

Notice

Apple Computer, Inc. reserves the right to make improvements in the product
described in this manuai at any time and without notice.

Disclaimer of All Warranties And Liabilities

Apple Computer, Inc. makes no warranties, either express or implied, with respect
to this manual or with respect to the software described in this manual, its quality,
performance, merchantability, or fitness for any particular purpose. Apple
Computer, Inc. software is sold or licensed “as is” The entire risk as to its quality
and performance is with the buyer. Should the programs prove defective following
their purchase, the buyer (and not Apple Computer, Inc., its distributor, or its
retailer) assumes the entire cost of all necessary servicing, repair, or correction
and any incidental or consequential damages. In no event will Apple Computer,
inc. be liable for direct, indirect, incidental, or consequential damages resulting
from any defect in the software, even if Appie Computer, Inc. has been advised of
the possibility of such damages. Some states do not allow the exciusion or
limitation of implied warranties or liability for incidental or consequential
damages, so the above limitation or exclusion may not apply to you.

This manual is copyrighted. All rights are reserved. This document may not, in
whole or part, be copied, photocopied, reproduced, translated or reduced to any
electronic medium or machine readable form without prior consent, in writing,
from Apple Computer, Inc.

Written by Steve Hix. Special thanks to Bob Martin.

© 1982 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

The word Apple and the Apple logo are registered trademarks of Apple Computer, Inc.
Simultaneously published in the U.S.A. and Canada

Reorder Apple Product #A3L0023

Apple Il

SS eice Drive Witer’

ii SOS Device Drivers Writer's Guide

Contents

Introduction ix

x Why Device Drivers?
X Who Uses Them?
X How They Work
xi Scope of this Manual
xii Apple Il Emulation Mode
xiii Notations Used in this Manual

1 Overview of SOS Device Drivers 1

4 SOS Device Classes

4 Character Driver Functions
5 DR_INIT

5 DR__OPEN

5 DR__CLOSE

5 DR_READ

5 DR_WRITE

6 DR_STATUS

6 DR_CONTROL

iv SOS Device Drivers Writer's Guide Contents v

g BIoDc;_Dler\\j/Il_(I:_e Functions 3 Request Handllng 23
6 DR_READ _ _
7 DR_WRITE 27 Driver Execution Environment
7 DR_REPEAT 27 Zero- and Extended-address Page Usage
7 DR_STATUS _ 28 Driver Parameter Table
7 DR_CONTROL 28 B Register
7 Conceptual Model of SOS 29 System Clock State
8 The Abstract Machine 29 System Interrupt State
9 SOS Data and Control Flow 29 System I_/O State
10 Generalized Device Driver Model 30 Internal D_rlver Structu_re
11 Summary 31 The Driver Information Block (DIB)
31 The DIB Header Block
36 The DIB Configuration Block
. 36 Storage and Communication Buffers
2 The Physical Environment of SOS 13 36 SOS Driver Requests
37 DR_INIT
14 Hardware Diagram 37 DR_OPEN
14 SOS System Address Space 38 DR-_CLOSE
16 System Control Registers 38 DR_READ
16 E Register 40 DR_WRITE
17 Z Register 40 DR_REPEAT
18 B Register 41 DR_STATUS
19 Memory Addressing 43 DR_CONTROL

19 Bank-switched Addressing
19 Enhanced-Indirect Addressing

o] 8292 Serial Port. . 4 SOS-provided Services 47
21 Receive/Transmit Data Register
21 Status Register ;
21 Command Register ?‘,g System Resource Allocation
22 Control Register - ALLOCSIR
22 External Device Selection v 51 DEALCS.IR :
22 $C800 Selection o I/OSEExféggcl)on Selection
52 Error Handling
53 SYSERR

53 System Errors

54 Event Handling

55 Event Queing

55 Event Recognition
56 QUEEVENT

vi SOS Device Drivers Writer's Guide

5 Interrupt Handling 59 Appendices
60 Interrupt Handlers A Sample Block Driver Skeleton 87
61 interrupt Handler Design
62 Interrupt Handler Environment

64 Interrupt Resources

B sample Character Driver Skeleton 99

6 Device Driver Coding Techniques 65 C 6502B Instruction Set 111

66 General Driver Design .

68 Writing Character Drivers D lmportant Fixed Addresses 121
69 Writing Block Drivers

69 Writing for Interrupt-driven Devices
69 Creating Device Driver Code Files

70 Error Detection and Reporting

122 SOS Resources Available for Device Driver's Use
122 Addresses Important to Device Drivers

Gl
7 Interfacing with Apple Il o%saTy 123
Peripheral Connectors 71
72 Physical Description Figures and Tables 133

73 Electrical Description

77 Design Techniques for Interface Cards
77 Decoupling

77 1/O Loading and Drive Rules Index 135
78 Timing Signals

80 Designing-in 6522s

82 Design Techniques for Apple Ill Prototyping Cards
83 Minimizing EMI

84 Safety and Testing

85 Programming Notes

viii SOS Device Drivers Writer's Guide Introduction ix

Introduction

The device driver is an essential and integral part of the Apple lll
operating system, hereafter referred to as SOS (Sophisticated
Operating System). It is the part of SOS that supports all input and
output (I//O) operations, regardless of the type of device being used.

In the world of SOS, everything external to the CPU and its memory
address space is a file: to be opened, read, written to, and closed.
Unlike many other computer systems, the type of device being used
for I/O makes essentially no difference in the way that programs
perceive and use them.

Device drivers write to and read from files. This manual tells you
how to write device drivers and incorporate them into SOS. It

assumes that you are familiar with both 6502 assembly-language
programming and the information in the following four manuals:

Apple 11l Owner’s Guide

Apple Il Standard Device Drivers Manual
Apple 11l SOS Reference Manual

Apple 1l Pascal Program Preparation Tools

If that assumption is not yet correct, we can resume when you return.

x SOS Device Drivers Writer's Guide

Why Device Drivers?

Most of us are used to speaking with people who use and understand

the same language that we do. When someone new moves into the
neighborhood speaking another language, we can either learn the
new language, find a translater, wait for the other person to learn
your language, or else get by without communicating.

A computer system is like a neighborhood, and each different device
connected to the computer “speaks differently”. If each application
written to run on a computer is required to have its own routines to
communicate with devices, a great amount of time (and money) is
spent on needlessly duplicating effort. Rather than require users to
write new interfacing programs or rewrite applications for each new
device that they connect to their Apple lll, SOS device drivers
support uniform communication between applications and devices.

Device drivers become part of SOS and so are loaded each time the
system is booted. A/l 1/O in SOS is performed by device drivers.

Who Uses Them?

Every part of the Apple lll system that communicates with something
or someone external to the Apple lllI's processor uses device drivers
in SOS, and no I/O is done without them. Some device drivers are
supplied with SOS, including .CONSOLE, .PRINTER, .AUDIO, and

-RS232 ; they are described in the Apple /1l Standard Device Drivers
Manual.

Other device drivers are supplied with the device that they serve, for
example .PROFILE, supplied with the ProFile hard disk.

How They Work

All SOS data flow is performed by device drivers through files. A file
is a named, ordered sequence of bytes and may be used to store,

transmit, or retrieve any type of information that you can put into the
Apple llI.

Introduction xi

SOS recognizes two classes of files: character files and block files.

A character file is treated by SOS as an continuous stream of bytes.
SOS can read or write the next byte in the stream, but it cannot
reread or skip bytes in the stream.

A file sent to a character device, such as a printer, is a character
device file. As far as a program running under SOS is concerned,
there is no difference in the way it accesses any type of character
device; all look like files to the program.

A file can also reside on a block device, such as a disk drive. A block
file is composed of characters in groups called blocks of 512 bytes
each. Blocks are numbered serially, but SOS can read from or write
to any given block at will. A block file is limited to a maximum of
$FFFFFE bytes, or 16,777,215 bytes.

A program can open, read, write, and close a character file, but
cannot create, delete, or rename one. A character device file cannot
be accessed as a random-access file; a block device file can be
accessed randomly.

Scope of this Manual

This manual provides enough information for experienced assembly-
language programmers to write device drivers for character and
block devices to work with Apple Il SOS.

This manual is not intended to be a tutorial covering basic

Programming or hardware-design techniques; we assume that you
know them already.

Chapter 1 provides a general overview of the concepts underlying
SOS device drivers.

Cha_pter 2 describes in general terms the underlying physical
environment of SOS device drivers.

xii SOS Device Drivers Writer's Guide ‘

Introduction xiii

Chapter 3 describes request handling, the main “job” of device e Only the built-in disk drive and the first external drive will be

drivers. usable. Daisy-chaining additional drives is not supported.
Chapter 4 describes the services provided by SOS to aid device * The RGB vr:clisgé)utputhwlli only generate black and white
driver function, such as error reporting and resource allocation. images In grapnics.

e There is no cassette port.
Chapter 5 describes interrupts and interrupt handling by SOS device

drivers. e DMA and interrupts are not supported.

Chapter 6 presents techniques for developing device drivers.

Notations Used in this Manual

Chapter 7 presents techniques for designing and building interface

cards to connect with the Apple Ill through the backplane peripheral . _

connectors. Three symbols appear throughout this manual to point out
particularly important information:

Appendix A is a sample device driver skeleton that can be used as a

starting point for writing drivers for block devices such as disks.
@ A hand indicates information of an especially useful nature, which

Appendix B is a sample device driver skeleton that can be used as a may not be very obvious at first sight.

starting point for writing drivers for character devices such as
rintergs P 9 An eye points out some characteristic of the software or hardware
P ’ operation that you should be careful about.

A stop sign draws your attention to something that may have
serious consequences if not used properly, such as damaging the

Apple lll or causing a serious error, or complete shutdown of
Appendix D contains a list of system addresses that are important to system operation.

device driver writers.

Appendix C contains the instruction set of the 6502B, the
microprocessor used by the Apple Ill.

Apple Il Emulation Mode

The Apple Il also offers an Apple Il Emulation mode. In this mode,
the Apple Il functions as a 48K Apple Il or Apple Il Plus with a disk
controller card in slot 6, and a serial (either Communication or Serial)
interface card in slot 5 or 7. There is no “slot 0”. Other limitations of
Emulation mode operation are:

* No software requiring the Language card will run on an
Apple llf in Emulation mode.

xiv SOS Device Drivers Writer's Guide

Overview of SOS Device Drivers 1

Overie of SO Device Drivers

4 SOS Device Classes

4 Character Driver Functions
5 DR__INIT

5 DR_OPEN

5 DR_CLOSE

5 DR__READ

5 DR_WRITE

6 DR__STATUS

6 DR _CONTROL

6 Block Device Functions

6 DR_INIT

6 DR_READ

7 DR _WRITE

7 DR_REPEAT

7 DR__STATUS

7 . DR_CONTROL

7 Conceptual Model of SOS

8 The Abstract Machine

g SOS Data and Control Flow
1

Generalized Device Driver Model

1
11 Summary

2 SOS Device Driver Writer's Guide

1
Overview of SOS Device Drivers

The Apple [II/SOS system deals with all input and output (I//O) in
the same way: all devices connected to the system are files,
communicating with SOS through device drivers.

Every device driver has one or more physical devices associated with
it. For example, a block device driver has one or more block devices,
a format device driver has one or more format devices, and so on.

SOS communicates to attached devices (keyboard, screen, printers,
disks, and so on) by sending device requests to direct the operation
of each device by its device driver. Remember that all devices
connected to SOS are files.

A device driver is a memory-resident module that implements the set
of SOS device requests (through request handlers) required of all
devices connected to SOS. In addition to device requests, a device
driver also performs interrupt handling (with interrupt handlers) for
devices using interrupts.

At system startup, device drivers reside in a file called SOS.DRIVER
on the boot volume. You can change the content of SOS.DRIVER with
the SOS System Configuration Program (SCP) described in the Apple
111 Standard Device Drivers Manual. SCP lets you reconfigure your
operating system by adding or removing device drivers. Note that
SCP also checks the validity of your device driver’s format.

Overview of SOS Device Drivers 3

When a device driver is called, the SOS device manager passes a
request table to the device driver defining the type of operation to be
done. These operations are called device requests, and each device
driver has a specific set of device requests that it must perform for its
own device. SOS device requests are briefly described later in this
chapter, and in detail in Chapter 3.

A standard group of device drivers comes with every Apple Ill system
to enable the operation of the Apple IlI's built-in devices, such as
speaker, screen, keyboard, and RS232 serial port. These device
drivers are described in the Apple /1l Standard Device Drivers
Manual.

When you obtain an optional accessory device that can be connected
to your Apple lil, the device driver needed to operate it is also
supplied.

Table 1-1 lists some important device drivers and the devices they
serve.

Device Driver Device(s) Served

(names as supplied)

.CONSOLE Screen and Keyboard
.PRINTER Apple Il serial port
.R8232

.AUDIO Apple lll speaker
.GRAFIX Appile Il graphics display
.D1 through .D4 Disk Ill disk drives
-PROFILE

ProFile hard disk

Table 1-1. SOS Device Drivers and Devices

4 SOS Device Driver Writer's Guide

All the device drivers listed in Table 1-1 except .PROFILE and the
Disk Il drivers .D2 through .D4 operate built-in devices, and all
except .PROFILE are supplied with the Appie Il system software
package. The .PROFILE driver is supplied with the ProFile hard disk,
and is typical of device drivers supplied with Apple Ill optional
devices. Its use is described in the documentation supplied with the
ProFile hard disk.

SOS Device Classes

There are two classes of devices (and device drivers) within Apple Il
SOS: character devices and block devices.

Character devices, such as printers and modems, can transfer

information in sequential character streams up to 64K bytes in length
at one time.

Block devices, such as disks, transfer information in 512-byte blocks.
Any higher orders of organization, such as files and directories, are
the responsibility of SOS.

A subclass of the block device driver is the format driver, used to
format a block device before use. A format device driver may either
be part of a block device driver or stand alone. A format driver
should be included as part of the device driver except when the
format driver is very large. In such a case, memory limitations would
dictate the need for a stand alone format driver.

Examples of stand alone format device drivers are .FMTD1 through
.FMTD4, found on the SOS Utilities diskette and used by SCP to
format diskettes.

Character Driver Functions

Character device drivers move character streams either in one
direction, like .PRINTER, or bidirectionally, like .RS232. .

Overview of SOS Device Drivers 5

Character drivers must support NEWLINE mode. This allows the use
of a single character to mark a logical end of record in a character
stream. The NEWLINE character may be defined any number of times
through DR_CONTROL device requests.

The SOS device requests performed by character device drivers are

described briefly below, and in greater detail in Chapter 3. Device
requests are issued by the S0OS device manager.

DR_INIT

DR__INIT operates once only (during system startup) to prepare the
device driver for use. The device served by the driver is not accessed
and remains closed, and no resources are allocated.

DR_OPEN

DR_OPEN is called to allocate a resource from the sysiem: in this
case, to open its device file to be either written to or read from.

DR_CLOSE

DR_CLOSE is called to perform two operations: it shuts down its
device, and it deallocates the system resources assigned to the driver
and gives them back to the system.

DR__READ

DR_READ is called to read a specified number of characters from its
character device into a buffer in memory.

DR__WRITE

DR—WR_ITE is called to write a specified number of characters from
a buffer in memory out to the character device.

6 SOS Device Driver Writer’s Guide

DR_STATUS

DR__STATUS is called to provide information on the current status of
its device. In addition to the device’s status, other information specific
to a given device or driver may be returned.

DR_CONTROL

DR_CONTROL is called to reset the device, load control parameters,
reset the NEWLINE character (described in Chapter 3), or make other
changes to the device's operating parameters.

Block Driver Functions

Block devices move data in 512-byte blocks, and allow SOS to access
easily any given logical block of a block device.

A block driver's device is divided into consecutively-numbered logical
blocks; higher orders of organization (such as files or directories) on
the device are handled outside the driver.

The SOS device requests implemented by biock device drivers are
briefly described below and in detail in Chapter 3.

DR__INIT

DR_INIT is called during system startup to perform operations
required to prepare the device for use, allocate resources needed by
the driver, and open the device. A DR__INIT request for a biock device
is equivalent to requesting DR_INIT and DR__OPEN for a character
device.

DR_READ

DR_READ is called to read one or more blocks from the block
device, beginning at a specified logical block number.

Overview of SOS 'Device Drivers 7

DR__WRITE

DR__WRITE is called to write a specified number of 512-byte blocks
onto the block device from a buffer in memory, beginning at a given
logical block number on the device.

