MAXFILES, MaN, NOMON, OPEN,
POSITION, PRN, READ, RENAME, RUN, SAVE, UNLOCK,
VERIFY or WRITE.

5: TOKEN NUMBER (Commands only)
Pressing 5 while in the Move Mode will print the word
"TOKEN" at the upper-left of the screen, erase the com­
mand at the cursor and replace it with the hex and decimal
values for that command's "token". Tokens are the
numbers Applesoft assigns each of its keywords. Pressing
any key (like the Space Bar or Return) will return you to
Move Mode.

8: HIGHLIGHT CHANGES
(Commands or Error Messages)
Pressing 6 will show you the changes that you have made.
All non-standard commands or error messages (if any) will
be highlighted in inverse. The word "CHANGED" will
appear in the upper-left corner of the screen. Press any key
to return to Move Mode.

7: HIGHLIGHT STANDARD
(Commands or Error Messages)
Pressing 7 will show you the standard version of each
command or error message (if any) that has been changed.
The word "STANDARD" will appear in the upper-left of the
screen, and the original commands or error messages will
appear in inverse. Press any key to return to Move Mode.

8: NORMALIZE (Commands and Error Messages)
Typing 8 followed by a Yes (when asked for approval) will
normalize the names of all commands OR error messages
(depending which is on the screen), setting them to their
original state. If, for instance, you wanted to change new
commands CLS and INV back to standard "HOME" and
"INVERSE" you could use this function. BEWARE that all
other command or error message changes will also be
undone. NOTE that standardizing all command names
DOES NOT standardize (or change in the least) the func­
tion of any command. For example, if you have turned on
the ELSE function (page 6), the command name ELSE will
be standardized to "SHLOAD" but the function of the com­
mand SHLOAD when executed in a program will still be
that of ELSE. Confusing? Yes. Until you think about it for a
week or so...

The last two keychart commands involve your printer. Ifyou don't
use a printer, don't use keychart options 9 andZero. Ifyourprinter
is connected to other than Slot 1, change the SLOT variable in
Line 3 of the CREA TE NEWBASIC program.

9: PRINT OLD/NEW
(Commands or Error Messages)
Selecting 9 after entering the Command Editor or Error
Message Editor will send a listing of all standard and
revised Applesoft commands or error messages to your
printer. Hex and decimal token numbers are printed adja­
cent to commands. You must be in the Command Editor or
Error Message Editor to use this function.

0: PRINT SCREEN
Selecting 0 (Zero) will dump the current text screen to your
printer. The most common use forthis feature is printing an
alphabetized list of commands (keychart option 4),
although it may be used anytime.

17

A complete list of
tokens may be
acquired by select­
ing keychart option
9 while in the Com­
mand Editor.

18

Beagle Basic and the Token System
Applesoft has a 107-word "command tableH stored in
memory that contains "keywordsH (words like PRINT,
HOME, FOR, GOSUB, and so on) that are used by Apple­
soft programs. For efficiency, every keyword is represented
by a one-byte "token" or number. For example, instead of
storing the command "PRINT" as five characters or bytes
(P, R, I, Nand T), it is stored as one byte- the value 186
(hex $BA).

When you type in a command like­
HOME: PRINT X; "ABC"

Applesoft converts all of the keywords into tokens by look­
ing at its command table. Words that aren't recognized and
characters between quote marks are represented by the
ASCII value of each character. Like this:

HOME is tokenized as 151 ($97)
":" becomes 58 ($3A, the ASCII value of ":")
PRINT is tokenized as 186 ($BA)
X becomes 88 ($58, the ASCII value of X)
; becomes 59 ($3B, the ASCII value of ;)
" becomes 34 ($22, the ASCII value of ")
A becomes 65 ($41, the ASCII value of A)
B becomes 66 ($42, the ASCII value of B)
C becomes 67 ($43, the ASCII value of C)
" becomes 34 ($22, the ASCII value of ")

So a program is simply a series of tokens and ASCII values.
What words are displayed when you list depends on the
words in the current command table.

Beagle Basic lets you change the contents of the com­
mand table by renaming keywords and storing the new
words in memory. Let's say you change the keyword
"HOME" to "CLS". Now when you type "HOME", Applesoft
won't recognize it, and CLS will clear the screen. BUT if you
load a program that contains the old HOME command
(actually just the token for HOME) and you list it, you will
see that CLS has automatically replaced each occurence of
HOME.

OR if you change HOME to CLS, and write a program full
of CLS's, it will work fine with your version of Newbasic. If
you now re-boot and use normal Applesoft, your program
will still work, even though all of your CLS's will list as
HOME's.

•

,

New FUNCTIONS Need Newbasld
Changing names of commands is one thing, but adding
new functions like ELSE or SWAP or TONE is another
story. For these new functions to work properly, you MUST
have the correct version of Newbasic loaded into memory.
Otherwise, the machine language instructions that enable
Applesoft to execute these functions just aren't there. Run­
ning a program with non-standard Applesoft commands
without Newbasic loaded will produce unpredictable
results.

Exiting Newbaslo- APPLE 11+ AND lie
There are two ways to exit Newbasic and re-instate normal
Applesoft:

1. Boot with a normal disk. This is the "cleanesf' way to
leave Newbasic, because it completely normalizes your
system.

2. Or type "INT". This command normally would switch
you to Integer Basic. With Newbasic in effect. INT
instead switches you to Applesoft (Without erasing your
program) and prints "Language Not Available" on the
screen (Integer wasn't found). If you want, you could
use DOS Boss to rename "INT" to "ROM" and "Lan­
guage Not Available" to "Applesoft Available" or some­
thing else appropriate.