DR__REPEAT

DR__REPEAT is called to repeat a DR_READ or DR_WRITE
operation on a device. The unit number given for the call must be the
same as the last unit called by the SOS device manager, and the last
operation performed by that unit must have been DR_READ or
DR_WRITE.

DR_STATUS

DR_STATUS is called by the SOS device manager to return the
status of its block device. Either a status byte (whose format is
defined in the driver’s documentation), or the preferred location of a
bitmap may be returned.

DR_CONTROL

DR_CONTROL is called to format the device.

Conceptual Model of SOS

Itis gften helpful for you to have a mental image of SOS and the
relation of device drivers to it when you are creating a new driver.

The conceptual model of SOS presented below is purposely
INComplete and slanted toward device drivers. The Apple /1l SOS
Reference Manual gives a more complete picture, and you should
understand it well before you begin writing device drivers.

8 SOS Device Driver Writer's Guide

The Abstract Machine
The Apple II/SOS system is defined in terms of an abstract machine
whose operation and performance is a combination of the two parts

of the system, SOS and the Apple Ill.

Figure 1-1 shows the components of the SOS abstract machine.

L]

1/0 HARDWARE

BUILT-IN SLOTS

DEVICE
DRIVERS

.PARALLEL
L.CONSOLE .PRINTER\

SOs

L1

FILE
MANAGEMENT

MEMORY

MANAGEMENT KERNEL

INSTRUCTION SET

INTERPRETER

Figure 1-11 The SOS/Apple lll Abstract Machine

USER

Overview of SOS Device Drivers 9

As Figure 1-1 indicates, aimost everything that goes on in the
abstract machine does so in memory. Even the hardware attached to
the abstract machine, such as printers, appears to exist somewhere
in the machine as memory.

It is important to realize that the user’s application never actually
deals with any physical part of the system, it only “sees” a
representation of those parts as presented to it by SOS.

SOS Data and Control Flow

Figure 1-2 shows the overall structure of SOS data and control flow.
Note that all transfer of information to and from the world external to
the SOS abstract machine passes through device drivers. There are
no exceptions!

ADDRESSING EXTENSION CIRCUITRY

Figure 1-2. SOS Data and Control Flow

Overview of SOS Device Drivers 11

10 SOS Device Driver Writer’'s Guide

Buffers (if used) must be incorporated within the body of the driver
itself. When SOS places the device drivers in memory, it packs them
there to maximize the use of available space. This means that a
buffer outside the driver would be squeezed out by SOS.

Generalized Device Driver Model

Figure 1-3 shows an idealized device driver.

/ ‘ DEVICEHEADER \
— , Summary

e DIB
DEVICEHEADER
- CONFIGURATION .

_ Block device drivers support 512-byte blocks and logical block
numbers. They also implement the SOS device requests DR__INIT,
DR_READ, DR_WRITE, DR_STATUS, DR_CONTROL, and
DR__REPEAT.

ASCH COPYRIGHT NOTICE

BUFFER : Character device drivers implement the following SOS device
requests: DR_.INIT, DR_OPEN, DR_CLOSE, DR__READ,
DR_WRITE, DR_STATUS, and DR__CONTROL.

CALL FROM SOS) MAIN ENTRY POINT =

@ A device driver is part of SOS. Device drivers should be designed
and tested as carefully and thoroughly as the rest of the operating
system.

INTERRUPT HANDLER =

INTERRUPT P

Figure 1-3. Generalized Device Driver Model

Appendices A and B in this manual contain examples of device driver
skeletons that you can use as a starting point for writing your own
device driver. '

When you look at them, note that their structure follows that of the
figure above.

12 SOS Device Driver Writer's Guide The Physical Environment of SOS 13

The hyical Environment of SOS

14 Hardware Diagram

14 SOS System Address Space

16 System Control Registers

16 E Register

17 Z Register

18 B Register

19 Memory Addressing

19 Bank-switched Addressing

19 Enhanced-Indirect Addressing
21 RS232 Serial Port

21 Receive/Transmit Data Register
21 Status Register

21 Command Register

22 Control Register

22 External Device Selection

22 $C800 Selection

14 SOS Device Driver Writer's Guide

2
The Physical Environment of SOS

You should read and understand the Apple 11l SOS Reference
Manual before tackling the rest of this manual.

You should be familiar with the physical environment of SOS if you
are to develop efficient device drivers that can obtain the best system
performance. Of particular importance in writing device drivers is
familiarity with the overall memory organization and addressing of
the Apple Ill, as well as system control registers, and how l/O devices
are mapped into memory. The remainder of this chapter addresses
these topics.

Hardware Diagram

Figure 2-1 is a simplified hardware diagram of the Apple Ill.

This figure emphasizes that the most important functional part of the
Appile lll is its memory. Almost everything in the system either uses or
supports it.

SOS System Address Space

A portion of the diagram given in Figure 2-1 is a map of the Apple lil
system memory, shown in Figure 2-2.

$A000

$PFPE

The Physical Environment of SOS 15

INTERPRETER
GENERAL INTERRUPT
‘ RECEIVER

SYSTEM CALL MANAGER

MEMORY FILE
MANAGER MANAGER

INTERRUPT DISPATCHER DEVICE MANAGER

BANK

SWITCHABLE CURRENT SWITCHABLE BANKS
BANK SPACE

CURRENT BANK

Figure 2-2. SOS System Address Space

16 SOS Device Driver Writer's Guide

It is important to remember that the architecture of the SOS abstract
machine’'s memory includes these well-defined characteristics:

* One 32K block of memory, used by SOS, is always present,
extending from $0000 to $1FFF and from $A000 to $FFFF.

® The remainder of memory is divided into up to 15 additional
32K blocks, each one addressed from $2000 to $9FFF This
means that the SOS abstract machine could directly address
up to 512K of memory.

Note that the Apple Il hardware presently supports a maximum of
256K bytes of memory.

System Control Registers

SOS has a number of registers to help it keep track of the system’s
state, and to aid in addressing all the memory that the system
can use.

All or part of the information contained in these registers is available
for your device drivers to read. The registers are described below.

E Register
The E (environment) register (at $FFDF) contains information about
the state of the system. Its structure is given below, along with its

usual content when a device driver is called.

Environment Register

7 6 5 4 3 2 1 0

System (I{e] Screen Reset Write Stack ROM ROM
Clock Space State Enabie | Protect Used Select Select

The Physical Environment of SOS 17

Bit Usage Value
7* CPU clock rate (1 MHz or full speed) 0 (Full speed)
6 /O space 1 (Enabled)
5 Screen — (Undefined)
4 Reset enable — (Undefined)
3 Write protect (top 16K) 0 (Not enabled)
2 Stack in use 1 (Primary)
1-0 ROM 00 (Deselected)

*Bit can be toggled by device drivers with reservations given below.

Because of the possible states of the screen and reset enable, the
Environment register may contain values of $74, $64, $54, or $44
when a device driver is called. Your driver should change only bit 7 of
the register, if necessary. The other bits should be left strictly alone.

Bit 7 defines the system clock rate, which can be switched between
1 MHz and full speed, which is presently 2 MHz.

A driver should never switch the clock to 1 MHz mode unless a part
on the card that it drives is unable to handle the higher speed.

Your drivers should always reset bit 7 to zero (full speed) before

exiting back to the device manager if they have had to set the clock
to 1 MHz

Z Register

The Z (zero-page) register (at $FFDO) defines the actual page in
memory used for all zero-page references. It is always set to $18
when request handlers are called. When an interrupt handler is

called, the Z register contains $0. See Chapter 5 for more information
on interrupt handling.

This means that when you make a zero-page reference to $CO, the

actual address used is $C0 of the current zero-page, an actual
address of $18C0.

18 SOS Device Driver Writer's Guide

Enhanced-indirect addressing requires a three-byte pointer to the
desired address. The first two bytes are placed in the current zero-
page while the third byte is placed in the extend-address page at the
same relative address as the second byte of the address in the zero-
page. The extend-address page, whose location is set by SOS, is
always page $14 during driver execution.

Zero-page Register

7 6 5 4 3 2 1 0
0 0 0 1 1 0 0 0
B Register

The B (bank) register (at SFFEF) defines which of the selectable 32K

banks of memory is in use by the value contained in bits 0-3. Its value
is set by the system.

Since the device driver accesses memory in the bank defined by the
B register, changing the register’'s content moves the actual area in
memory being accessed to some other bank in the address space. It
would be something like trying to navigate the Los Angeles freeway
system while using a Chicago road map that you had just pulled out
of your car’s glove compartment.

Device drivers use Enhanced-Indirect addressing when passing the

address of a table or list for some of the SOS driver requests (see
Chapter 3).

Bank Register

7 6 5 4 3 2 1 0

(Undefined) (Bankinuse)

See the discussion of Enhanced-Indirect addressing later in this
chapter.

The Physical Environment of SOS 19

Memory Addressing

The Apple II/ISOS architecture allows addressing a memory space up
to 512K bytes in size.

The Apple 111 SOS Reference Manual describes the Apple Il
addressing modes in detail. The information contained here is
primarily for review of addressing modes that concern device drivers.

The two methods of addressing that concern device drivers are the
Bank-switched and Enhanced-Indirect addressing modes described
below.

Bank-switched Addressing

Bank-switched addressing is standard 6502 addressing except that
the region of memory from $2000 through $9FFF will actually be one
of up to 15 available 32K blocks of memory, depending on the value
contained in the B register.

The B register always contains a value set by SOS when device
drivers are called. For more information on absolute addressing, see
the Apple 11l Pascal Program Preparation Tools manual.

Enhanced-Indirect Addressing

Enhanced-Indirect addressing uses a three-byte address to access
any given address within the Apple lIl's memory, and is used by

device drivers when passing pointers. It is described in detail in the
Apple 111 SOS Reference Manual.

EthZ‘nd-page currently in use is always equal to the content of the Z
register EOR $0C. When a device driver is called, since the Z register
always contains $18, the extend-page is always $14.

20 SOS Device Driver Writer's Guide

The first two bytes of the Enhanced-Indirect address are placed
in the current zero-page ($18), and the third byte is placed in the
extend-page at the same address as the high-order byte of the
address in the zero-page.

The extend-byte (X-byte) may contain 0 or a value ranging from $80
to $8F, giving 16 possible values. The second half of the extend-
register byte is the number of the switchable 32K bank being
accessed, numbered from $0 through $F. If the extend-byte is $00,
there will be no extended address in use.

After the X-byte has selected the 32K address segment to access, the
two bytes in the current zero-page define the address in that segment
to access. For more information on Enhanced-Indirect addressing,
see the Apple 11l SOS Reference Manual.

Because of the way that extended addressing is implemented in the
Apple lll, locations $0000 through $00FF in any given segment
cannot be addressed directly.

Here is a general algorithm for addressing those ranges of memory:

¢ |f the address is of the form $00xx bank n, the address that
you use will be of the form $80xx bank n—1.

* In the case given above, if n=0, the address that you use will
be of the form $20xx bank $8F.

¢ |f the address is of the form $FFxx bank n, the address that
you use should be $7Fxx bank n+1.

An example of a program that actually implements this is given in
Appendix A.)

If the X-byte is $8F, the S-bank and bank 0 are switched into their
normal bank-switched form. This configuration is used by graphics

drivers needing to access the lowest part of the graphics area in
bank 0.

RS232 Serial Port
P

The Physical Environment of SOS 21

A minimally-configured Apple Ill has several built-in I/O devices in
addition to the keyboard and display screen. The RS232 serial port is
described below.

An Asynchronous Communication Interface Adapter (ACIA) is built
into the Apple Il and is used for the built-in RS232 serial port. It must
be accessed at the fixed 1 MHz speed.

Note that the ACIA is a 6551 and not the 6850 used in some other
Apple interface devices. It contains four read/write registers that
your driver can use to control the ACIA as a serial I/O device: the
receive/transmit data register, status register, command register, and
the control register. They are briefly described below. For more
detailed information on the 6551’s command, control, and status
registers, see the manufacturer’s data sheet.

Receive/Transmit Data Register

At $COFOQ is the receive/transmit data register. All data flowing
through the Apple IiI's RS232 serial port passes through this register.

Status Register

The ACIAss status register is at $COF1. It contains housekeeping
information for the ACIA.

Command Register

At $COF2 is the ACIA's command register, holding information for the
ACIA on what it should be doing.

22 SOS Device Driver Writer's Guide Request Handling

Control Register

The ACIAs control register is at $COF3, with information on the
ACIA's proper operating state.

External Device Selection

I Request Hadling |

The addresses available for a given slot’s 1/O and onboard devices are
calculated by adding the slot number multiplied by 16 to $C080. For
example, slot 1 uses addresses $C090 through $CO9F.

The memory addresses available to any slot (for onboard buffers, and

so forth) are $Cn00 through $CnFF, where n is the number of the slot 27 Driver Execution Environment

being used. 27 Zero- and Extended-address Page Usage
28 Driver Parameter Table
28 B Register

$C800 Selection 29 System Clock State

29 System Interrupt State

29 System I/O State

You can include up to 2K of memory decoded for the address space 2(1) lnti;lag?icgfll'nsf:)rrﬁ::i:)en Block (DIB)
from $C800 on up on your interface card. Your driver can access this 31 The DIB Header Block
space by calling SELC800, which is described in Chapter 4. Since this 36 The DIB Confi ura?icc)n Block
address space may be shared among several devices, it must be 36 Storage and Corr?munication Buffers
explicitly allocated each time it is to be used. 36 SOS Driver Requests
. .37 DR_INIT

Apple | reen uch as those in the Apple Il

available for use, 1o S0 PP 37 DR_OPEN

38 DR_CLOSE

38 DR_READ

40 DR_WRITE

40 DR_REPEAT
M4 DR__STATUS

43 DR_CONTROL

24 SOS Device Driver Writer’s Guide Request Handling 25

Device drivers are called by the SOS device manager, never by user’s
programs or a SOS interpreter.

3 Table 3-1 presents the format of the device driver parameter tables as
passed to character drivers. The addresses correspond to the current
H ero-page in use by the device driver ($18). Note that all pointers are
Request Handling zero-pag

three-byte enhanced-indirect pointers.

DEVICE DRIVER PARAMETERS PASSED CHARACTER DRIVERS

READ WRITE ~ STATUS CONTROL OPEN CLOSE INIT
$CO 0 1 2 3 6 7 8
As mentioned in Chapter 1, there are two classes of device drivers: $C1 | UNIT_NUM UNIT_NUM [UNIT_NUM | UNIT_NUM | UNIT_NUM | UNIT_NUM | UNIT_NUM
block and character. (Remember that block devices include a
subclass, that of format devices.) $C2 BUFFER | BUFFER | STA CODE | CTL CODE
All device drivers handle a given set of requests passed to them by $C3 | POINTER [POINTER ST_/I*;JS COE;?OL
the SOS device manager through a driver request parameter table, a sca4 |meauest | syre | pointer | POINTER
ten-byte list beginning at $CO in the current zero-page. ED
$C5 COUNT | COUNT
A request handler should process the following SOS requests
(assuming that its driver needs to implement them): $Cé
$C7
DR__READ
DR_WRITE $c8 BYTES
DR__STATUS READ
DR_CONTROL $C9 POINTER
DR__.OPEN (character drivers only) o .
DR__CLOSE (character drivers only) NOTE: Pointers are 3-byte addresses using the X byte
DR__INIT Table 3-1. Character Device Driver Request Parameters

DR_REPEAT (block drivers only)

After the operation has been completed, the request handler returns
execution to the SOS device manager.

The request handler should also check for improper request codes,

and other likely error conditions. Error handling is discussed in
Chapter 4.

26 SOS Device Driver Writer's Guide

Table 3-2 presents the format of the device driver parameter tables as
passed to block drivers. The addresses correspond to the current
zero-page in use by the device driver ($18). Note that all pointers are
three-byte enhanced-indirect pointers.

The block numbers specified in the DR_READ, DR_WRITE, and
DR_REPEAT device calls are logical block numbers. Only the device
driver itself knows (or cares) what the actual physical location of the
data is.

DEVICE DRIVER PARAMETERS PASSED BLOCK DRIVERS

READ WRITE STATUS CONTROL INIT REPEAT
$Co 0 1 2 3 8 9
$C1 UNIT_NUM JUNIT_NUM | UNIT_NUM |UNIT_NUM UNIT_NUM |UNIT_NUM
$C2 BUFFER BUFFER | STACODE | CTL CODE BUFFER
$C3 POINTER | POINTER STATUS | CONTROL POINTER

LIST LIST
$C4 REQUEST- BYTE POINTER | POINTER
ED

$C5 COUNT COUNT IGNORED
$C6 BLOCK BLOCK BLOCK
$C7 NUMBER | NUMBER NUMBER
$C8 BYTES

READ

$C9 POINTER

NOTE: Pointers are 3-byte addresses using the X byte

Table 3-2. Block Device Driver Request Parameters

Request Handling 27

The parameters passed to device drivers and their uses are further
described later in this chapter in the individual descriptions of the
SOS driver requests.

In addition to request handling, some drivers also handle interrupts.
Interrupt handling as it relates to device drive‘rs is described in
Chapter 5 of this manual.

The first code executed in your drivers is a request handler, which is
the single entry point for each device driver.

The request handler checks the contents of $CO0 for the request

code passed by the SOS device handler. It then branches to the
appropriate part of your driver and begins acting on the request.

Driver Execution Environment

Every time a device driver is called by the device manager, some
aspects of the execution environment are the same. These
characteristics are outlined in Table 3-3.

The environment characteristics outlined in Table 3-3 are described
in more detail below.

Zero- and Extended-address Page Usage

Zero-page locations $C0 through $FF are available for all device

_drivers’ use. (Some of them are preloaded when your driver is called.)

Since all the drivers configured into the system share the same zero-
and extend-page locations, these locations are useful to a given
driver only while that driver is running. Other than the parameter list
passed to the driver when it is called, your driver cannot count on the
contents of the rest of the space when it begins execution.

28 SOS Device Driver Writer's Guide

Characteristic State
Decimal mode Disabled
Interrupts Enabled
Status bits (N, V, B, Z, C) Indeterminate
Accumulator Indeterminate
X register Indeterminate
Y register Indeterminate
Environment register

CPU clock Full speed

1/O space Enabled

Screen Undefined

Reset lock Undefined

Write protect Off

Stack Primary

ROM Disabled
Zero-page in use $18
Extend-page in use $14
Bank register System
1/0 Expansion Slot Deselected

Table 3-3. SOS Device Driver Environment

Driver Parameter Table

Parameters are always passed to device drivers in locations $CO0
through $C9 in the current zero-page ($18). Depending on the type of
driver operation being requested, all of these locations may not be
used. For a complete description of each SOS driver request’s
parameter table, see the individual SOS driver request descriptions
later in this chapter.

B Register

The B (bank) register is located at $FFEF and contains the number of
the bank in which your driver resides.

Request Handling 29

System Clock State

The system clock determines how fast the Apple Ill operates, and its
speed can be changed. It normally runs at 2 MHz (fuli speed), but
some parts of the system cannot operate at that speed. When these
parts (such as the video refresh) are working, the clock is slowed to
1 MHz.

This rapid switching between 1 and 2 MHz means that the system
effectively operates somewhere between 1.4 and 1.7 MHz.

Avoid using time-dependent code! If exact timing is absolutely
necessary, then hardware to take care of the critical timing

functions should be on your interface card.

When your driver is called, the system clock speed is always set to
full speed, and should be reset to that when you exit the driver-if you
have changed it. Since you cannot depend on the exact clock speed
during operation in full speed mode, you can only be certain of the
minimum time needed for any given operation to be completed.

You should never switch the clock rate to 1 Mhz unless parts of
your device will not operate at higher rates.

System Interrupt State

Interrupts (IRQ) will be enabled, and unless you absolutely require
them to be disabled, leave them alone. Interrupts and interrupt
handlers are described in detail in Chapter 5.

System 1/0O State

When your driver is called, it can depend on the 1/O space to be
selected and $C800 space to be not selected.

30 SOS Device Driver Writer's Guide

Internal Driver Structure

All device drivers consist of a Device Information Block (DIB), storage
and communication buffers (as and if needed by the driver), a
request handler, an interrupt handler, and device requests.

Usual programming convention places the drivers’ buffers and data
before any of the executable code.

The general structure of a device driver is shown in Figure 3-1.

DEVICE INFORMATION
BLOCK (DiB)

BUFFERS

REQUEST HANDLER

INTERRUPT HANDLER

DEVICE REQUEST
CODE

Figure 3-1. Device Driver Structure

. Request Handling 31

The Device Information Block (DIB)

A DIB is a table at the beginning of each driver defining the
characteristics of the devices that the driver can handle. A device
driver may have more than one DIB; for example, if it handles more
than one device. A DIB is made up of two parts, the header block and
the configuration block, described below.

The DIB Header Block

The DIB header block is a table beginning at the first address of the
driver. Table 3-4 outlines its structure.

Field Name Length (bytes)
Comment field 3+ (optionat)
Link pointer 2

Entry pointer 2

Device name (dev—_name) 16

Flags 1

Slot (slot_num) 1

Unit number (unit_num) 1

Device type (dev__type) 1

Device subtype 1

Filler 1

Blocks 2
Manufacturer (manuf__id) 2

Version (ver__num) 2
Configuration field 256 (max)

Table 3-4. DIB Header Block Structure

The Comment field is optional. If used, it can only appear at the
peg_inning of the the first header block in the driver. A comment field
Is signalled by placing $FFFF as the first two bytes of the driver. If it
appears, the following byte will contain the length in bytes (up to 255)
of the comment immediately following. '

The Link field (bytes $0 and $1) points to the beginning of the next
DIB contained within the device driver. If there are no more DIBs in
the driver, the Link field must be set to zero. A DIB is required for
each device served by a device driver.

32 SOS Device Driver Writer's Guide

Request Handling 33

The Entry field (bytes $2 and $3) points to the driver's entry address. The device type byte for SOS character devices has the following

The entry point is defined by the device driver’s writer and the value

; : . L structure:
is relocated during system boot to reflect the driver’s location in
memory after startup. This pointer is used by the SOS device
manager when it calls the device driver.
7 6 5 4 3 2 1 0
The Device name (bytes $4 through $13) begins with a byte defining o W A o
the length of the device name. The name itself is composed of a X X X X

period followed by the name of the device. The first character of

the name must be alphabetic, followed by any combination of
alphanumeric characters and periods. Any characters in the device
name field past the number defined in the count byte are ignored. All
alphabetic characters must be uppercase, and no blanks are allowed
in the name.

Bit 7 is cleared for all character devices.

Bit 6 (W) is the “write allowed” byte. It must be set for all character
devices that accept data from the Apple lIl.

Bit 5 (R) is the “read allowed” bit. It must be set for all character

The Flag byte (byte $14) is examined by SOS during system startup. devices that send data to the Apple Il

Bit 7 indicates whether the driver is active (1) or inactive (0), and its
value can be set by SCP. Bit 6 is the Page flag and indicates whether
the driver should be relocated to begin on a page boundary. Note
that the byte immediately following the end of the first DIB is the one The device type byte for SOS block devices has the following
that begins the page. The other bits of the flag byte are reserved for structure:

later use and should be set to zero.

Bit 4 is reserved for future use and must always be cleared.

The Slot byte (byte $15) contains the slot number of the driver’s 7 6 5 4

device. (0 indicates a built-in device, such as the console). If the byte 8 2 ! 0
contains $FF, SCP will permit the user to modify the slot number to a 4 W Rem Fmt

value from 1 to 4, inclusive. When writing your driver, you should X X X X

initialize this field to the values $00, $01 through $04, or $FF.
_ Bit 7 is set for all block devices.

The Unit byte (byte $16) indicates the unit number of the device

driver. When you write a driver, set the first DIB’s unit number to 0,

Bit 6 (W) is the “write allowed” byte. It |
driver When you writ a yte. It must be set for all block

devices that accept data from the Apple ll.

The Device type byte (byte $17), along with the following byte is used Bit 5 (R) is the “removable device” bit. It must be set for all block
for device classification and indentification. This field specifies the devices that use removeable stora i i

. . . : e media, -
generic family that the device belongs to. drives. 9 'a. such as floppy-disk

Bit 4 is set if the driver can also format its device.

34 SOS Device Driver Writer's Guide

Format devices (such as .FMTD1) are considered to be a special class
of devices. Unless it would take up too much room, the format

driver should be inciuded in the device driver. The top four bits of the
format device type byte are $0001. The button four bits, and the
entire subtype byte must be identical to its block device.

The Device subtype byte (byte $18) indicates the specific device
being referred to within the device type class specified in the
previous byte. The two fields together uniquely define the device.

Device type/subtype assignments are made by the Apple Technical
Support group. You should contact them if your device might fit

into a type or subtype group not given in Table 3-5.

Device Type Subtype

Character device (write only):

RS232 printer (.PRINTER) $41 $01
Silentype printer (.SILENTYPE) $41 $02
Parallel printer (PARALLEL) $41 $03
Sound port (.AUDIO) $43 $01

Character device (read/write):

System console (CONSOLE) $61 $01
Graphics screen (.GRAFIX) $62 $01
Onboard RS232 ((RS232) $63 $01
Parallel card (PARALLEL) $64 $01

Block devices:

Disk il (.D1 through .D4) $E1 $01
ProFile disk (.PROFILE) $D1 $02

Format devices:

Disk Ill (FMTD1FMTD4) $11 $01

Table 3-5. Currently-assigned SOS Device Types and Subtypes

The Filler byte (byte $19) is reserved for future use by Apple. Your
driver must have this byte set to zero.

Request Handling 35

The Blocks field (bytes $1A and $1B) specifies, in hexadecimal, the
number of logical blocks in a block device. This field must be set to
zero if the device is a character device. If a block device can use more
than one format, this field must be set either during DR_INIT or when
the format to be used is known.

The Manufacturer field (bytes $1C and $1D) contains a code
identifying the maufacturer of the driver. $0000 unknown
manufacturer, and $0001-$001F will be reserved for Apple
Computer’s devices. Other values are assigned by Technical Support
at Apple Computer, Inc.

The Version number field (bytes $1E and $1F) contain the version
number of the device driver. Its format is given below:

vi Q

\ v0

In this figure V corresponds to the major version number (ranging
frorq $0 through $7), v0 and v1 together correspond to the minor
version number (ranging from $0 through $99), and Q (ranging from

$0, $A through $E) allows further qualification of the number. For
example,

1.16C

would be represented by the following values: V=$1, v0=$1, v1=$6,
and Q=$C.

The version field is followed by the DIB configuration block,
described below. ’

36 SOS Device Driver Writer's Guide

The DIB Configuration Block

The DIB configuration block is an optional table following the DIB
header block. It contains information about the device(s) handled by
the device driver. If used, there must be a separate configuration
block for each device handled by a single driver.

The first two bytes of the DIB configuration block contain the number
of bytes in the block, in “low byte, high byte” order. The high byte is
always $00.

The DIB configuration block content is defined by the device driver
writer and can contain configuration information such as baud rate
of the device, and so on. This information must be covered in the
driver documentation, and its values can be altered by the System
Configuration Program (SCP).

There must be a Device Configuration Block included for each
physical device served by the driver if you want to be able to use

SCP to alter information about the device.

Storage and Communication Buffers

You should reserve space for storage and communication buffers
immediately after the DIB in your device drivers. All parts of a driver
must reside in the same bank of memory. SOS packs drivers together
within the bank during each system startup to most efficiently use
space, and the driver’s buffers must be set up within the driver itself
to avoid being squeezed out of existence.

SOS Driver Requests

Request Handling 37

DR__INIT Driver Request $08

DR__INIT prepares the driver’'s device(s) for use after system startup.
It also tells SOS how many, and what type, of devices that the driver
will be handling.

The major portion of a device driver is taken up by request handlers,
the code that implements the SOS device requests. Each device
request is implemented by a request handler.

SO0S device requests are described below.

Parameters:
Address Content
$Co 8
$C1 Unit number

If DR_INIT is unable to perform any of its functions, it should return
to SOS with carry set. If everything is all right, DR__INIT returns with
carry clear.

Note that SOS cannot handle any event queued during DR—INIT
operation.

DR__OPEN Driver Request $06

DR__OPEN is used to activate a device for use by allocating the necessary resources.
it is not used by block device drivers.

Parameters:
Address Content
$co 6
$C1 Unit number

38 SOS Device Driver Writgr’s Guide

Request Handling 39

Parameters for a character device:

DR__CLOSE Driver Request $07
Address Content
DR__CLOSE sets the specified character device to closed. It also
returns the device and driver to their pre-DR_OPEN state and gco 8 . N
. C1 nit number
releases any resources that have been allocated by the driver. $62-6C3 Buffer pointer
—-$14C3
DR_CLOSE is not used for block devices. $C4-$C5 Requested count
$C6-$C7 Ignored
$C8-$C9 Bytes-read pointer
Parameters: —$14C9
Address Content Parameters for a block device:
$co 7
) Address Content
$C1 Unit number
$Co 0
. $C1 Unit number
The unit number is defined in the DIB header block of your device $C2-$C3 Butfer pointer
driver. —$14C3
$C4-$C5 Requested count
- .) $C6-$C7 Block number
@ The specified unit must have been previously opened or else an $C8-$C9 Bytes-read pointer
error results from the call. —-$14C9
DR__READ Driver Request $00 The buffer pointer in $C2 and $C3 refers to an area where the
information being read from the device will be stored.
DR_READ is used to request data from a device. Locations $C6 and $C7, used only by block devices, contain the

number of the logical block where the read is to begin.
A DR__READ will take data from the device until one of the following

conditions is met: The requested count ($C4-$C5) is the number of characters that are
: desired by the caller, and a request of 0 characters is a valid request.
1. The requested number of bytes have been read. s
2. The NEWLINE mode is active and the NEWLINE character t $C9 points to a Iocatpn containing the number of characters
! ‘ actually read from the device.
has been encountered (this applies only to character

devices). @ N i
ote that block devices transfer data only in 512-byte blocks, and

3. The end of the data buffer has been reached. do not deal with NEWLINE mode.

40 SOS Device Driver Writer's Guide

Request Handling

DR_WRITE Device Request $01 @ You should include a “last request” byte somewhere in your
device driver to keep track of the driver’s last-performed

non-DR_REPEAT operation.

DR_WRITE is used to send information to a device to be printed (or

displayed, written to disk, and so forth).

Parameters:
Parameters for a character device:

Address Content
Address Content $CO 9

$C1 Unit number
$CO 1 $C2-3C3 Buffer pointer
$C1 Unit number gglfgc% Ignored
f%ﬁ;%%S Buffer pointer $C6-3C7 Block number
$C4-$C5 Byte count
$C6-$C7 Ignored

The block number is the logical block number at which the requested

operation is to begin.
Parameters for a block device:

The last operation performed by that driver and the unit being
calted must have been either DR_READ or DR__WRITE.
Address Content
$COo 1
$C1 Unit number DR_STATUS Driver Request $02
$C2-$C3 Buffer pointer
$C4-3C5 Byte count
$C6-$C7 Block number

DR__STATUS is used to obtain the current status of a device or ifs
driver.

The buffer contains the information to be written by the device. p '
Remember that the byte count for block devices is given in multiples arameters:
of 512 bytes.

Address Content
The block number (given for block devices only) is the logical number
of the first block to be written. $Co 2
gg; Unit number
. Status code
DR__REPEAT Driver Request $09 $C3-$C4 Status list pointer
—-$14C4

DR_REPEAT is used (by block drivers only) to repeat the previous
DR__READ or DR_WRITE operation.

42 SOS Device Driver Writer's Guide

The content of $C2 is a status code, with different codes for
character and block drivers. Character drivers must support at least
the codes given below:

Status code Meaning

$00 No operation

$01 Return control parameters
$02 Return NEWLINE information

Additional status codes may be included with a device driver, and, if
added, must be described in the driver’s documentation.

The structure of the status list, if used, depends on the particular
status code request being performed.

For a $00 status code, the status list is a single byte:

Bit Value Meaning
7 0 Device not busy
1 Device busy
6-2 — Not used
1 0 Device (or medium) not
write-protected
1 Write-protected
0 — Not used

Request Handling 43

The control parameters returned for other status codes given below
differ for each device driver. These must be included in each device
driver’s documentation.

Block driver status codes are:

Status code Meaning
$00 Return status byte
$FE Return bitmap location

For a $00 status code, the status list is a single byte:

Bit Value Meaning
7 0 Device not busy
1 Device busy
6-2 — Not used
1 0 Device (or medium) not
. write-protected
1 Write-protected
0 — Not used

For a $01 status code, the first byte of the control list contains the
length of the control list in bytes. The structure and content of
the remainder of the list depends on the driver. Each driver’s
documentation should describe its particular usage.

A $02 status code points to a two-byte list. The first byte contains $00
if there is no NEWLINE character, and $80 if there is one. The second
byte in the list contains the new NEWLINE character, assuming it
exists.