NOTE: Pressing RESET will always leave you in New­
basic with your program intact. FP will also always leave
you in Newbasic, but with your program gone.

Exiting Newbaslo- APPLE II (Integer machines):
There are two ways to exit Newbasic and re-instate normal
Integer Basic in your antique Apple:

1. Boot with a normal disk. This is the "cleanest" way to
leave Newbasic, because it completely normalizes your
system.

2. Type "INT". This command will switch you to Integer
Basic and erase your program.

NOTE: FP will return you to (or leave you in) Newbasic,
with your program gone.

19

20

GPLE and Newbaslc
GPLE is compatible with Beagle Basic except for the fol­
lowing things. Let us know if you find more.

Thing #1: If you are using GPLE on the language card
(GPLE version PLE.LC), it must be loaded before New­
basic is loaded.

Thing #2: Using the INT command with Newbasic and
PLE.LC loaded won't exit Newbasic as described above.
Don't use INT.

Thing #3: Newbasic's ESCape cursor won't function
properly with GPLE in memory. Sorry.

Thing #4: CREATE NEWBASIC should not be run while
GPLE.LC is in memory. Doing so will prevent parts of the
program from working properly.

Nonnal Location DOS Required
DOS can't be in auxiliary memory (RAM card or language
card) when using Newbasic.

I
I

t
I

Dear Apple Programmer,
Hello out there. Beagle Bros'

Apple TIP BOOK #6 starts on the
following page.-You will be pleased
to know that all of the programs
have been listed in standard 40­
column format, so your listings, if
typed correctly, will appear line­
for-line as you see them in print.
Good luck!

Oh, I almost forgot-- One of
thf qsphsbnt xjrrrn dbvtf zpvs Bqqmf
up ejtjoufhsbuf; J gpshfu xijdi pof.

Zpvs gsj foe,
Vodmf Mpvjf

21

Note: This program is
already on the Beagle
Basic disk.

Remove GPLE from
your Apple for best
results.

22

Text Screen Fonnatter
by Mark Simonsen

Here's a bonus program that lets you formatthe40-column
text screen the way you want it and convert the finished
product into VTAB, HTAB and PRINT statements that can
be appended to any Applesoft program.

To begin, SLOAD TEXT SCREEN FORMATTER (or
BRUN if you want) from the Beagle Basic disk. Then type
"CALL 25000". The following commands will let you type
and format text on the screen:

TO MOVE THE CURSOR
Left Arrow. Move cursor left.
Right Arrow: Move cursor right.
Up Arrow: Move cursor up (non-lie; use control-A).
Down Arrow. Move cursor down (non-lie; use control-Z).

TO MOVE THE ENTIRE SCREEN
(Keys are in diamond pattern.)
control-S: Move screen left.
control-D: Move screen right.
control-E: Move screen up.
control-X: Move screen down.

TEXT APPEARANCE
control-F: Flash.
control-I: Inverse.
control-N: Normal.
ESC: Upper/lower case toggle.

AND
control-@: Clear the screen.
control-C: Center text line.
control-L: Clear to end of Line.
control-P: Clear to end of Page.
control-W: Window toggle
Return: Carriage Return.

QUIT AND CONVERT
control-Q: Quit and convert.

When you quit (control-Q), any program in memory will be
replaced by Applesoft statements that will print the screen
the way you had it formatted; type RUN to check it out. If
you don't like what you see, add a CALL 25003 as the last

Note: This program
assumes that OOS is
in the normal48K
location. And it wipes
out the semi-useless
CHAIN command.

program line and you will be put back in the Screen Editor
when you RUN. To start over with a clean screen, CALL
25000 again.

The Applesoft code (without any Calls) may be saved on
disk or appended to another Applesoft program.

The default starting line and increment are both 10, To
change them:

POKE 25006, START-INT(START/256)*256
POKE 25007, INT(START/256)
POKE 25008, INCREMENT

"I THINK I LIKED
IT BETTER WHEN IT
JUST PRINTED THE

ERROR MESSAGES..."

ONERR TRY AGAIN•••
Don't you hate it when DOS gives you an error message
like "File Not Found" just because you typed "RUN
HELOO", or "I/O Error" because you put your disk in the
drive sideways? The following program will put a small
patch into DOS that, in the event of an error, causes the
cursor to be put back on the same line as your previous
typing statement. That way you can simply trace over your
statement making corrections if necessary as you go.
10 POKE 42751,76: POKE 42752,240

: POKE 42753,164
20 FOR I = 42224 TO 42235: READ

BYTE: POKE I,BYTE: NEXT I
30 DATA 165,37,233,4,32,91,251,1

08,94,157,0,0
Giving credit where credit is due- Don Worth and Pieter

Lechner inspired us on this one. (They wrote Bag of Tricks
and Beneath Apple DOS. Run out and buy one of each;
we'll wait here...) We imprOVed on their version by making it

We read Beneath shorter and by moving it to another location in DOS so you
Apple DOS f1Very day; " h P DOS d hODS d'f' ,sometimes more often. can use It Wit ronto an ot er mo I lcatlons,

23

CURSOR MADNESS
If Bert Kersey's text batons aren't enough for you­
5 HOME :A$ = II !/_II + CHR$ (92)
30 VTAB 7: FOR X = 1 TO 4: HTAB

9: FOR Y = 1 TO 10: PRINT MID$
(A$,X,l);: NEXT: NEXT

40 GOTO 30
-try running the following program; the screen will be
packed with text screen twirlers. You probably won't want
to quit the program for several days, but when you do,
RESET is the only way out.