For a $FE status code, the driver writes two bytes to the status list.
This list will always contain $FFFF unless there is some good reason
to have the volume’s bitmap placed at a particular location. $FFFF
means that the driver doesn't care, and the bitmap is generally placed
immediately following the directory.

The length of each status list depends on the driver. It must be
documented for each different driver.

DR_CONTROL

Device Request $03

DR__CONTROL is used to send control information to a device.

44 SOS Device Driver Writer's Guide

Parameters:
Address Content
$Co 3
$C1 Unit number
$C2 Control code
$C3-$C4 Control list pointer
—$14C4

The control code tells the device what operation it is to perform. The
control list contains information that may be needed to perform the
task.

The control codes passed with the DR__CONTROL call parameter list
given below differ for character and block devices.

Character devices must support at least the control codes given
below:

Code Meaning

$00 Reset device

$01 Load control parameters
$02 Set NEWLINE information

Control code O clears input and output buffers and resets the device.

Control code $01 uses a pointer to a control list. The first byte of the
list must contain the length of the list in bytes. The structure and
content of a control list are peculiar to each device driver, and must
be documented for each device driver.

Control code $02 uses a two-byte control list. The first byte contains
$0 if there is no NEWLINE character, and $80 if there is one. The
second byte in the list contains the current NEWLINE character, if it
exists.

Request Handling 45

For block devices, the control codes presently defined for
DR__CONTROL are:

Code Meaning
$00 Reset device
$FE Format the device

A $00 control code is used, for example, by Pascal to perform a unit
clear operation.

A $FE control code prepares the block device to read and write
logical blocks of data. The position and structure of directories, if
they exist, or other data structures on the device are up to the caller.

The control list must conform to the structure and content specified
by the device driver being called.

S0OS-provided Services 47

46 SOS Device Driver Writer's Guide

SOS-provided Services |

49 System Resource Allocation
50 ALLOCSIR

51 DEALCSIR

51 1/O Expansion Selection

52 SELC800
52 Error Handling
53 SYSERR

53 System Errors

54 Event Handling

55 Event Queing

55 Event Recognition
56 QUEEVENT

48 SOS Device Driver Writer's Guide

4
SOS-provided Services

SOS has a mechanism to handle resource contention and provide

a linkage between the system’s interrupt receiver and the various
driver’s interrupt handlers. (Interrupts and interrupt handling are
described in Chapter 5 of this manual.)

A System Internal Resource (SIR) number is assigned to every
function that can either generate an interrupt or must be shared
among logically distinct operations handling interrupts.

Before any driver can use such a resource, it must allocate it by
calling the SOS routine ALLOCSIR (described below). When the
resource is no longer being used, it must be restored to the non-
interrupt state and then deallocated by calling the SOS routine
DEALCSIR (also described below). The present list of SIRs is
given in Table 4-1.

SOS-provided Services 49

System Resource Allocation

Allocation and deallocation of system resources is provided by the
SOS subroutines ALLOCSIR and DEALCSIR. Either routine may be
called from any environment except an interrupt handler.

ALLOCSIR and DEALCSIR both use a tabie to pass the addresses of
any interrupt handlers and to specify which resources are to be
allocated or deallocated.

Any number of SIRs may be handled in a given call, but they should
be taken in ascending numeric order. The table entry format is shown
below.

Byte Data

SIR number

ID byte

Interrupt handler address (high byte)
Interrupt handler address (low byte)
Interrupt handler address (X-byte)

BAWON=O

SIR Resource
$00 Reserved
$01 ACIA
$02-%$10 Reserved
$11 Slot 1
$12 Slot 2
$13 Slot 3
$14 Slot 4

Table 4-1. System Internal Resource (SIR) Numbers

Byte 0 of the table should contain the SIR number of the resource
that you wish to be allocated or deallocated. For example, if it

contains $11, the device connected to slot 1 will be allocated (or
deallocated).

Byte 1 of the table contains an ID byte set by SOS that can be
check-ed to verify ownership of the SIR. You don’t need to do
anything except provide space in the table for that byte.

Bytes 2 through 4 of the table contain a pointer to the beginning
address of an interrupt handler for that particular resource. If there is

no interrupt handler for a given SIR, the last three bytes of its entry
should be zeroes.

50 SOS Device Driver Writer's Guide

SOS-prdvided Services 51

In general, block devices are allocated during system startup, and

character devices are allocated during execution of an OPEN device DEALCSIR Entry Point $1916

call by their device driver, and deallocated during execution of a

CLOSE device call. DEALCSIR is used to deallocate System Internal Resources. The
parameter table must reside in the driver’s bank, and its address

The resource-handling services provided by SOS are described must specify the absolute page number.

below.

Parameters passed:
ALLOCSIR Entry Point $1913

A: Size of parameter table in bytes
X: Parameter table address low byte
Y

ALLOCSIR is used to allocate System Internal Resources. The Parameter table address high byte

parameter table must reside in the driver's bank, and its address

must specify the absolute page number. Normal exit:
Parameters passed: Carry: Clear
A X Y: Undefined

A: Size of parameter table in bytes
X: Parameter table address low byte Error exit:
Y: Parameter table address high byte

Carry: Set
Normal exit: X: SIR number causing error
AY: Undefined
Carry: Clear
A X Y: Undefined An error is caused when the requested SIR was not owned or an
invalid SIR was requested. No SIRs are deallocated if an error occurs.
Error exit:
Carry: Set 1/0 Expansion Selection
X: SIR number causing error —
AY: Undefined

The SOS subroutine SELC800 selects a peripheral card for the I/O
expansion address space at $C800 through $CFFF. This subroutine
may be called from any environment except an NMI interrupt handler.

An error is caused when either the requested SIR has already been
allocated or an invalid SIR is requested. If an error occurs, no SIRs
are allocated.

The slot number of the peripheral card to be selected is passed in
the accumulator and all other cards are deselected. A slot number of
zero deselects all peripheral cards.

52 SOS Device Driver Writer's Guide

When an interrupt occurs, the SOS interrupt dispatcher automatically
deselects the I/O expansion space on all peripheral cards. The
previous card is reselected after the interrupt is processed. In order
for this mechanism to work properly, drivers and interrupt handlers
must always call SELC800 to select a peripheral card’s /0O expansion
space.

In addition, drivers and interrupt handlers must call SELC800 before
referencing any of the I/O select addresses ($CNxx) for any
peripheral card that uses the /O expansion space.

SELC800 Entry Point $1922

SELCB800 is used to select $C800 1/O space.
Parameters Passed:

A: Slot number (1-4) to be selected.
(0 deselects all slots.)

Normal Exit:
Carry: Clear
A: Undefined
X, Y: Unchanged

Error Exit: (Invalid slot number, slot not changed.)

Carry: Set
A X Y: Unchanged
Error Handling

SOS error codes are reported by the SOS routine SYSERR. Your
driver should call it whenever it encounters an error during
execution. The driver will place the appropriate error code in the
accumulator and then execute a JSR to SYSERR (at $1928).

SOS-provided Services 53

SYSERR does not return to the driver after execution, but to the SOS
device manager.

SYSERR Entry Point $1928

SYSERR is used to report errors to SOS.
Parameters Passed:
A: Error code

SYSERR does not return to the caller.

System Errors

Table 4-2 lists the presently-defined SOS error codes returned by the
device driver to SOS through SYSERR.

Error Code Meaning

$20 Invalid request code

$21 Invalid control or status code

$22 Invalid control or status parameters
$23 Device not open

$24 Device not available

$25 Resource not available

$26 Invalid operation

$27 I/O error

$28 Not connected

$2B Write-protected

$2C Byte count is not multiple of 512
$2D Block number is too large

$2€ Disk switched

$30-$3F Device-specific errors. (You define

them for each device, if needed.)

Table 4-2. SOS Driver Error Codes

84 SOS Device Driver Writer's Guide

Event Handling

An event acts as an asynchronous interrupt in software, and drivers
can define events in response to various external occurrences.

An event is armed when an interpreter requests the device driver to
respond to a given condition, such as an interrupt, related to its
device. The interpreter supplies the device driver with the address of
a subroutine to be called when the event occurs.

When the event occurs, the driver informs SOS of the event, its
priority, the address of the event handler, and then exits.

SOS then calls the event-handling routine in the interpreter.

Each time an event is signalled, an entry is made in the event queue.
Then, each time the interrupt manager dispatches the user process,
it checks the highest-priority entry in the event queue. If the event’s
priority is greater than the the user’s event fence (defined in the
Apple 11l SOS Reference Manual), it will be recognized and the
interrupt manager will delete its entry and call the event handler.

Note that it is not presently possible to unqueue any events placed
in the event queue.

When the event handler returns, the event queue is reexamined.
When there are no more events above the fence, the interrupt
manager restores the original user environment and returns to the
user process.

Event processing is also similar to interrupt processing in that the
environment is saved prior to and restored after calling the event
handler, so that the user process can continue normally. The major
differences are listed below:

* Events are signalled by software, interrupts by hardware.

¢ Event handlers are part of the user process and run in the
user’'s environment. Interrupt handlers are part of SOS and
run in SOS’s interrupt environment.

SOS-provided Services 55

e Events will only be recognized when the user process would
normally be running. They never preempt SOS.

e Events are ordered. When more than one event is active at a
time, they will be processed in decreasing order of priority.
Events with equal priority are processed in first-in, first-out
(FIFO) order.

e An event will be recognized only if its priority is greater than
the current user’s process event fence. The user process can
raise or lower the event fence to control event recognition.

When an event is armed, the driver should save the opcode and the
entry location of the event handler. When it is time to queue an event,
the driver should check that location and compare its contents with
the saved opcode to determine whether the event handler is still
there.

Event Queueing

Events are signalled by calling the SOS subroutine QUEEVENT
(described later), and may be called from any environment except an
NMI interrupt handler.

When QUEEVENT is called, the event parameters are copied into an
event entry, which is linked into the active event queue. Events are
linked in decreasing priority, guaranteeing that the highest-priority
event is always at the head of the list. The list always ends with a
dummy entry with a priority of zero.

Event Recognition

SOS maintains an event fence for the user process and associates a
priority with each event. Each time the event manager exits SOS and
dispatches the user process, it compares the priority of the event at
the head of the active event queue with the user’s process current

event fence. If the event’s priority is greater than the event fence, the
event will be recognized.

56 SOS Device Driver Writer's Guide

Each time control returns to SOS from an event handler, the queue is
examined and succeeding events are handled until none remain in
the queue above the event fence. When there are no more events to
be recognized, SOS dispatches the user process.

QUEEVENT Entry Point $191F

The purpose of QUEEVENT is to signal an event to SOS.

Parameters passed:

X: Parameter array address low byte

Y: Parameter array address high byte
(Must reside in current bank. If in zero-
page, the high byte must specify the absolute
page number, not zero.)

Normal exit (event queued):

Carry: Clear
A X Y: Undefined

The parameters passed in the parameter array are the event’s priority,

an ID byte (supplied by SOS) to be passed to the event handler, and
the event handler’'s address.

The structure of the parameter array is:

Byte Data

0 Event priority

1 ID byte (supplied by SOS)

2 Event handler address (low byte)
3 Event handler address (high byte)

4 Event handler address (X-byte)

SOS-provided Services 57

Byte 0 contains the priority level of the event. Events with a priority
jevel lower than the current value of the event fence are ignored.

Byte 1 is a space for an ID byte supplied by SOS to determine the
ownership of any given SIR.

Bytes 2 through 4 contain a pointer to the entry point of the event
handler assigned to the event in question.

58 SOS Device Driver Writer's Guide

Interrupt Handling

60
61
62
64

Interrupt Handlers
Interrupt Handler Design
Interrupt Handler Environment
Interrupt Resources

Interrupt Handling 59

60 SOS Device Driver Writer's Guide

)
Interrupt Handling

Hardware (IRQ) interrupts allow a device driver to handle
asynchronous operations in a peripheral device. By using interrupts,
a device can operate more efficiently, and allow the interpreter to
continue running.

For example, when you send a large number of characters to
.PRINTER to be printed, the driver doesn’t process all the text
immediately. Instead, it immediately returns control to the interpreter,
allowing the interpreter to do something else while .PRINTER
processes the print buffer contents as required by the printer.

When a device interrupt occurs, SOS establishes the interrupt
environment, locates the interrupt’s source, and then calls the proper
interrupt handler.

When the interrupt handler returns, SOS restores the saved
environment and returns to the interrupted code.

Interrupt Handlers

Any device that uses or responds to interrupts requires an interrupt
handler as part of its device driver.

Interrupt Handling 61

When an interrupt handler is called, it performs three functions:

1. Clears its interrupts
2. Services the interrupting device

3. Returns to the SOS dispatcher

Interrupt Handler Design

Your interrupt handler must conform to general device driver design
rules. There are some exceptions, described later, caused by slight
differences in the system environment during interrupt operation.

It is up to you to make sure that the device driver and its interrupt
handler operate without conflicts between each other and with SOS.
Masking the interrupt when the driver is running, semaphores, or
other appropriate mechanisms may be used to avoid problems, such
as code reentrancy or simultaneous data access by the driver and
interrupt handler.

Interrupt handlers may call only those SOS routines specifically
documented as being callable from interrupt handlers.

If your interrupt handler can complete its work in about 500
microseconds or less, it should not enable the interrupt system until
it has finished. However, it should never leave interrupts disabled for
more than 850 microseconds. Such a case might be an indication
that interrupts should not be used by the driver.

If servicing the interrupt will take more than 500 microseconds, the
interrupt handler must mask its interrupt and clear the “Any Slot”
interrupt flag, by storing $02 into $FFDD.

The time spent in your interrupt handler should be calculated for a
clock frequency of 1 MHz. Remember that only minimum times for
any process should be calculated. There is no way to guarantee
maximum interrupt response times.

62 SOS Device Driver Writer's Guide Interrupt Handling 63

Interrupt Handler Environment

Priority Device
Just as during a normal call to a device driver, certain system
conditions can be expected when your interrupt handler begins 1 ACIA .
R 2-8 Internal devices
execution: 9 Slot 1
10 Slot 2
e Zero-page. When an interrupt occurs and your driver is " oo
called, the Z (zero-page) register will be set to $00. The

extended-page used for enhanced addressing effectively
does not exist during interrupt handling. Extended

Table 5-1. Interrupt Polling Priorities
addressing is not available to interrupt handlers.

e Bank register. The B (bank) register ($FFEF) is set by SOS The minimum response time to ca_ll an interrupt hapdler is about 160
and should be left alone by your driver. microseconds, assuming that the m_terrup't system |§ enapleq and
that there are no other interrupts with a higher polling priority. When
the interrupt handler returns, an additional 115 microseconds are

needed to relaunch the interrupted code.

e System clock. The system clock will be set to full speed when
your interrupt handler is called. After servicing the interrupt,
the clock should be at full speed if your interrupt handler has

changed it. There is no guaranteed maximum response time since higher-

¢ Interrupts (IRQ). These have been disabled to allow your priority interrupts may preempt lower-priority interrupts indefinitely.
handler to run to completion. o
Before executing, the handler should mask (or clear) its interrupt,

* 1/O space. Selected. and if the interrupt is from a peripheral slot, it must clear the “any

* 1/O expansion ($C800 space). Not selected. slot” interrupt flag by storing $02 in location $FFDD.
* Stack. The stack in use will be the primary system stack. All interrupting devices must include the ability to mask and unmask
¢ Xregister. The processor’s X register will contain a pointer to their interrupt independently of all other devices.
a $20-byte scratchpad area in zero-page. The scratchpad area] . .
must be addressed with ZPG,X or (ZPG,X) addressing modes. To prevent an interrupt handler from modifying shared data while a

driver is running, the driver should mask the device interrupt instead

® Yregister. The processor’s Y register will contain the status of of disabling the interrupt system.

the onboard ACIA that has caused the interrupt.

In general, when you must disable the interrupt system, you should

preserve the current interrupt state, disable interrupts, then restore
the status. For example:

When two or more interrupts occur simultaneously, SOS calls the
interrupt handlers in the order listed in Table 5-1.

PHP
SEI

PLP

Device Driver Coding Techniques 65

64 SOS Device Driver Writer's Guide

instead of:

SEI

i Dvie Driver Coding Techniques

Failure to follow this convention will result in unknown errors.

See the section on System Resource Allocation in Chapter 4 for more
information on handling interrupts.

Interrupt Resources 66 General Driver Design
68 Writing Character Drivers
69 Writing Block Drivers
SOS maintains a table of enabled IRQ interrupts and their handling 69 Writing for Interrupt-driven Devices
routines. When a device driver become active, it can ask SOS to add 69 Creating Device Driver Code Files
an entry to this table, and give SOS the number of the interrupt it 70 Error Detection and Reporting

wants and the address of the interrupt handler that will respond to
the interrupt.

The interrupt numbers, called SIRs, are explained in Chapter 4 under
System Resource Allocation.

When SOS receives an IRQ interrupt, it polls all SIRs in order of
precedence to find the particular device that generated the interrupt.
It then calls the interrupt handler associated with that SIR.

An IRQ interrupt can only be enabled and serviced by a device
driver.

66 SOS Device Driver Writer's Guide Device Driver Coding Techniques 67

Device drivers hold some aspects of operation in common. All device
drivers are allowed to

6 e Alter processor status flags D, N, V, Z, and C.
. = = = e Enable processor status | (interrupts) with some limitations as
DeV’Ce Dr'ver COd'ng TeChnlques described in Chapter 5 of this manual.

e Alter A, X, and Y registers. The device manager makes no
assumptions about register contents when a driver is
executed.

e Alter E (environment) register except for the screen and stack
bits.

e Alter the Z (zero-page) register.

Device drivers are part of SOS and they should be as reliable and as * Use software loops for a guaranteed minimum timing delay.
fully tested as the rest of the system. e Disable the interrupt system by using a
Some things to remember when building your device drivers: l;l-él:
General Driver Design ,
PLP
When you set out to write your new driver, whether it is your first or instruction sequence.

seventy-third, there are some questions you should ask yourself. * Absolutely must allocate slots (SIR) when their use is needed

]) o) and must deallocate them when finished.
® |s it a block or character device? This difference determines

what functions it must support, how you can implement it,

: Device drivers are not allowed to
and how it can be tested.

. . s []
e Are interrupts needed, or even useful, for your driver’s Issue SOS calls.

operation? , ® Use time-dependent code.

* How big a buffer is needed for your device to operate most ®* Communicate with other device drivers.
efficiently?

. y ® Alter the contents of the stack.
* What diagnostics are possible?

¢ Alter the Bank register.

Disable the interrupt system with the sequence

68 SOS Device Driver Writer's Guide

SEl

CLI

because you will lose track of the previous processor status.

Some general suggestions on designing device drivers are:

® If your driver uses interrupts (described in Chapter 5), it
should mask the device interrupt to prevent the request
handler and interrupt handler from conflicting over shared
data.

* When you need time-dependent operations, use on-board
hardware timers or a dedicated microprocessor.

® Don't depend on actual processor speed in full-speed mode.
It varies.

® And finally, make things easier for yourself by using the
device driver skeletons provided in Appendices A and B.

Writing Character Drivers

The list that follows gives a suggested sequence of steps for you to
follow when implementing a character device driver.

® Do overall design. All character device drivers must support
NEWLINE mode.

® Design tests and diagnostics.

¢ Begin coding.

* Implement DR_INIT.

e Start using ExerSOS to test the driver’s interface with SOS.
(ExerSOS is described in the Apple /1] SOS Reference
Manual.)

* Implement DR_READ and DR__WRITE.
®* Implement DR_STATUS and DR__CONTROL.

e Test with ExerSOS and diagnostics.

e Test with live system.

Writing Block Drivers

The list that follows gives a suggested sequence of steps for you to
follow when implementing a block device driver.

e Do overall design. All block device drivers must support
512-byte blocks and logical block numbers.

e Design tests and diagnostics.

e Begin coding.

e Implement DR_INIT.

e Start using ExerSOS to test the driver's interface with SOS.
(ExerSOS is described in the Apple 111 SOS Reference
Manual.)

* Implement DR_READ and DR_WRITE.

¢ implement DR_STATUS and DR_CONTROL.
¢ Implement DR__REPEAT.

® Test with ExerSOS and diagnostics.

* Test with live system.

Writing for Interrupt-driven Devices

See Chapter 5 of this manual.

_CLeating Device Driver Code Files

Device Driver Coding Techniques 69

Device driver code files are produced with the Apple lll Pascal
Assembler. All you have to do is produce a standard relocatable

object file as described in the Apple 11l Pascal Program Preparation
Tools manual.

Interfacing with Apple lli Peripheral Connectors 71

70 SOS Device Driver Writer's Guide

@ To be used as a device driver, your code file must not have been
manipulated by either the Linker or the Librarian. If it has been, it
will not work.

_Interfacing with Apple Ili
. Peripheral Connectors

Error Detection and Reporting

It is up to your driver to catch errors during its execution.

When an error has been encountered and recognized, it must be
reported to SOS through SYSERR, described in Chapter 4 under
Error Handling.

Before reporting errors to SOS, which effectively terminates driver
execution, you can perform any necessary housekeeping functions to
insure that the driver will operate properly when it is called later on.

72 Physical Description

73 Electrical Description

77 Design Techniques for Interface Cards
77 Decoupling

77 I/O Loading and Drive Rules

79 Timing Signals

80 Designing-in 6522s

82 Design Techniques for Apple 1ll Prototyping Cards
83 Minimizing EMI

84 Safety and Testing

85 Programming Notes

In addition to being able to recognize normal SOS errors, your driver
must be able to recognize error conditions peculiar to the device
being driven. A number of error code values have been reserved for
these device-dependent errors.

The documentation describing your device driver must include a
description of any special error codes for the benefit of interpreters
using your device driver.

Interfacing with Apple Ill Peripheral Connectors 73

72 SOS Device Driver Writer's Guide

7

1

are using the Prototyping Card for your initial development. +12V 50 /O SELECT

GND 26 E:: g 25 +5V
i I i DMAOK 27 24 NA
Interfacing with Apple Ill Peripheral ORI = 1=
IONMI 29 . 22 TSADB
Connectors IRQn 30] [1]21 RDY
IORES 31 |[] (1]20 1/O STROBE
INH 32| (3|19 PHID
-12v 33 |C] (3118 R/W
-5v 34|C] [3}17 A5
SYNC 35|] 1|16 A14
C7m 36|15 A13
Q3 37|14 A2
The Apple lll has four peripheral connectors at the back edge of the CiM 381113 AN
main board that allow you to plug in peripherals to expand the IOCLR 39|12 A10
usefulness of the computer. The connectors’ physical and electrical — SELECSTM :(13 E g :(1) 22
. n
characteristics are described in the following sections of this chapter. 07 a2|cd Bale a7
. . . . D6 43|11 [1]s8 A6
Every peripheral card used by the Apple Ill requires a device driver. D5 44l 1l7 AS
D4 45| 116 A4
Most developers of new Apple Il peripherals will want to use the D3 46|] []5 A3
Apple Il OEM Prototyping Card (described later in this chapter) to B? :; E % g 22
aid in development. All descriptions in this chapter assume that you po a9{ 72 A(1)
l:L:l 1

Physical Description

The four peripheral connectors along the back edge of the Apple liI's Figure 7-1. Apple Il Peripheral Connector Pinout
main logic board are 50-pin PC card edge connectors with pins on
0.10" centers (Winchester 2HW25C0-111). The connector pinout

appears in Figure 7-1. Electr ical Descr iptiOn

Table 7-1 specifies the signals of each pin of the Apple Il peripheral
connector.

74 SOS Device Driver Writer's Guide

Pin Pin
Number Name

Inor
Out**

Description

1 /O SELECTn

2-17 AO-A15

18 RW

19 PHO

20 I/O STROBE

21 RDY

22 TSADB
23
24

25 +5V

26 GND

NA
NA

NA

This line goes low on slot n whenever page
$Cn is referenced, where n is a slot number.
This signal become active during Phi0
(nominally 500 ns at 1 MHz, 250 ns during

2 MHz), and can drive a maximum of 10
LSTTL loads per peripheral card.

Buffered system address bus. Addresses are
set up by the 6502 within 300 ns after the
beginning of C1M. These lines can drive up
to 5 LSTTL loads per peripheral card.

READ/WRITE line. Goes high during a read
cycle, and low during a write cycle. This
line can drive up to 2 LSTTL loads per
peripheral card.

Phi0 is a variable 1 or 2 MHz signal
(depending on the current clock speed of
the Appile llIl). The line is connected to the
video timing generator’s SYNC signal. It may
drive up to 5 LSTTL loads per interface
card.

This line will go fow on all peripheral
connectors during PhiO of a read or write
cycle to any address in the range C800-
$CFFF. This line will drive up to 4 LSTTL
loads per peripheral card.

“Ready” line to the 6502. This line should
change only during C1M, and when low will
halt the microprocessor at the next READ
cycle. This line has a 1K ohm pullup to +5V.

Any peripheral pulling this line low causes
the address bus to tri-state for DMA. This
line has a 1K ohm pullup to +5V.

Not used in Apple ll.

Not used in Apple Il

Positive 5 volt supply, providing a total
maximum of 600 mA. A suggested limit per
card is 150 mA.

System electrical ground. (0 volt line from
power supply.)

Table 7-1. Signal Description for Peripheral I/O Connectors

Interfacing with Apple lll Peripheral Connectors 75

Pin

Number Name Out**

Pin Inor
Description

27

28

29

30

31

32

33

34

35

36

37

38

DMAOK 0] Acknowledge signal. It informs the
peripheral that the DMA requested by the
peripheral can now proceed.

DMAL | Direct Memory Access (DMA) Interrupt
request. This line has a 1K ohm pullup to
+5V.

IONMI | Input/Output Non-Maskable interrupt. The
non-maskable interrupt does not go directly
to the processor, so it can be masked by the
system reset lock function.

IRQn | Interrupt request line. The interrupt cycle
will begin if interrupts have not been
disabled. Each peripheral’s signal goes to
an individual gate input and can be driven
by a normal TTL output.

IORES (@] The Input/Output Reset signal is used to
reset peripheral devices. It is pulled low by a
power-on, Reset during Emuiation mode, or
a Control-Reset.

z
T

Inhibit line. When a device pulis this line low,
all system memory is disabled. This line has
a 1K ohm pullup to +5V.

—12v 0 Negative 12 volt supply*. The maximum
current that may be drawn on this line is
150 mA.

-5V (6] Negative 5 volt supply*. The maximum
current that may be drawn on this line is
150 mA.

SYNC 0 Sync is the 6502 synchronization signal. You
can use it for external bus control signals.

C7M 0 7 MHz clock. This line will drive 2 LSTTL
loads per card.

Q3 O 2 MHz asymmetric clock signal. This line will
drive 2 LSTTL loads per peripheral card.

CiMm (0] Complement of C1M (Constant 1 MHz)
clock. This line will drive up to 12 LSTTL
loads per card.

Table 7-1. Signal Description for Peripheral I/O Connectors

76 SOS Device Driver Writer's Guide

Pin Pin Inor
Number Name Out** Description
39 IOCLR 0 Provides the $C800 space disable function

directly without address decoding. It is
addressed at $C02X. ($CFFF was used as
the address for disabling the expansion
ROM. You should use IOCLR to ensure
greater reliability for your device.)

40 CiM (0] Phase C1M (Constant 1 MHz clock). This is a
constant 1 MHz at all times, regardless of
system operational mode. When the system
is in the 1 MHz mode, this is the same as the
microprocessor Phi0 clock. This line will
drive up to 12 LSTTL loads per card.

41 DEVICE SELECTn (e} A read or write to addresses $COn0 through
$CONF (where n is the slot number) causes
Pin 41 on the selected connector to go low
during Phi0 (400 ns in 1 MHz mode; 250 ns
in 2 MHz mode).

42-49 DO-D7 1,0 Buffered bidirectional data bus. During a
write cycle, data is set up by the processor
300 ns or less after the beginning of C1M.
Data must be ready no less than 100 ns
before the end of C1M during a read cycle.

50 +12V (o] Positive 12 volt supply, this line can supply a
total maximum current of 800 mA.

*Note: Total power drawn by any one peripheral card must not
exceed 1.5 watts.

**Indicates the direction of the signal: | means input to the Apple Il from the
peripheral; O means output from the Apple lll to the peripheral; 1,0 means either
direction is possible (for example, R/W or data).

n is the slot number on slot-specific signals.

Table 7-1. Signal Description for Peripheral /O Connectors

Interfacing with Apple Ill Peripheral Connectors 77

Design Techniques for Interface Cards

The Apple lli Prototyping card has +5V and ground (GND) available
on both sides of the card. If other voltages are needed, you must wire
them individually. Integrated-circuit (IC) sockets are recommended
for peripheral interface applications. Transistor-Transistor Logic (TTL)
should be low-power Schottky (74LS---) where possible.

Decoupling

All voltages on your card should be decoupled with a 0.1 microfarad
capacitor to ground near the I/O connector card power pin at the
four special locations provided. Use additional 0.1 microfarad

capacitors for approximately every two low-power Schottky, CMOS,
or MOS devices.

If either PROM or buffer power-down is used, the power-down circuit
should be individually decoupled on the power supply side. Do not
decouple the switched power pin.

1/0 Loading and Drive Rules

Table 7-2 gives the drive and loading requirements for the peripheral
I/O connector in terms of low-power Schottky logic (LSTTL). Note
that MOS devices usually do not have sufficient drive for a fully

loaded Apple Ill bus and must be buffered onto the data bus (see
Table 7-2).

The a_ddress bus, the data bus, and the read/write (R/W) lines should
be driven by tri-state buffers such as the 741.8365.

78 SOS Device Driver Writer's Guide Interfacing with Apple lll Peripheral Connectors 79

Since considerable capacitance is distributed over an interface card,
Pin Pin Drive Required Maximum the load contributed by up to three other peripheral cards should be
Number Name By Apple Ill Bus LSTTL Load" considered in the design. Attempting to use PIAs and ACIAs directly
on the address bus will generally lead to errors in timing and level.
;_17 "{\(3351'550“ ?r/i/-\State Buffer gz Type 2316 ROMs or 2716 EPROMs are exceptions, because the device
timing allows them a very large margin.

18 RW Tri-State Buffer 10
19 PHO N/A 5
20 /O STROBE N/A 12 Timing Signals
21 RDY Open Collector N/A ——
22 TSADB Open Collector N/A L .
23 not used N/A N/A A number of system timing signals are available on the Apple i
24 t d N/A N/A 9 PP bus.
not use Figure 7-2 shows details of the relative timi i
25 +5V N/A N/A[150 mAJ** 9 e timing of these signals.
26 GND N/A N/A
27 DMAOK N/A 4
28 DMAI Open Collector 4 e
29 IONMI Open Collector N/A 1 OEVSEL
30 IRQN Open Collector N/A —\ s
(19 PHS
31 IORES N/A 12
— —.\—(345)8"4(:
32 INH Open Collector N/A eacrm
33 -12v N/A N/A[50 mA]** omes ,
34 -5V N/A N/A 50 mA]** o8 & M
35 SYNC N/A 10 S Goss — / A\
36 C7M N/A 10 (e X
{2-17) Ax D G
37 __._QS N/A 10 2MHz (41) DEV SEL 1‘7 —— 58— a—8—
38 CiM N/A 12 - N 4
39 I0CLR N/A 12 N 7/
40 CiM N/A 12 ~
41 DEVSELn N/A 12 ";::j: e — /
42-49 DO-D7 Tri-State Buffer 8 - ——————X X XX
50 +12v N/A N/A [75 mAJ** | N
(39,40) CTM.CYM
X
*Loading is per slot with reference to the main logic board. For example, each Apple oo —
1l bus data line will drive 8 LSTTL inputs on any peripheral slot card. @mae T X

**The power supply currents are the maximums for each card slot.

Figure 7-2. I/O Timing Diagram

n is the slot number on slot-specific signals.

Table 7-2. Loading and Driving Rules

80 SOS Device Driver Writer's Guide Interfacing with Apple Ill Peripheral Connectors

The Apple lll runs in two clock modes: the 1 MHz mode, and the full- 2) 12 2308 3 26 220 25 s
speed mode, which is characterized by rapid changes of clock (43)]‘4’ ; g;’ 24 1
frequency between 1 MHz and full speed. The Apple Il can be forced f:‘;; 1 29
to operate in the 1 MHz mode either by using a special code (see (46) I 3 3 .
Chapter 3) or by using Apple Il Emulation mode. If it is in the 1 MHz s 18 2 32 —
mode, the Apple Il strobes are about 440 nsec long and are (49) 19 ! 33
synchronized with the 1 MHz clock. (o _ SEL 1y 79 2

(18 —BW 21 o
In the normal Apple Il full-speed mode, the strobes are half the (26) —(GND) 22 8
length of the 1 MHz mode, as shown in Figure 7-2. More importantly, 6] :; g: °‘3‘,}§§L
in certain applications the phase of the 1 MHz clock (pins 38 and 40) (;?) AESET 34
is unpredictable relative to the strobes. To perform a counting @0y R 37
operation requiring the system 1 MHz clock to start at a precise time 40 38
during a strobe, the 1 MHz mode must be used during the strobe (0) 2 —
operation.