FOR I = 768 TO 814: READ V: POKE
I,V: NEXT I: CALL 768

DATA 162,4,169,0,141,16,3,169
,4,141,17,3,189,42,3,141,1,6
,160,4,136,208,253,238,16,3,
208,243,238,17,3,172,17,3,19
2,8,208,233,202,208,217,240,
213,175,173,220,161

fir ~:
Warning: DO NOT run
this program with the
room lights off and the
monitor contrast
turned up full blast
and your nose touct~

ing the screen and
your eyelids propped
open.

Color monitors are
very helpful when
viewing hi-res color.

WHAT'S HCOLOR=4 AND HCOLOR=7
AND HCOLOR=5 ALL OVER?
Who says that Apple II's only have six hi-res colors? Run
this program and you'll become a non-believer.
10 TEXT: HOME : GR : HGR : REM

GR SETS WINDOO BELOW HI-RES
20 FOR I = 1 TO 6: READ C(I): NEXT

: FOR I = 1 TO 6: READ C$ (I)
: NEXT

40 FOR I = 1 TO 6: FOR J = 1 TO
6

50 HOME: PRINT C$(J);: IF J < >
I THEN PRINT II + IIC$ (I)

60 FOR Y = 22 TO 149 STEP 2: HCOLOR=
C(I): HPLOT 32,Y TO 247,Y

70 HCOLOR= C(J): HPLOT 32, Y + 1 TO
247,Y + 1: NEXT Y,J,I

110 DATA 0,1,2,3,5,6,BLACK,GREEN
,VIOLET,WHITE,ORANGE,BLUE

24

i
1

Please don't write us
with the reasons for
this bug.
Oh, never mind; go
a'lead.

Apple 11+'s don't seem
to have this problem.

ONERR REPAIR
Due to a quirk in the ONERR system, this program will
crash after the 85th error. Hold control-C down (and REPT
if necessary) to cause an error and a jump to line 30.

10 ONERR GO'ID 30
20 GOTO 20
30 PRINT "ERROR # "ERR:ERR = ERR

+ 1: GOTO 20
Adding a CALL-3288 fixes the bug.

10 ONERR GO'ID 30
20 GOTO 20
30 PRINT "ERROR # "ERR:ERR = ERR

+ 1: CALL - 3288: GOTO 20

CALL THIS NUMBER
Here's one that will really confuse the gang-

CALL 64246

We would explain it to you, but no one has explained it to us
yet. Apparently it has something to do with the position of
the Moon...

lie FLICKERBUG
Have you noticed the flicker you get on the lie's text and hi­
res page 2? This program shows it at its worst:

10 HGR: POKE 28,127: CALL - 30
82: HGR2

20 FOR I = 1 TO 10: LIST : NEXT
: TEXT

25

OS and OE are "Old
Start" and "Old
End" locations. NS
is "New Start".

26

MEM COMPARER
This program will compare two ranges of memory such as
two hi-res pictures or two machine language programs,
printing the bytes that are different.

5000 N = OS:LOC = 60: GOSUB 5020
5001 N = OE:LOC = 62: GOSUB 5020
5002 N = NS:LOC = 66: GOSUB 5020
5010 POKE 768,160: POKE 769,0: POKE

770,76: POKE 771,54: POKE 77
2,254: CALL 768: RETURN

5020 POKE LOC,N - INT (N / 256)
* 256: POKE LOC + 1, INT (N
/ 256): RETURN

~ t-a
HIDING AMONGST THE BUFFERS
One of the best places to put a small machine language
program (besides under the bed) is between DOS and its
buffers. That way, your code can't be zapped by FP, RESET
and other would-be attackers. To make room for a program
do this:

POKE 40193,PEEK(40193)-N
CALL 42964

This will allocate N*256 bytes of safe space. To de-allocate
the space do this:

POKE 40193,PEEK(40193)+N
CALL 42964

If you've got GPLE or Double-Take or some other program
hanging around in your Apple, no guarantees.

KEYPEEKER
To see if someone has pressed a key without having to wait
until they do it (as is the case with GET) use some kind of
loop with K=PEEK(-16384) in it. If K is greater than 127 then
a key has been pressed, and you can jump out of the loop.
Using A$=CHR$(K-128) will set up A$ as though you had
used the GET function. Don't forget todoaPOKE-16368,O
(or Beagle Basic's ClRKEY; see page 9) to clear the key­
board buffer for the next time around.