Figure 7-3. Sample 6520 interfacing Circuit

Designing-in 6522s

SOFT 5
11, J,4
(o) 0 2 5
36) ™ 3
The VIA LSI circuit (6522) has proven very useful for Apple- 1o Ls7a
compatible peripherals. While similar to the 6520, the 6522 requires 1 9
more precise timing of its clock signal.
. 13 10
Both circuits must be buffered to the Apple lll bus for reliable
operation in loaded systems. Unlike the Apple II's IRQ line, which “2) 12 8304 8 7 2 25
might be “seeing” any number of LSTTL inputs, the Apple liI's IRQ (43) 13 7 8 27 24 o5
line sees only a single LSTTL input and thus requires no buffering. e 1 : 3 20
(46)
1 3 2 kil N
@ The 6522 (and 6520) cannot be accessed in full-speed mode. Since f:g 18] 2 1 32 —
timing margins have essentially been halved, there is insufficient (49) 19 1 DO 33 6522A
time for the 6522 to latch addresses. , oy NE 5 | 55228 REQUIRED
. o . RW
Figures 3 through 5 show examples of circuits using the 6522 and the ‘1(:; A3 2 Vo
6520 that are known to work satisfactorily. @) —A7 36 CONTROL
@3) A1 a7 LINES
(2 A0 38
(31) —_RESET 34
(30) —1RQ 21
{*) =(41) DEVSEL

OR (1) I/O SEL

Figure 7-4. Sample (A) 6522 Interfacing Circuit

82 SOS Device Driver Writer's Guide Interfacing with Apple lll Peripheral Connectors 83

50 %LS112 Min im iZin g EMI

(40)

The Apple lll has been designed to minimize electromagnetic
interferance (EMI) to radio and television receivers, and meets
Federal Communications Commission requirements for computing

8304)
42) 7 devices.
& : P
545) 4 = Since Apple has no control over any circuitry you might design, you
G 2 N have to assume responsibility for “good engineering practice” and
(48) ! any EMI generated by the interface card.
(49) po 6522A
REQUIRED . li h T Ml i . f
* Here are some guidelines to help you minimize EMI in your interface
(18) |/80 card designs:
g; CONTROL _ _
@ LINES 1. Cards having no external I/O connections generally won't
@ cause increases in external EMI. Even so, decoupling
(31) — RES capacitors or networks should be placed on the card to
(30) —RQA reduce electrical noise coupling into the main logic board or
adjacent interface cards.
(*) =(41) DEVSEL i ; ;
OR (1) 11O SEL. 2. If your card is used to interface an external peripheral to the

Apple lll, extra precautions must be taken because data
signals on I/O cables are a significant source of EMI.
Figure 7-5. Sample (B) 6522 Interfacing Circuit
External I/O connections must be of the metal shell-type, such as the
“DB” connector family. It is important to use metal-shell connectors
on both the card and the I/O cable.

Design Techniques for Apple 1l

Prototyping Cards The connector on your interface card should have the metal shell

elgctrically connected to logic ground. This may be accomplished by
using I-brackets to mount the connector on the cord. The metal shell

The Apple il Prototyping card is designed specifically to aid you in of the connector should also be electrically connected to the metal
developing new interfaces for the Apple Ill. A detailed description casting of the Apple Ill at the rear I/O port.

of the card and recommended techniques for developing new Alll _ . '
interfaces is covered in the manual that is supplied with the card. /O cables must be of the shielded type (preferably braided shield

over pre-insulated signal conductors).

84 SOS Device Driver Writer's Guide

DO NOT use unshielded flat ribbon cables!
Due to cable construction techiniques, there is an exposed

(unshielded) area between the cable shield and the connector. The
cable shield must be connected to the metal shell of the connector
by using short jumper wires.

Similar construction techniques should be used at the peripheral end
of the cable.

Testing

Although the Apple lll computer is tolerant of normal handling and
use, certain conditions will lead to damage of the main logic board or
its components. Before installing a new prototype interface card, it is
very important to check for short circuits (or other miswiring) to
prevent damage.

The test for short circuits on the constructed card has two steps:

1. Check for short circuits between the power supply lines and
ground on the card by using an ohmmeter. Also check all
power supply traces, whether they are used or not, before
installing any ICs or transistors.

2. Check for short circuits between each I/O connector trace
and all other connector traces on both sides of the board.
One typical board short circuit occurs between traces that
are on opposite sides of the connector.

Once you are certain that the power supply and I/O connector traces
won't be short circuited, you can install the card and continue testing
as follows:

1. Turn off the Apple llI's power switch on the back of the
computer. Unplug the Apple llI's power cable. Note the Light-
Emitting Diode (LED) on the main logic board near the I/O
connectors. Be sure that this LED is off before inserting or
removing anything.

Install the card in the appropriate I/O slot.

Reconnect the power cable, turn the power switch back on,
and check to see if the system will boot. If you have tested for
short circuits correctly as described above, failure to boot
probably means that there is a short circuit in the bus
interface or incorrect interface logic. Remove the bus and
address interface logic devices and try to boot the system
again.

4. If you still can’t boot the system, you probably have a serious
connection or logic problem. Remove all the ICs, and try to
boot the system again. If the system still does not boot, then
carefully recheck your logic and wiring.

5. Your device driver may have a bug that is taking the system
down during DR__INIT.

Programming Notes

The requirements for successful I/O operations depend on whether
the Apple lll is to be used in Native mode or Apple Il Emulation mode.

Because the Apple Il uses memory overlays and is RAM oriented, the
only areas that are guaranteed not to be overwritten are the device
driver areas. Although it is generally not considered good practice to
make self-modifying code, placing the buffers and parameter storage
within the driver areas is the only way to guarantee their integrity
under all operating conditions.

The 6502 performs a read cycle twice at indexed locations (such as
$C080 + $n0). The first of these is a false read. Similarly, indexed
store cycles will cause a false read cycle followed by the write cycle.
These false reads can disturb the status register of peripheral

devices such as PlAs or ACIAs. See the 6502 Programming Manual
for details on indexed memory operations.

Interfacing with Apple lll Peripheral Connectors 85

Appendix A — Sample Block Driver Skeleton 87

86 SOS Device Driver Writer's Guide

Sample Block Driver Skeleton

This appendix contains a skeletal block driver to study as an example
of the structure of a basic block driver.

The sample is written for the Apple lil Pascal Assembler and is
representative of SOS device drivers that have been written in the
past.

The implementation of the individual device requests, interrupt

handling, and so on, obviously is dependent on the actual device
being written for.

88 SOS Device Driver Writer's Guide

A

Sample Block Driver Skeleton

Current memory available
00001
2 blocks for procedure code

0000
Current memory available
00001

00001+
00001
0000
00001
0000
00001
0000t 1913
0000! 1914
0000: 1922
0000! 1928
Q000! FFDF
00Q0! FFEF
0000!
0000! 00CO
0000! 00C1
00Q0! 00C2
0000: 00C4
0000: 00C2
0000:! 00C3
0000% 00Ce&
000C! 00C8
0000
00001
0000
000C! 00DO
0000! 00D2
0000! 00D4
0000: 0O0D%
00001
0000
Q000!
0000: 0020
0000! 0021
0000: 0022
0000! 002%
0000! 002&
00001 0027
0000! 0028
0000! 002C
0000} 002D
00001
0000 ¢
00001
0000
0000+
0000
0000!
00001
Q000!
0000
00001

23454

-title “Apple /// Skeleton BLOCK Driver"
22184 words left

. proc BLOCKDR
21929

.nopatchlist

.nomacralist

i Apple /// Skaleton BLOCK Driver

i S0S8 Equates

AllocSIR . EQU 1913 i allocate system internal resource
DealcSIR . EQU 1916 i deallocate system internal resource
SelCB00 . EQU 1922 i select/d lect I/0 space

SysErr . EQU 1928 i report error to system

EREG . EQU OFFDF i environment register

BREG . EQU OFFEF i bank register

REGCODE . EQU oco i request code

SOSUNIT . EQU 0C1 i unit number

SOSBUF . EQU ocz2 ; buffer pointer

REGCNT . EQU 0ca i requested hyte count

CTLSTAT . EQU oc2 ; control/status code

CSLIST . EQU feloc) i control/status list pointer
SOSBLK . EQU 0oCcé i starting block number

BREAD . EQU oce i bytes Tead returned by D_READ

i Qur temps in zero page

BUFFER . EQU oDo i my buffer ptr
BLOCK . EQU oD2 i my block ptr
NBYTES . EQU oD4 i # bytes to transfer for debugs
NBLKS . EQU ops i % blocks to transfer for r/w
i S08 Ervor Codes
XREGCODE . EQU 20 i Invalid request code
XCTLCODE . EQU 21 i invalid control/status code
XCTLPARAM . EQU 22 i invalid control/status param
XNORESRC . EQU 25 i Resource not available
XBADOP EGU 26 i invalid operation
XIOERROR . EQU 27 i 1/0 ervror
XNODR IVE . EQU 28 i drive not connected
XBYTECNT . EQU 2c i Byte count not multiple of 512
XBLKNUM . EQU 20 i Block number too large

page
i Switch Macro

.MACRO switch

. IF YL O e if paraml is present

LDA %1 load A with switch index

ENDC

CMP #%2+1 do bounds check

BCS $010

ASL. A

ndix A — ngple Block Driver Skeleton

0000
Eaitd

2€E 42 4C 4F 43 4B 20
20 20 20 20 20 20 20

TAY

LDA

PHA

LDa

PHA

L IF

RTS

. ENDC
%010 . ENDM

A3+1. Y i get switch index from table
%3 Y
NAAY O ven i if param 4 omitted

i go to code

;i Force 1 MhZ mode

MACRO
PHP
SEI
LDA
ORA
STA
PLP
. ENDM

setimhz

EREG
#80
EREG

i Force 2 MhZ mode

MACRO
PHP
SEI
LDA
AND
STA
PLP

ENDM

set2mhz

EREG
*7F
EREG

i Gross debug call

MACRO
PHP
PHA
LDA
STa
sTA
PLA
PLP
. ENDM

. page

RN
*

imat

#41
400
SOFAR

Device Identification Block (DIB)

For block devices, fill in # blocks, type/subtype, slot, version, manuf
»*

Ee e
DIB . WORD 0000 i link
. WORD Entry i entry point
. BYTE [} i name count
.ASCII “. BLOCK " i device name
.BYTE 80 i active: no page alignment
DIB_SLOT . BYTE OFF i slat number
. BYTE [+] i unit number
. BYTE oD1 i type
. BYTE 005 i subtype
. BYTE (o] i filler
DIB_BLOCKS WORD 280 i # hlocks (BO*8)
WORD 0000 i manufacturer-unknown!
. WORD 1000 i release-preliinary!

; DCB length and DCB
DCB WORD
DEBUG . BYTE

i Local storage

SOFAR . BYTE
INITOK . BYTE
LASTOP . BYTE
SLOTCN . BYTE
SLOTCX . BYTE
DIBPTR WORD
i SIR table

SIRADDR WORD
SIRTABLE BYTE
SIRCOUNT . EQU

80

oo
XNORESRC
OFF

SIRTABLE

10.0.0,0.0
#-SIRTABLE

one byte for now

debugging on (80}/of¢ (00) flag

gross debug

init went ok(00)/ervor code
last op for D_REPEAT calls
compute CNxx and store on init
compute COXO and store on init
pointer to curselives!'

90 SOS Device Driver Writer's Guide

00311

00311

00311

0031 AS CO
0033

00331

00331

0033: C9 08
0035! FO##
0037!

00371

00371

0037

0042! AD 2200
0045! FO##
0047! AD EFFF
004A; B85 FF
004C! AD 2800
004F | 8% FD
0051t AD 2700
0034! 85 FE
0086!

0056}

0056

036!

0056! AD 2400
0099 FO*x
0038 !

0038 !

00SB!

00%B! 20 2819
00SE!

OOQSE!

00SE!

O0SE! AD 1500
0061 20 2219
Q044! BOFS
00661

00661

0046 !

00661 20 #a¥w
006921

00691

0069

0069 AS CO
Q0&B! BD 2%00
Q06E !

00&E |

O06E !

Q06E! A7 00
0070! 20 2219
00731

007E! &0
007F ¢

007F !

Q07F ¢

OQ7F !

007F !

007F !

007F! A3 C2
oogL! 85 DO
0083! A3 C3
o08s! 8% D1
Q087! AD C314
00BA! 8D D114
008D: A3 Cé
O0BF: 85 D2
00911 A5 C7
0093! 83 D3
00951

00951

00As!

00A&! AT 20
00AB! 20 2819
00AB!

Q0AB! A7 26
00AD! 20 2819
OOBO!

00BO!

OOBO!

O0BO! ##us
O0B2:} #x#x
OOB4! wexn
O0B& ! #uxnw
00B8! AS500
00BA! AS00
00BC! AAQO
OQBE! AAOO
00CO: wawwn
00C2! #xww
00C4:

00C4}

00Ca:

. PAGE
i Main entry point for the driver

Entry LDA REGCODE i look at request code
i If this is a D_INIT call (function code B8), skip the slot setup

CMP 8 i D_INIT?
BEG Doit i go perform D_INIT processing

i If debugging is enabled. put our address into (18)FD, FE, and FF

setimhz
LDA

DEBUG
BEQ $10
LDA BREG
STA OFF i bank reg
LDA DIBPTR
STA OFD
LDA DIBPTR+1
STA OFE i here I am!

i See if initialization went ok, by looking at INITOK. If it‘’s zero. then
i everything went fine, otherwise it‘s the error code to return

$10 LDA INITOK
BEG $60 i looks ak to me

i Return the error! Not interested in doing business with you!
$50 JSR SysErr i not tonight, I have a headache

i Select our slot. NOTE: we’ve slowed down to 1MhZ mode already! IMPORTANT!

$60 LDA DIB_SLOT i GOT to DOWNSHIFT before looking
JSR Se1C800 i at the slot! This one, please
BCS *50 i what! I can’t have it! Oops!

i Now call the dispatcher as a subroutine., with the slot all set up

JSR Doit

Remember the operation we performed for D_REPEAT processing

LDA REGCODE
STA LASTOP

Release the slot: go back 2MhZ mode, and leave

LDA #0

JSR Sel(800

set2mhz

RTS i Bye.

. page

The Dispatcher. Does It depending on REQCODE. Note that if we came in on
a D_INIT call, we do & branch to Doit; normally. Doit is called as a
subroutine! We copy the buffer pointer and block ® from the par. ter
arsa into our own temps, as the system seems to want them left ALONE

Doit LDA SOSBUF
STA BUFFER
LDA SOSBUF+1
STA BUFFER+1
LDA SOSBUF+1401
STA BUFFER+1401 i buffer pointer is 3 bytes!
LDA B8ASBLK
STA BLOCK
LDA SOSBLK+1
STA BLOCK+1 i block # is only 2
switch REGCODE, 9, DoTable i go do it

BadReq LDA #XREQCODE i bad request cade!
JSR SYSERR i Pfuil

BadOp LpA #XBADOP i invalid operation!
JSR SYSERR i Pfuil

i Dispatch table for Doit. One entry per command number, with holes

DoTable . WORD DRead-1 0 read
.WORD DWrite-1 1 write
WORD DStatus-1 i 2 status
- WORD DControl-1 i 3 control
. WORD BadReq-1 i 4 unused!
. WORD BadReq-1 i 9 unused!
. WORD BadOp-1 i 6 open! not for me!
. WORD BadOp-1 i 7 close! not for me!
- WORD DInit-1 i B init
. WORD Drepeat-1 i 9 repeat

i Processing D_REPEAT is easy. Repeat the last operation if it was D_READ
i or & D_WRITE, else complain

01201

o1211

AD 2300
FO#»

c9 01
FO#s

A9 26
20 2819

85 co
4C 7F0C

AD 1300

09 Co
8D 2600

AD 1500
6D 2000
A9 035

AC 2BOO

20 1319
BO#s

AD 1500
20 2219
BO®s

AT 23

8D 2400
20 2819

Appendix A — Sample Block Driver Skeleton

DRepeat LDA LASTOP i the last thing we did
BEG 1 i 00 is a rTead, that’s ok
CHMP *1 i 1 is a write
BEG 1 i that’s ok too
LpA #XBADOP i else pfui!
JSR SysErr i complain if not a write

i Last op was read or write, jJam that back in and bail through Doit again’

1 STA REGCODE i simple
~JMP Doit
page

i D_lNlT:call processing

3 Called at system init time only. Checi DIB_SLOT to make sure that the user
; set a valid slot number for our interface. Allocate it by calling AllocSIR
i If everything goes ok, set INITOK to 00, else leave an error code in it.

DInit LDA DIB_SLOT
BMI 1 i oops! negetive! that’s no good!
ORA #0C0
sTa SLOTCN

i Compute the system internal resource number (SIR) and call AllocSIR to
i try and grab that for us. It performs slot checking as a side effect

LDA DIB_SLOT

cLe

ADC SIRTABLE i sir=16+slot#

STA SIRTABLE

LDA #SIRCOUNT

LDX SIRADDR

LDY SIRADDR+1

JSR AllocSIR i this one’s mine!

BCS °2 i then again, maybe it isn’t!

i Select the slot to see if there‘s a card out there

setimhz i downshift first!

LDA DIB_SLOT

JSR SelC800 i can we select it?

BCS L2} i b/nope!that’s no good!

i Compute COXO for this slot and save

LDA DIB_SLOT

cLc

ROL A

ROL A

ROL A

ROL A

ADC #B80 i COBO + (slot # 16)
STA SLOTCX

runn

-

Insert the code to initialize your card here
*

R

Deselsct it. mark everything ok, and split

LDA *0

STA INITOK i everything fine
JSR Se1C800 i deselect

RTS i goombye

i Bad slot or something of that ilk.

1 LDA #XNODRIVE
BNE 3

i BIR not available- somebody got the slot before we did!
02 LDA #XNORESRC

i Stuff the code into INITOK and report it as an error

3 STa INITOK i no, it didn‘t go ok
JSR SysErr i doesn’t return
- PAGE

Random support and checking rovtines for the block driver

Check REQCNT to insure it‘s a multiple of 512 Return with C clear if
it is, return with C set if not. Leaves NBLKS cantaining the number of
blocks to transfer

CKCNT SEC i assume error

92 SOS Device Driver Writ

Appendix A — Sample Block Driver Skeleton 93

O12E! A5 C4 LDA REQGCNT i laok at isb of byt
i ytes to do
e ane b} i no good! lsb should be 00! o17at 91 €8 STA (BREAD). ¥
REGCNT+1 i t
18 cLc look at hSB g:;g. i Bump the block number
bA ROR A i put botom bit into C. O into top 017C:
85 D5 sTA NBLKS i save as number of blocks o17c: E6 D2 e b
&0 $1 RTS i C is set from ROR to mark error. O17E! DO#*
01801 €6 D3 INC BLOCK+1
i Convert block number to drive. sector pair, and track. Includes testing o182! . k
i for valid block number. Black number comes from BLOCK in ZP. Output is o182! i Decrement # of blocks to do
5 in DSS and TRK. C clea !
T on return means no error, C set means block # bad. g:gg} & D5 5 DEC NBLKS
A5 D2 CVTBLK LDA BLOCK i compare BLOCK with DIB_BLOCKS 01841 FOE6 BEG *3 ioquit if that’s all
CD 1A00 cHP DIB_BLOCKS - o186¢ DOD& ENE $1 i else do more blocks
A5 D3 LDA BLOCK+1 i must be << to be valid disk address
ED 1B0O SBC DIB_BLOCKS+1 PAGE
BOw##» . N 1 .
BCS 2 i br/no good! Return with € set! g:gg; ; D_WRITE call processing
T 0188!
P o188! 0188 DWrite .EGU &
i * Insert code to translate from block # to whatever your drive needs 0188! : i ;
i # Suggestion: put the resulting track/sector/etc infe in locals following 01881 i Validate the number of bytes to transfer and turn that into # of blocks
i * the DCB so you can look at it using th . 0180
[ing the debug STATUS calls 01881 20 2001 JSR CKENT
i R 01881 F0%# BCC %15
o18D! .
18 cLe 018D} i Count not multiple of 512. Complain.
&0 s2 RTS 016D!
018D! A% 2C LDA #XBYTECNT
R 211 018F! 20 2819 $10 JSR SysErr i bye.
;. 01921 ») .
i * ReadIt and Writelt need to be expanded into the actual transfer routines gi:g: i See if the buffer pointer will cause us any problems
s ®# for D_READ and D_WRITE using BUFFER. BUFFER+1, and BUFFER+1401 as the ie it if i
i ® buffer address. Routines are called to transfer 256 bytes, and SHOULD o172 20 wemx b JSR Fixtp Poand fix it if it did
Powd t BUFFER, .
C ncremen BUFFER+1, BUFFER+1401' 0199} i Convert first block number to drive/sector/track
i oewae 0195¢
019%! 20 3901 $1 JSR CVTBLK
£0 Readlt RTS 01981 90%% BCC 2 i converted ok.
019A:
50 Writelt RTS 019A! i Block number stinks. Complain
019A!
019A1 A9 2D LDA #XBLKNUM
0149! . PAGE 019C! 20 2819 JSR SYSERR i bye
0149 i D_READ call processing oL
01491 O19F 1 i Test number of blocks left to transfer
0149 0149 DRead . EQU » O19F ¢
01491 O19F| A5 D5 52 LDA NBLKS
01491 . validat . O1A1! DO## BNE 4
o1a9: i Validate the number of bytes to transfer and turn that into # of blocks 01A3! &0 3 RTS ; all done! bye!
0149! 20 2001 JSR CKCNT oaal
014C! F0u% BCC .15 gi::: i Transfer a block from the user to the disk
O14E!
014€1 i Count not multi £ i OIA‘E 20 4801 4 <SR Writelt
014€! multiple of 512 Complain. 01A7! A9 27 Lpa #XIOERROR
014E! A 2C LDA WXBYTECNT 3:::: BOE4 BCS $10 i oops! write error!
0150} 20 2819 %10 JSR SysE:
o153 ysErr i bye. 8:::} i Bump the block number
0153! i
o199 Zero # bytes read g:::: g"o'" ING BLOCK
0153! A0 00 15 LDY (] b e b
0155 98 Tva ° . g::ff Es D3 INC BLOCK+1
0156 91 ce STA « i !
0158 o8 N BREAD), ¥ bytes read gtan i Decrement # of blocks to do
01591 91 C8 sTA (BREAD), ¥ i msb of bytes read 01B1! Cé6 DS .
0158 o183 Foge 5 DEC NBLKS
0158! Insure the bufs , BEG *3 i quit if that’s all
0158: i uffer address won’t cause us any problems 01BS! DODE BNE 1 ; else do more blocks.
g}gg: 20 wwxn JSR Fixlp i and fix it if it did
1 01B7!
O15E! i Convert first block number to drive/sector/track 01871 - PAdE
O1SE! 01B7! . b .
O1SE! 20 3901 51 JSR CUTBLK 01871 i D_STATUS call processing
01611 90%x . H
gLeti BCC s2 i converted ak. phrid i We must implement two D_STATUS calls
01631 R . 0187} i o Return status (00 says not busy)
o183 Block number stinks. Complain. 0187} i FE Return preferred bitmap location (FFFF)
0163 A9 20D LDA #XBLKNUM 0187 ; g
N s Additionally, for debugging, we implement:
20 2819 5 01B7! gging P
JSR SYSERR i bye. O1B7! i 80 Read from driver space
‘ 01B7 i Bl Read from COXO space
i Test number of blocks left to transfer 0197: ¢ 82 Read from CNOO space
N i 83 Read from CBXX space
AS DS s2 LDA NBLKS 01874 P
Dok one ‘2L 0187! i 84 Hang solid!
60 ; 01B7! AS c;
$3 RTS ; all done! bye! 01891 Fo..z DStatus ;23 CTLSTAT i command to issue
DS00
i Transfer a block from the disk to the user g:::: gga:E CMP #OFE status 00
20 4701 . Jsh Rewdit O1BF{ BEQ DSFE i status FE
A9 27 O1BF !
BODC ;gg :)‘(([)UERRDH . . | O1BF! i check for debugging and debugging ops
i oops! read error O01BF! AD 2200 Lpa DEBUG . Led>
R 01C2! FOoun i is it enabled?
Mark another 512 bytes read. O1CA! 4C wwss BEG CSNe i br/nope, complain
a0 o1 Lov “ 01¢71 JMP DS8x i go look for debug calls
o1c7: *
:; gg kgg ;gasao>,v i Status code no good. Complain

SOS Device Driver Writer's Guide Appendix A — Sample Block Driver Skeleton 95

01C7! o218} . PAGE
01C7: A9 21 CSNG L.DA #XCTLCODE i control/status code no good 1B N
01C9: 20 2819 JSR SYSERR 02 B! i D_STATUS debugging calls. These calls transfer data from the driver and
oicc: °°", ; its 1/0 space to the user buffer. The format of the status list for these
o1cc: i Return status byte. Easy. o021 i calls is:
o1cCt 02181 ;
01CCi A0 00 DS00 LDY #0 g:::f ; 80 | #bytes ! disp { disp ! Read from driver area
O1CE! 98 TYA 5 both index and data 021B! i Bl ! #bytes ! disp ! 00 ! Read from COXx space
OICF! 91 €3 STA (CSLIST). Y i poke back to interested party. 02181 i 82 ! #bytes ! disp | 00 ! Read from CNxx space
01D1} 60 RTS 02181 ' 83 | #bytes ! disp ! disp ! Read from C8xx space
01D2! i
01D2! i Return preferred bitmap location. We return FFFF, we don‘t care. gg::f i #bytes — number of bytes to transfer, 00 to 255
[:33.73} H i
o1D2! A0 00 DSFE LDY "o Pt i For various bizarre reasons, we choose to modify the load instruction
01D4i A% FF LDA WOFF 0218 ;i rather than use indexing. The range checking on the various calls depends
01D&: 91 €3 STA (CSLIST), Y 02181 i on how much code I write to do Tange checking
o1p8! ce INY
01D9! @1 €3 STA (CSLIST), Y i return FFFF g::: i Common code. Set up # bytes to transfer, bump CSLIST pointer. and
01DB! 60 RTS i and leave. 021B! i do the transfer. We do it in 1MhZ mafi. as we may be looking at the slot.
o1pct PAGE g:}:t 20 ##un DS8x JSR DSCSET i do setup for debug calls
i . H BCC 2 i b/went ok
o1pc! 021E1 F0we '
g:ggi i D_CONTROL call processing 02201 ; DSCSET didn‘t like something. The error code is in A, let’s complain!
:
01DC! i We must implement two D_CONTROL calls: gﬁ! 20 2819 JSR SysErr i bye.
o1DC! § 0 Reset device '
g;s‘éf i FE Perform media formatting g:gg; i Check the number of bytes to transfer.
: N i 02231
01DC! i For debugging, we implement a few more: 2 BEG Scram i split if 00 bytes to transfer!
o1ipct i 80 Write deiver space %g: Foss
01DC! i a1 Write COXO space ozz28! i Define the instruction to do as an abs LDA
o1pci i a2 Write CNxx space 02251
o1DC! i a3 Write CBxx space LDA #OAD
02231 A9 AD
o1DC! 02271 ™ STA Qak i not the best technique...
01DC! AS c2 DControl LDA CTLSTAT i’ what we supposed to do? 022Z; e
8:25: :g‘:g gEO *10 i nothing? that’'s easy! 022A1 i set IMhZ mode. and do the transfer.
t MP #OFE i formatting? 022
O1E2! FO## BEG 10 i that‘s easy too! 022:: setimhz
O1E4!
. 02381
01E4! i check for debugging and debugging ops. 0233! 20 »s#s DSlaop JSR Gak i go do it.
01E41 0238! 91 €3 STA (CSLISTS, ¥ i return data to user
O1E4! AD 2200 LDA DEBUG i is it enabled? 023A! CB INY
O1E7! FO##» BEG 4 i if so, no more commands!' 0238) EE ###s INC ADDRL
O1E9! 023E! DO##» BNE st
OLEF! 4C #a¥n JMP DCBx i go check for debugs. 02401 EE wu#x INC ADDRH
O1EC! 02431 C6 DA [31 DEC NBYTES ; bump peinters, decrement count
01EC! i Control code no good. Complain. 0245! DOEE BNE DSloop ; loop through ail bytes
O1EC! o247
O1EC: 4C €701 4 JMP CSNG 0247 set2mhz ; back to full speed
O1EF! 02321 &0 Scram RTS ; all done
O1EF! i Execute reset or media formatting call. Very simple. We don‘t do anything'
OL1EF!
QlEF! &0 $10 RTS 02331 . page
O1FO0! 029531
01FO! . INCLUDE MISC 02331 i Setup code for both status and control debug calls. We validate the
02931 i displacement and possibly length parameters in the control/status list,
02331 i and set up the address in ADDRL. ADDRH in the instruction we‘ll execute
O1F0! . PAGE 02831 i later on to do the transfers.
01FO! 02531
Q1FO0! i Bump is called to bump the buffer pointer by one page (2546 bytes). 02531 A0 01 DSCSET LDY #1 i index used by later code
O1FO! i We dink the MSB of the buffer pointe, and fall into FixUp to see if 02951 AS c2 LDA CTLSTAT i op to perform
OLFO! i we generated an anomaly (and fix it up). 02971 C9 BO cMP #80 i T/w driver space?
01FO! 02591 FOwe BEG DSBO i b/yes, set up for that
01F0! E6 DI Bump INC BUFFER+1 i bump and fall into next code 02581 C? 61 CMP #B81
01F2! 029D! FOws BEG DS81 i T/w COXx space
01F2} i Fix up the buffer pointer to correct for any addressing anomalies' 02%F 1 €9 82 cMP w82
O1F2!: i Since we’ll call Bump after each page. we just need to do the initial 02611 Fows BEQ Dps82 i T/w CNOD space
01F2! i checking for two cases: 02631 c9 a3 cMP #e3
O1F2! i 0OXX bank N — > BOXX bank N-1 02631 FOus BEQ psed i r/w CBxx space
o1F2! i 20XX bank BF if N was O (!!!) 02671 C9 84 cMP 84
O1F2! i FFXX bank N - > 7FXX bank N+1 oab:: FOFE . BEG Py ; hang solid
01F2! 026
01F2! AS D1 FixUp LDA BUFFER+1 i look at MSB . O26B! i Not one of ours, rTeturn error code in A with C set
O1F4! FO#» BEQ = i br/that’s one! 02681
O1F&! C9 FF CcMP WOFF i is it the other one? 026B! A9 21 2 LDA #XCTLCODE
O1FB! FOmw BEQ 3 i br/yup, fix it! 026D: 38 SEC
01FA: 60 RTS i an easy one! 026E: &0 RTS
O1FB! g::i;
OIFB! A9 B0 2 LDA #80 i 00XX -> BOXX i Return bad parameter error.
O1FD! BS D1 STA BUFFER+1 0264F |
O1FF{ CE D114 DEC BUFFER+1401 i bank N -> bank N-1 gg;Fl A9 22 NGPARAM LDA #XCTLPARAM i parameter is no good
0202 AD D114 LDa BUFFER+1401 i see if it was bank O peti SEC
0205: €9 7F cHp w7F i (80) before the DEC. caray &0 RTS
0207! DO*# BNE EYs i br/nope, all fized. oz;gl
-0209! A9 20 LDA #20 i if it was, change bath 0274: A DS80 cLe i read from driver
020B! B9 D1 STA BUFFER+1 i msb of address and pethd 9? ggoo LDA DIBPTR i point to us
020D! A9 BF LDA #arF ADC (CSLIST). Y i add in first byte
020F: 8D D114 STA BUFFER+1401 i bank number for bank BF (!!1) gg;g: :g nen STA ADDRL i put into instruction
0212! DO## BNE 4 ; always branches. .. 027D INY
o214! i AD 2900 LDA DIBPTR+1
| 0280% 71 €3
o214! 18 3 cLe 0282: 8D e ADC (CSLIST), Y i form hi byte
02151 &6 D1 ROR BUFFER+1 » FFXX => 7FXX (clever coding) 0283: aC "'. STA ADDRH i store into instruction
0217! EE D114 INC BUFFER+1401 ; bank N => bank N+1 ¢ bl JMP DCFin i go finish up

021A1 &0 4 RTS i bye.