Here's an example:
GPLE's typeahead .1 II
buffer (certain GPLE 10 PRINT PRESS A KEY.
versions only) prevents 20 K = PEEK (- 16384)
the keypee!<er from
working. We recorn- 25 IF K < 128 THEN 20
mend running the
"Config.GPLE" pro- 30 POKE - 16368,0
~~~~;#~~ the 35 A$ = OIR$ (K - 128)

40 FOR I = 1 TO 40
45 PRINT A$;: NEXT
50 GOTO 10

BLOAD
DETECTORS ~
If you Bload a binary file without telling it where to load,
with a command like "BLOAD FILE", it will load to the
location in memory from which it was saved. (Read that
sentence again.) If you specify a starting location in a
command like "BLOAD FILE, A12345", the file will, of
course, load to the specified location.

These two statements will tell you the starting location
and length of a file immediately after a BLOAD:

ADDR = PEEK(43634) + PEEK(43635) * 256
LENG = PEEK(43616) + PEEK(43617) * 256

If you like to think in hex, CALL -151 to enter the monitor,
and type "AA60.AA73". The first two bytes printed will be
the Length and the last two will be the start Address (in
low-bytelhigh-byte order, of course).

27



I
~

~
~

PEEK-POKE MEM-MOVE
Check out our latest Peeks & Pokes chart. It has a memory
move routine that uses Apple's built-in CALL -468. And it
works!

One of our program- FID-QUlnER
mers exits to FlO's
menu by opening his FlO is fine, but you've got to live with some of its quirks. For
dnve door dunng disk I·' h d . FlO .. W I
access. He once went examp e, It s ar to eXit at certain times. e I, use that
~fh~~:~=t~~g a ?Id program killer, control-RESET. Then, to re-enter FlO,
disk. Just CALL 2051.

TEXT SCREEN MEM VALUE
Here's a good way to determine the actual memory loca­
tion of any text screen position:
10 TEXT: HOME : PRINT "TEXT SCR

EEN LOCATION:"
20 INPUT "X=";X: INPUT "Y=";Y
30 VTAB Y: HTAB X
40 P = PEEK (40) + PEEK (41) *

256 + PEEK (36): VTAB 4: PRINT
: PRINT "MEMORY LOCATION ";P

HI-RES MEM VALUE
And here's a program that determines the memory location
of any hi-res plot:

10 TEXT: HOME : INPUT "HI-RES P
AGE 1 OR 2?";PG

20 INPUT "X="; X: INPUT "Y="; Y
30 POKE 230,PG * 32: HPLOT X,Y
40 PRINT: PRINT "MEMORY LOCATIO

N="; PEEK (38) + PEEK (39) *
256 + PEEK (229)

28



Many were offended
by the pre-lie flash­
ing cursor. We kind
of liked it.

DEC DUMPER
Warning This .is a. The Apple monitor has the ability to dump a range of
:~t~~~~~o;/;~~P. memory in hex. Running the program below will set up a
level of programming. short machine language routine at 768 ($300) that will
No charge for this d . d . I th th h It" k d bone. ump memory In eC/ma ra er an ex. IS Invo e y

using the & command. For example. to look at hi-res page
1, enter the start and end addresses separated by commas
after the U&" (like this: &8192, 16383).

10 FOR I = 768 TO 875: READ V: POKE
l,V: NEXT I: POKE 1014,0: POKE
1015,3

20 DATA 160,0,32,183,0,32,12,218
,165,80,133,60,165,81,133,61
,32,183,0,201,44,208,14,32,1
77,0,32,12,218,165,80,133,62
,165,81,133,63,76,70,3,32,14
2,253,173,0,192,201,131,240,
55

30 DATA 165,61,166,60,32,36,237,
160,0,169,173,76,237,253,165
,60,41,7,208,8,32,40,3,169,4
,141,108,3,173,108,3,24,105,
4,141,108,3,133,36,177,60,17
0,169,0,32,36,237,160,0,32

40 DATA 186,252,144,216,96,104,1
04,96

~~":G~
Run this program and watch that flashy cursor of yours
screech to a grinding halt.

10 FOR I = 768 TO 806: READ V: POKE
l,V: NEXT: CALL 768

20 DATA 169,11,133,56,169,3,133,
57,76,234,3,72,41,63,9,0,145
,40,104,230,78,208,2,230,79,
44,0,192,16,245,145,40,173,0
,192,44,16,192,96

29



30

&RUN HI-RES PIXI
You know what happens if you unknowingly BRUN
(instead of BLOAD) a hi-res picture... Crashola!!

And you know what a pain it is to select a picture's page
number and full- or split-screen status with all of those
dumb Pokes?

Boy, have we got a Tip for you!- Now you can update
your hi-res pictures so they are not only BRUNnable, but
they become VISIBLE when you BRUN them, on either
hi-res page, split-screen or full. Never mess with Bloading
and Poking again!

Just run this little program. It does all the magic for you.

10 INPUT "NAME OF PICTURE? ";PN$

PRINT "LOAD TO PAGE 1 OR 2? II

;: GET p$: PRINT
IF p$ < > "l" AND p$ < > "2

II '!HEN 20
40 P = VAL (P$):AD = P * 8192
50 PRINT "DISPLAY 4 LINES OF TEX

T AT BOTTOM? ";: GET T$: PRINT

This program stores
machine language
instructions in the
mysterious blank spa- 20
cas found in high-res
picture data.

60 IF T$ < > "Y" AND T$ < > liN
II '!HEN 50

70 T = 1: IF T$ = "N" '!HEN T = 0
80 PRINT "LOADING ••• "
90 PRINT QlR$ (4)"BLOAD "PN$",A

IIAD
100 PRINT "CHANGING ••• "
110 Pi = PEEK (AD):P2 = PEEK (A

D + 1):P3 = PEEK (AD + 2)
120 POKE AD,76: POKE AD + 1,120:

POKE AD + 2,32 * P
130 POKE AD + 120,169: POKE AD +

121,Pl: POKE AD + 122,141: POKE
AD + 123,0: POKE AD + 124,32
* P: POKE AD + 125,76: POKE

AD + 126,248: POKE AD + 127,
32 * P

30



140

150

1'I?~!IJ~S!il,o!IIDIIIJ~II....:

Remember, your pro­
gram should list line­
for line like the one
printed here.

160

POKE AD + 248,169: POKE AD +
249,P2: POKE AD + 250,141: POKE
AD + 251,1: POKE AD + 252,32
* P: POKE AD + 253,76: POKE

AD + 254,120: POKE AD + 255,
32 * P + 1
POKE AD + 376,169: POKE AD +
377,P3: POKE AD + 378,141: POKE
AD + 379,2: POKE AD + 380,32
* P: POKE AD + 381,76: POKE

AD + 382,248: POKE AD + 383,
32 * P + 1
POKE AD + 504,44: POKE AD +
505,80: POKE AD + 506,192: POKE
AD + 507,76: POKE AD + 508,1
20: POKE AD + 509,32 * P + 2

170

180

190

200
210

POKE AD + 632,44: POKE AD +
633,82 + T: POKE AD + 634,19
2: POKE AD + 635,76: POKE AD
+ 636,248: POKE AD + 637,32
* P + 2

POKE AD + 760,44: POKE AD +
761,83 + P: POKE AD + 762,19
2: POKE AD + 763,76: POKE AD
+ 764,120: POKE AD + 765,32
* P + 3

POKE AD + 888,44: POKE AD +
889,87: POKE AD + 890,192: POKE
AD + 891,96
PRINT "SAVING ••• "
PRINT CHR$ (4) "BSAVE "PN$",
A"AD",L8192"

[iF' A three-byte catch: If you BLOAD a converted picture, the
first three bytes (upper-left sliver of the screen) will be
flawed. To fix the flaw, simply CALL 8192 (page 1 pies) or
CALL 16384 (page 2). And, if you want to convert a
BRUNnabie picture back to normal, just BRUN it, then
BSAVE it with normal procedures.

31



32

I JUST LOVE MY
APPLE. I RUN THIS

PROGRAM WHENEVER
I GET A CHANCEl

?ERROR !FlXER
With Newbasic loaded, you can
replace the "1" in front of error
messages to any character you
want. Just run this program:

10 FOR I = 768 TO 782: READ BYTE
: POKE I,BYTE: NEXT

20 PRINT "ENTER THE NEW CHARACTE
R: ";: GET A$: PRINT A$

30 IF A$ < " II '!HEN 20
40 POKE 775, ASC (A$): CALL 768
100 DATA 44,131,192,44,131,192,1

69,255,141,91,219,44,128,192
,96

ERROR TESTING
Test your new Newbasic error messages- Typing each of
the commands below (without line numbers) will reveal the
equivalent of the message shown. Each command as­
sumes memory has been cleared. Type "FP" if it hasn't.
To get this message... type this:
?Next Without For " NEXT
?Syntax GARBAGE
?Return Without Gosub .. RETURN
?Out of Data PRINT: READ A
?/l/egal Quantity. . . . . . . .. VTAB 25
?Overflow PRINT 10/\ 39
?Out of Memory HIMEM: 0
?Undef'd Statement GOTO X
?Bad SUbscript PRINT A(11)
?Redim'd Array DIM A(1): DIM A(1)
?/l/egal Direct. . . . . . . . . .. READ A
?Oivision by Zero PRINT XlO
?TyPB Mismatch A$=2
?String Too Long FOR X=1 TO 256:

A$=A$+"A": NEXT
?Formula Too Complex.. IF "X" THEN IF "X" THEN ?X
?Can't Continue CONT
?Undef'd Function " PRINT FN X(X)



1
i,

The variable I is the
starting position (in
the long string) of the
found substring.

You know why the
variable I is used so
much by us pro­
grammers in for-next
loops? We think ~'s

because I stands for
Increment.

Add this program to a
routine that turns on
your printer. prints,
and then turns the
printer off.

SUBSTRING SEARCH
Some computer languages have a command that will
search for a substring within a larger string. The subroutine
starting at Line 100 gives Applesoft that ability. The lines
before 100 are just an example of how to use it.
10 TEXT: HOME
20 S$ = "THIS SENTENCE TESTS THIS

PROGRAM FOR YOU": PRINT S$
30 PRINT: PRINT : INPUT "STRI~

TO FIND:";FIND$: GOSUB 100
40 IF FOUND THEN INVERSE: VTAB

1: HTAB I: PRINT FIND$: NORMAL
: END

50 PRINT" (Nor FOUND) ": END
100 FOR I = 1 TO LEN (S$)
110 K = I:FOUND = 1
120 FOR J = 1 TO LEN (FIND$)
130 IF MID$ (FIND$,J,1) < > MID$

(S$,K,1) THEN J = LEN (FIND
$) :FOUND = 0

140 K = K + 1: NEXT J
150 IF FOUND THEN RETURN
160 NEXT 1:1 = 0: RETURN

PRINTER DE-BUGGER
If you've ever shouted obscene machine code at your prin­
ter for doing 47 line feeds, 192 carriage returns and 16
beeps when you listed a program with embedded control­
characters or catalogged a disk with inverse file names, this
program's for you. After you RUN this program (only once
please), do a PR#1 to tum on your printer, then CALL 768.
All control characters will be sent to the printer as lower
case. Inverse and Flashing characters will be printed as
normal.
10 FOR I = 768 TO 810: READ V: POKE

I,V: NEXT I
20 DATA 169,11,133,54,169,3,133

,55,76,234,3,201,141,240,25,
201,32,176,2,9,192,201,96,17
6,2,9,128,201,128,176,3,24,1
05,64,201,160,176,2,9,96,76,
2,193

33



DOS
THE

MONITOR FRED

Twinkle,
Twinkle,
etc.

Entire
Tone
Range:

34

TONE TUNES
Here's a hit song or two you can type and play on your
Apple. All use the new Beagle Basic TONE command,
which you must have activated (see page 7).

10 DIM PITCH (21)
20 FOR I = 1 TO 21: READ PITCH(I

): NEXT
30 GOSUB 100
40 FOR I = 0 TO l:TIME = 126
50 FOR J = 1 TO 7
60 IF J = 7 THEN TIME = 252
70 TONE PITCH(J + 14),TIME
80 NEXT: NEXT
90 GOSUB 100: END
100 FOR I = 0 TO l:TIME = 126
110 FOR J = 1 TO 7
120 IF J = 7 THEN TIME = 252
130 TONE PITCH(J + I * 7),TIME
140 NEXT: NEXT : RETURN
200 DATA 63,63,127,127,140,140,1

27,110,110,103,103,83,83,63,
127,127,110,110,103,103,83

10 L = 5:A = 0:B = 255:S = 10
20 HOME: FOR P = A TO B STEP S
30 VTAB 9: HTAB 17
40 PRINT "PITCH=";P;" "
50 HTAB 17: PRINT "LENGTH="; L
70 TONE P,L: NEXT
90 S = S * - l:A = 255 * (S < 0)

:B = 255 * (S > 0): GOTO 20



Scale: 113 FOR X = 1 TO 36: READ PITCH,K
EY$: TONE PITCH,2f3: PRINT PI
TCH; n="; KEY$: NEXT

11313 OATA 13,G,25,G#,39,A,51,A#,6
3,B,73,C,83,C#,93,O,lf33,O#,1
1f3,E,119,F,127,F#,134,G,14f3,
G#,147,A,153,A#,159,B,164,C,
169,C#,174,O,179,O#,183,E,18
7,F,191,F#,195,G,198,G#,2f31,
A,2f34,A#,2f37,B,21f3,C,212,C#,
215,O,217,O#,219,E,221,F,223
,F#

r
I
t
I
I
t
.~

Messing
Around:

You could also write a
routine that prints
copy flush right.

113 HOME : INVERSE
213 P = INT ( RND (1) * 4(3) + 1
313 L = INT ( RNO (1 ) * 23) + 1
413 VTAB L: HTAB P
45 PRINT CHR$ (L
513 TONE P,L: GOTO

~

CENTERSTRING
This subroutine is for those of us that are too lazy to figure
out the correct HTAB for centering words on the screen. To
use it, set A$ equal to the string to be printed and then
GOSUB500.
10 HOME :A$ = "<----- CENTER -­

__)n: GOSUB 5f3f3:A$ = "ALMOST
ANYTHING": GOSUB 51313 :A$ = "

IN A FLASH!": GOSUB 51313
499 END
500 H = 21 - ( LEN (A$) / 2): HTAB

H: PRINT A$: RETURN

35



BEAGLE BLACKJACK ~~
Type in this program to make good use of the "SHAPE TABLE" file (actually
a deck of cards!) on the Beagle Basic disk. Feel free to add enhancements
such as betting, doubling down, cheating by looking at the deck, and so on.
Call us when you're finished; Beagle Bros pays a hefty 1/.1% royalties on
computer Blackjack games!

100 DIM DECK(51,1): TEXT: HOME
: VTAB 9:PAUSE = 150

110 PRINT "B LAC K J A C K": PRINT
: PRINT :PAUSE = 99: GOSUB 4
000: INPUT "WHAT IS YOUR NAM
E? ";NAME$: HGR

120 IF NAME$ = "" 'IHEN RUN
130 PRINT CHR$ (4);"BLOAD SHAPE

TABLE": POKE 232,0: POKE 23
3,64: SCALE= 1

140 GOSUB 5000
150 POKE 28,42: CALL - 3082: HCOLOR=

3: HOME: GOSUB 160: GOSUB 1
60: GOTO 360

160 GOSUB 6000
170 COUNT(l) = COUNT(l) + 1
180 X = (COUNT (1) - 1) * 50 + 20:

Y = 10: GOSUB 1000
190 IF CARD > 10 THEN CARD = 10
200 IF CARD = 1 AND ACE(l) = 0 THEN

CARD = 11:ACE(1) = 1
210 PNTS(l) = PNTS(l) + CARD: IF

PNTS(l) > 21 AND ACE (1) = 1 THEN
PNTS(l) = PNTS(l) - 10:ACE(1
) = 0

220 IF COUNT (1) = 5 AND PNTS(l) <
= 21 THEN COUNT (0) = 0: GOSUB

250: GOTO 7070
225 IF PNTS(l) > 21 THEN VTAB 2

2: PRINT "<BUST>":PAUSE = 99
: GOSUB 4000

230 RETURN
250 GOSUB 6000
260 Nl = Nl + 1
270 IF N2 = 2 THEN COUNT (0) = CO

UNT(0) + 1
280 COUNT(0) = COUNT(0) + 1
290 X = (COUNT (0) - 1) * 50 + 20:

Y = 80: GOSUB 1000
300 IF CARD > 10 THEN CARD = 10
310 IF CARD = 1 AND ACE (0) = 0 THEN

CARD = 11:ACE(0) = 1
320 PNTS(0) = PNTS(0) + CARD

36

330 IF PNTS(0) > 21 AND ACE (0) =
1 THEN PNTS(0) = PNTS(0) - 1
0:ACE(0) = 0

340 IF COUNT(0) = 5 AND PNTS(0) <
= 21 THEN 7120

350 RETURN
360 COUNT(0) = COUNT (0) + 1
370 X = 20:Y = 80: GOSUB 2000: GOSUB

3000: GOSUB 250
380 IF PNTS(l) > 21 THEN COUNT (0

) = 0: GOSUB 250: GOTO 7120
390 POKE - 16368,0: VTAB 22: PRINT

"ANOTHER CARD (yIN)? ";: GET
A$: PRINT A$: HOME

400 IF A$ = CHR$ (27) THEN HOME
: VTAB 21: END

410 IF A$ = "N" OR A$ = "n" OR A
$ = CHR$ (32) THEN 7000

420 IF A$ < > "Y" AND A$ < >"
y" THEN 390

430 GOSUB 160: GOTO 380
1000 GOSUB 2000: ROT= 0: XDRAW C

ARD AT X + 1, Y + 1: XDRAW SU
IT AT X + 1,Y + 9

1010 ROT= 32: XDRAW CARD AT X +
39,Y + 49: XDRAW SUIT AT X +
39,Y + 41: RETURN

2000 HCOLOR= 3: FOR I = X TO X +
40: HPLOT I.Y TO I,Y + 50: NEXT

2010 HCOLOR= 0: HPLOT X - 1,Y -
1 TO X + 41,Y - 1 TO X + 41,
Y + 51 TO X - 1,Y + 51 TO X ­
1,Y - 1: RETURN

3000 HCOLOR= 0: FOR I = X + 1 TO
X + 40 STEP 3: HPLOT I,Y TO
I,Y + 50: HPLOT I + 1,Y TO I
+ 1,Y + 50: NEXT: RETURN

4000 POKE - 16368,0: FOR I = 1 TO
PAUSE: IF PEEK ( - 16384) <
128 THEN NEXT: RETURN

4010 I = PAUSE: NEXT : RETURN



PRINT OIR$(ASC
(CHR$(ASC(CHR$
(ASC ("F" ) / (ASC
( IIP") /8) ) ) ) ) ) :

GOTO 110

7040 IF PNTS(I) > PNTS(0) THEN IF
PNTS(0) ( 18 THEN N2 = N2 +
1: GOSUB 250

7050 IF PNTS(I) > PNTS(0) AND PN
TS(0) > = 17 THEN 7070

7060 GOTO 7000
7070 VTAB 22: PRINT "(";NAME$" W

INS>":PAUSE = 150: GOSUB 400
o

7080 GAMES (1) = GAMES (1) + 1
7090 VTAB 24: PRINT "SCORE: DEAL

ER ";GAMES (0) ", ";NAME$;" ";
GAMES(I);:PAUSE = 300: GOSUB
4000: HOME

7100 COUNT (1) = 0:COUNT(0) = 0:PN
TS(0) = 0:PNTS(I) = 0:N2 = 0
:Nl = 0:ACE(I) = 0:ACE(0) =
o

7110 GOTO 150
7120 IF PNTS(I) = PNTS(0) THEN VTAB

22: PRINT "(PUSH>":PAUSE = 1
50: GOSUB 4000: GOTO 7090

7130 VTAB 22: PRINT "(DEALER WIN
S>":PAUSE = 150: GOSUB 4000:

1 THEN COUNT (0) = 0 GAMES (0) = GAMES (0) + 1: GOTO
.~ 7090

.11 -~~ _---__

5000 FOR I = 0 TO 51:DECK(I,0) =
0: NEXT

5010 FOR I = 0 TO 51
5020 J = INT ( RND (1) * 52): IF

DECK (J,0) THEN 5020
5030 HOME: VTAB 22: HTAB 1 + I ­

INT (I / 2) * 2: PRINT "(SH
UFFLING>";

5040 DECK(J,0) =·1:DECK(I,1) = J:
NEXT : DPTR = 0: HOME : RETURN

6000 IF DPTR > 51 THEN GOSUB 50
00

6010 CARD = DECK(DPTR,I):DPTR = D
PTR + 1

6020 SUIT = INT (CARD / 13 + 14)

6030 CARD = INT ((CARD / 13) ­
INT (CARD / 13») * 13 + 1.0

5)
6040 RETURN
7000 IF PNTS(0) > 21 THEN 7070
7020 IF PNTS(0) > = PNTS(I) THEN

7120
7030 IF Nl =

Strange problems if
you don't follow our
advice here.

NO-RUN BOOT TIP
Did you know that if you press control-C while booting, the
disk's Hello program won't be executed? We use this trick
to keep Integer BASIC from loading when we boot the
System Master disk, and to prevent GPLE from loading too.

GPLENO-NO
Listen to us and there won't be any trouble- NEVER INIT
A DISK WITH GPLE.48 ("PLEAS") IN MEMORY. Instead,
before INITializing, re-boot and use the previous tip to
prevent GPLE from loading. Thank you.

37



GR2?
GR2 would have prob- It's easy to find out what page 2 of la-res graphics looks like.
::~~~gc~mmand. You don't even have to know any pokes for this one. Just
See page 9. type "HGR2: GR". These commands uncover a minor a

bug in Applesoft. GR doesn't set the display to page 1 as
TEXT and HGR do; it assumes you're already on page 1. By
the way, if you're still looking at that colorful garbage and
want to get back to normal text page 1, just type "TEXT".

ESC-ARROWS
On an Apple lie, hitting ESC followed by the four arrows is
just like ESC followed by I, J, K, or M. Don't you wish they
had put the Up-Arrow above the Down-Arrow, instead of to
the right of it? Why don't you call Apple Inc. for us and
complain? (Ask for Steve.)

GET IT RIGHT
When your program requests numerical input via the GET
command, use GET A$ : A=VAL(A$) rather than GET A.
This prevents an unwanted ?Syntax Error if a non-number
is entered.

lie AUTO-5HIFT
Here's another small difference between the 11+ and the lie.
On a 11+, if you type control-2 you get a 2. Likewise a
control-6 yields a 6 (there's no such animal as a control­
number). BUT on a lie, control-2 comes out control-@and
control-6 is control-caret. No shift necessary.

LOWER-CASE POKER
Do a POKE 243,32 and list or run a program. With lower­
case hardware, you will see that all upper-case has been
demoted. If you don't have lower-case capabilities, you're
caught looking at a bunch of garbage.

38



'WHY ANYONE WOULD
WANT TO KNOW THIS

STUFF IS BEYOND ME..:'

GOTO KABLOOEY
Everyone knows that any number larger than 63999 after a
GOTO will result in a ?Syntax Error. But I'll bet you didn't
know that if the number is in the range 437760 thru
440319...

CHANGE OF ADDREFP
If you've ever wanted to change the starting address for
your Applesoft programs (so you could use text page 2, or
for some other exotic reason), here's how it's done.

Make this the first line 0 START = 16384: IF PEEK (103) +
of the program to be
moved. SAVE before PEEK (104) * 256 < > START
you RUN. THEN POKE 103, ST - INT (S

:~ ~~~s':~ ~:J=y. T / 256) * 256: POKE 104, INT
FP will set the starting (ST / 256): POKE ST, 0: PRINT
oodress back to nor-
mal, 2049. CHR$ (4) IlRUN THIS PRCGRAMII

GRAFFICKY TEXT
This program shows how you can make really effective bar
graphs on the text screen.
10 DIM N(23): HOME: NORMAL
20 FOR I = 1 TO 23: HTAB 40: PRINT

": ";: NEXT : INVERSE
30 RAN = INT ( RND (1) * 23)
40 N(RAN) = N(RAN) + 1
50 VTAB RAN + 1: HTAB 1: PRINT SPC(

N (RAN» CHR$ (RAN + 65);
60 IF PEEK (36) THEN 30
70 NORMAL: VTAB 22: PRINT CHR$

(7): END

39



Beagle Basic Index

Applesoft. . . . .. . . . . . .. .. 2
BASIC, What is it? 2
BELL 10
Bell, Modify 11
Changing Commands 13
CLDN 10
CLLN 10
CLRKEY 9
Command Editor 13
Command Table 13
Create Newbasic . . . . . . .. 4
CRSD 10
CRSL 10
CRSR 10
CRSU 10
Cursor Commands 10
DOS 3
Edit 12
ELSE 6
Error Message Editor . . .. 15
Escape Cursor. . . . . . . . .. 11
Exiting Newbasic 19
Find 16
FP 19
Free Characters 13
GOTO/GOSUB .. .. . 11
GPLE 20
G2 9
Hi-Res Commands 10
HSCRN 8

40

INT 19
Integer BASIC.. .. .. . 2
Inverse REMs 5
Keychart . . . . . . . . . . . . . .. 12
List Formatter 5
Main Menu 4
Move Mode 13
MIX 10
MODE 10
New BASIC Commands .. 6
Newbasic 3
Newbasic Loader. . . . . . . .. 3
Normalize 17
Other Features. . . . . . . . .. 11
PAGE 10
Print Old/New 17
Print Screen . . . . . . . . . . .. 17
Quit 11
Reset 19
RESL 10
Save Newbasic. . . . . . . . .. 11
SCRLDN 8
SCRLUP 10
Sort 16
Spare Characters. . . . . . .. 13
Standard . . . . . . . . . . . . . .. 17
SWAP 7
Text & Bell Commands .. 10
TONE 7
TXT2 9

PRINTED IN SAN DIEGO



Warranties and Limitations of Liability
Beagle Bros warrants that this product will perform as advertised. In the
event that it does not meet this warranty or any other warranty, express or
implied, Beagle Bros will refund the purchase price of this product.

BEAGLE BROS' LIABILITY IS LIM ITED TO THIS PRODUCTS PUR­
CHASE PRICE. In no case shall Beagle Bros ortheauthor be liable for any
incidental or consequential damages, nor for any damages in excess of
the purchase price of this product.

This disk includes software, APPLE DOS 3.3, owned by Apple Com­
puter, Inc. This software is used under license from Apple. Apple makes
no warranties, either express or implied, regarding Apple DOS, its mer­
chantability, or its fitness for any particular purpose.

"APPLE" is a registered Trade Mark of Apple Computer Inc.

Published by BEAGLE BROS INC.
4315 Sierra Vista, San Diego, California 92103

619-29EH>400


	Image1.jpg
	Image2.jpg
	Image3.jpg
	Image4.jpg
	Image5.jpg
	Image6.jpg
	Image7.jpg
	Image8.jpg
	Image9.jpg
	Image10.jpg
	Image11.jpg
	Image12.jpg
	Image13.jpg
	Image14.jpg
	Image15.jpg
	Image16.jpg
	Image17.jpg
	Image18.jpg
	Image19.jpg
	Image20.jpg
	Image21.jpg
	Image22.jpg
	Image23.jpg
	Image24.jpg
	Image25.jpg
	Image26.jpg
	Image27.jpg
	Image28.jpg
	Image29.jpg
	Image30.jpg
	Image31.jpg
	Image32.jpg
	Image33.jpg
	Image34.jpg
	Image35.jpg
	Image36.jpg
	Image37.jpg
	Image38.jpg
	Image39.jpg
	Image40.jpg
	Image41.jpg
	Image42.jpg