SOS Device Driver Writer's Guide

Appendix A — Sample Block Driver Skeleton 9

. PAQE
02881 i
o28e! B1 C3 Ds8e1 LDA (CSLIST), Y i pick up displacement i D_CONTROL debugping calls. These calls transfer data to the driver and
028A1 30E3 BMI NGPARAM i that won’t do! i e from the user buffer. The format of the status list for these
o28C! C? 10 CMP #*10
02BE! 10DF BPL NOPARAM i nor will that! only our slot! i
02901 AA TAX i stash for a moment i 80 | #bytes ! disp | disp | Write to driver area
0291! AD 1500 LDA DIB_SLOT i what’s our slot? ; 81 | #bytes ! disp ! 00 | Write to COXx space
0294} FOD9 BEG NGPARAM i cute. we don‘t have one. i 82 ! #bytes | disp ! 00 ! Write to CNxx space
0296: QA ASL A i 83 | #bytes ! disp |} disp ! Write to CBxx space
02971 OA ASL A s
0298¢ 0A ASL A i #bytes — number of bytes to transfer. 0O to 255
0299 OA ASL A i multiply by 16 ; » »
02%a! 18 cLe i For various bizarre reasons, we choose to modify the store instruction
i Tather than use indexing. The range checking on the various calls depends
i on how much code I write to do range checking
ADC #80 i form XO for the slot
ADC (CSLIST), Y i add in displac nt i Common code. Set up # bytes to transfer, bump CSLIST pointer, and
STA ADDRL i store low byte into instruction i do the transfer. We do it in IMhZ mode as we may be looking at the slot.
INY
LDA (CSLIST), Y i better be 00! 20 5302 DC8x JSR DSCSET i go do setup
BNE NGPARAM i only your slot! P BCC 2
Loy “0
LDA (CSLIST), Y i how many bytes again? ; Setup barfed. Return error code in A
BMI NOPARAM i nope.
étg i point to displacement again 20 2819 JSR SysErr
ADC (CSLIST)., Y i must be << 10 Fous 2 BEG Leave i and scram if it’s 00!
CMP #10
BPL NGPARAM i nope. won’t do at all. i Define the instruction as an abs STA (blecch!)
JMP DCfin i go finish up
a9 8D LDA #8D
AD 1500 DsB2 LDA DIB_SLOT i read from CNOO space 8D F902 STA Gak i set up as an abs STA instruction!
FOB2 BEG NCPARAM i must have a slot to do it though!
07 co ORA #oco i form CN i set 1MhZ mode, and do the transfer.
8D #wax STA ADDRH i and hose into instruction
B1 C3 LDA (CSLIST). Y i displacement setimhz
8D ##¥n STA ADDRL i into instruction
5 o B1 C3 DCloap LDA (CSLIST). Y i pick up user data
B1 €3 LDA (CSLIST). Y i check hi byte 20 F902 JSR Cak 5 put it away.
DOA3 BNE NGPARAM i barf if bad ce INY
FO## BEQ DCFin i go do cleanup processing (always branches) EE FAO2 INC ADDRL
DO%*» BNE $1
B1 C3 Ds8e3 LDA (CSLIST), ¥ i low bye of displacement EE FBO2 INC ADDRH
BD #xwx STA ADDRL ; poke into instruction €& D4 [33 DEC NBYTES ; bump painters, decrement count
¢ INY DOEE BNE DClaop i loop through all bytes
B1 C3 LDA {CSLIST), Y i hi byte of displacement
3097 BMI1 NGPARAM i no good. set2mhz i back to full speed
c? 10 cMP #10 i legal range is O-F &0 Leave RTS i all done.
1093 BPL NGPARAM i bigger is no good’ 03381 . END
18 cLc
69 C8 ADC #0C8
BD *axx STA ADDRH i stare into instructien AR - Absolute LB - Label UD - Undefined MC - Macro
RF - Ref DF - Def PR - Proc FC - Fune
i Set up the number of bytes to transfer. PB - Public PV - Private C5 - Consts
A0 00 bCfin LDY *0 i point back at #bytes to do ADDRH LB O2FBI ADDRL LB O2FA! ALLOCSIR AB 1913: BADOP LB BADREG AB 00D2: BLOCKDR PR ———
B1 C3 LDA (CSLIST). Y i get it from list BREAD AB 00C8: BREG AB FFEF! ;u?gsgl AB 00DO: BUMP CKENT AB 00C3! CSNG LB 01C7
Al TAX CTLSTAT AB 00C2: CVTBLK LB 0139 DCBX LB 02FD} DCFIN Lg ogn: gil:urﬂwm. LB gégg
i i DEALCSIR AP 1916! DEBUG LB 0022! DIB LB 0000: DIBBLOCK DIBPTR LB 0015: N LB
85 D4 STA NBYTES stash in zero page poty LB O07F: DOTABLE LB 00BO: DREAD LB 0149: DREPEAT DS00 Lb 0273: DSei L 0z6@
LB OzBa! 83 02CE ! ¢ DSCSET DSFE LB 0235! ATUS LI
i Roll the dice. Bump CSLIST pointer by 3 and assume it won’t cross into DWRITE LB 0188: ENTRY t: 0031 ¢ 2323 l;: .‘35,‘,5; FIXUP GAK. MC i INITOK LB 0024
i #n addressing anomaly. Not guaranteed to work! LASTOP LB 0025! LEAVE LB 0334: NBLKS AB 00DS: NBYTES NGPARAM LB 0147: REQGCNT AB 00C4
REQCODE AB 00CO: SCRAM LB 0252! SELCBOO AB 1922¢ SETIMHI SET2MHZ LB 002A! SIRCOUNT AB 0005
18 cLe SIRTABLE LB 002C: SLOTCN LB 0026 SLOTCX LB 0027: SOFAR SOSBLK : AB 0OC2! SOSUNIT AR 00C1
SWITCH ~MC —--: SYSERR 4B 1926! WRITEIT LB 0i48i XBADOP XBLKNUM AB 002D! XBYTECNT AB 002C: XCTLCODE AB 0021
AS C3 LDA CSLIST XCTLPARA AB 0022: XIQERROR AB 0027: XNODRIVE AB 0028 XNORESRC AB 0025! XREQCODE, AB 0020
69 03 ADC 3
85 c3 STA CSLIST i bump lo byte by 3
A% 00 LDA *0 Current minimu i
65 Ca ADC CSLIST+1 Mum space is 21196 words
B85 Cc4 E7A CSLIST+1 i maybe bump hi byte. Assembly complete: 882 lines
Errors flagged on this Assembly
18 cLC .
8A TXA i set 2/nz on # bytes, with C clear
60 RTS i return to caller

i NOTE: The following instruction is built on the fly,
i LDA (AD) or an absolute STA (8D). The address in the

to be either an absolute
instruction is modified

i as we go to eliminate false strobe problems on indexed instructions

oo Gak BYTE 00 i Opcode goes here

00 ADDRL . BYTE 00 i low byte of address
00 ADDRH . BYTE o0 i hi byte of address
&0 RTS i then we return

98 SOS Device Driver Writer's Guide

Appendix B — Sample Character Driver Skeleton 99

Smle haracter Driver Skeleton

This appendix contains a skeletal character driver for you to study as
an example of the structure of a basic character driver.

The sample driver is written to confirm to the Apple Il Pascal
Assembler and is representative of SOS device drivers that have
been written in the past.

Complete implementation of the individual device requests, interrupt

handling, and so on, obviously is dependent on the actual device
being written for.

100 SOS Device Driver Writer’'s Guide

B

Sample Character Driver Skeleton

Current memory available
©0000!

2 blocks for procedure code

00001
Current memary available
00001
0000 !
00001
00001
00001
0000
0000!
0000! 1913
0000! 1916
0000 1922
0000! 1928
0000! FFDF
0000! FFEF
00001
0000! 00CO
0000! 00C1
0000! 00C2
0000! O0C4
00001 00C2
0000! 00C3
00001 00C&

i 00C8
00001
00001
00001
0000} 00DO
00001 00D1
00001
00001
0000!
00001 0020
00001 0021
00001 0022
0000! 0023
00001 0024
00001 0023
0000 0024
0000¢ 0027
0000! 0028
0000 OO4C
0000¢
0000

H
00001
0000!
0000}
©0000¢
0000}
00001
0000
0000
0000}
0000+
00001

23454

title "Apple /// Skeleton CHAR Driver”

22184 words left

. proc CHAR
2127927

.nopatchlist

nomacrolist

i Apple /// skeleaton CHARACTER driver

i S0S8 Equates

AllocSIR . EQU
DealcSIR EQU
Se1CBOO EGU
SysErr . EQU
EREG . EQU
BREC L EQU
REGCODE . EQU
BOSUNIT - EQU
BUFFER - EQU
REGCNT . EQU
CTLSTAT . EQU
CBLIST - EQU
SOSBLK . EQU
BREAD - EQU

1913
1916
1922
1928
OFFDF
OFFEF

0co
oct
ocz
oca
ocz2

0céa
oce

i Our temps in zero page

NBYTES . EQU
RETCNT . EQU

i S0S Error Codes

XREQCODE EQU
XCTLCODE EGU
XCTLPARAM EQU
XNOTOPEN EQU
XNOTAVAIL . EQU
XNORESRC . EQU
XBADOP . EQU
XIDERROR . EQU
XNODRIVE .EQU
XEOFERROR . EQU
. page
i Macros

.MACRO switch
IF

oDo
oDn1

g > nw

LDA *1

. ENDC

CIF vg2r Ot
CMP *%2+1
BCS $010
ENDC

ASL A

TAY

allocate system internal resource
deallocate system internal resource
select/deselect I/0 space

report error to system

environment register

bank Tegister

request code

unit number

buffer pointer

Trequested byte count
control/status code
control/status list pointer
starting block number

bytes read returned by D_READ

bytes to transfer for debugs
returned byte count temp

Invalid request code

invalid control/status code
invalid control/status param
device not open

device not available
Resource not available
invalid operation

1/0 error

drive not connected

end of file error

if paraml is present
load A with switch index

if param 2 is present
do bounds check

0000: 0000
0002! waun

0004: 03
0005; 2

20
00131 20

43 48 41 32 20 20
20 20 20 20 20 20

dix B — Sample Character Driver Skeleton

DA
PHA
LDA
PHA
IF
RTS
. ENDC
$010 . ENDM

*3+1, Y i get switch index from table
3. Y
"% O e i if param 4 omitted

i go to code

i Force 1 MhZ mode

MACRO
PHP
SEI
LDA
ORA
STA
PLP
. ENDM

setimhz

EREG
#80
EREC

i Force 2 MhZ mode

. MACRO
PHP
SEI
LDA
AND
STA
PLP
ENDM

set2mhz

EREG
*7F
EREQ

i Increment 3 byte address- includes checking for basket cases

. MACRO
INC
BNE
INC
BNE
SEC
ROR

INC
%310 . ENDM

INCADR

%1

$310

%1+l

+310 i bank overflow?
ioyup!

*1+1

%1+1401

i Increment word macro

MACRO
INC
BNE
INC
210 ENDM

INW
%1
%210
%1+1

| Gross debug call

. MACRO
PHP
PHA
LDA
STA
sTA
PLA
PLP

. ENDM

. page

imat

#%1
400
SOFAR

i Device Identification Block (DIB)

DIB

DIB_SLOT

DIB_BLOCKS

-WORD 0000 i link

. WORD Entry entry point

. BYTE 5 name count

. ASCIT ".CHAR " device name

. BYTE 80 i active, no page alignment
BYTE OFF i slot number

BYTE oe i unit number

BYTE 060 i type - character. r/w
BYTE 000 i subtype

BYTE oo i fillaer

WORD 0000 i # blocks -none!

WORD 0000 i manufacturer—unknown!

Telease-preliinary!'

i DCB length and DCB

DCB
DEBUG
i Local storage

SOFAR

WORD 1 i one byte for now
BYTE 80 i debugging on (B0)/o0ff (00)
. BYTE 00 i gross debug

flag

102 SOS Device Driver W

Q02C | #wwu

002E! 10 00 00 00 00
0033! 0005

0033: AS CO

0035! C9 o8
0037 FOu#

0039: AD 2200
003C! FO##
O03E! AD EFFF
0041! 83 FF
Q043! AD 2700
0044: 8% FD
Q048! AD 2800
004B! BS FE

004D! AD 2400
00S0:! FO#+

0082! 20 2819

00951 20 ##es
oo%8! &0

0059

A% 20
20 2819

AT 26
20 2819

A9 23
20 2819

R
-
W
LTS
6900
6900
i
AR
R

008B! AD 1500
OOBE! 30%#
00901 09 CO

INITOK . BYTE XNORESRC i init went ok(00)/error code
SLOTCN . BYTE 0o i compute CNxx and store on init
SLOTCX . BYTE 00 i compute COXO and store on init
DIBPTR . WORD DIB i pointer to curselves!
OPENFLG . BYTE 00 i open/closed flag
NLFLAG . BYTE 00 i NEWLINE mode flag (B0/00)
NLCHAR . BYTE oo i NEWLINE character
i SIR table
SIRADDR . WORD SIRTABLE
SIRTABLE . BYTE 10,0,0,0, 0
SIRCOUNT . EQu #-SIRTABLE

. PAGE

i Main entry point for the driver

Entry LDA REGCODE

look at request code
i If this is a D_INIT call (function code 8), skip the slot setup

cMP 8 D_INIT?
BEQ Doit i go perform D_INIT processing

i If debugging is enabled, put our address into (1B)FD, FE, and FF

LDA DEBUG

BEG $10

LDA BREG

STA OFF i bank reg
LDA DIBPTR

STA OFD

LDA DIBPTR+1

sTA OFE i here 1 am!

if initialization went ok, by looking at INITOK. If it’s zero, then
ything went fine, otherwise it‘s the error code to return

$10 LDA INITOK
BEGQ 60 i looks ok to me

i Return the error! Not interested in doing business with you'
$30 JSR SysErr i mot tonight. I have a headache.
i Now call the dispatcher as a subroutine
60 JSR Doit
RTS i Bya.

. page

i The Dispatcher. Does It depending on REQCODE. Note that if we came in on
i & D_INIT call, we do a branch to Doit; normally. Dait is called as a

i subroutine!

Dait . EQU *
switch REQGCODE, 8. DoTable i go do it
BadReq LDA #XREQCODE i bad request code!
JSR SysErr i Pfui!
BadOp LDA #XBADOP i invalid operation!
JSR SysErr i Pfui!
NotOpen LDA #XNOTOPEN i device not open for business
JSR SysErr

; Dispatch table for Doit. One entry per command number, with holes

DoTable . WORD DRead-1 i O read
. WORD DWrite-t i 1 write
. WORD DStatus-1 i 2 status
. WORD DControl-1 i 3 control
. WORD BadReg-1 i 4 unused!
. WORD BadReq-1 i 5 unused!
. WORD DOpen~1 i & open
- WORD DClose-1 i 7 close
. WORD DInit-1 i B init

. page
i D_INIT call processing

+ Called at system init time only. Check DIB_SLOT to make sure that the user

i set a valid slot number for our interface. Allocate it by calling AllocSIR

i If everything goes ok, set INITOK to OO, else leave an error code in it.
DInit LDA DIB_SLOT
BMI [3% i oops! negetive! that’s no good!
ORA #0Co

8D 2300

AD 1500
20 2217
BOus

AD 1300

13°3-3:3

49 80

8
8

2400
2219

883

A9 26
DO#»

A7 25

AD 2900
FOu»

A9 24
20 2819

AD 1300
&9 10

A9 05
AE 2C00

20 1319
BO#w

A9 80

Appendix B — Sample Character Driver Skeleton

STA SLOTCN

i Select the slot to see if there’s a card out there

setimhz i downshift first!

LDA DIB_SLOT

JSR Se1C800 i can we select it?

BCS 1 i b/nope!that’s no good!

i Compute COXQ for this slot and save

LDA DIB_SLOT

CLC

ROL A

ROL. A

ROL A

ROL A

ADC *80 i COB0 + (slot * 16)
STA SLOTCX

i Deselect it, mark everything ok, and split

L.DA *0

STA INITOK i everything fine
JSR Se1C800 i desslect

RTS i goaombye

i Bad slot or something of that ilk

.1 LDA #XNODRIVE
BNE 3

i BIR not available- somebody got the slot before we did!
2 LDA #XNORESRC

i Stuff the code into INITOK and report it as an error

3 sTA INITOK + nao, it didn’t go ok.
JSR SysErr i doesn’t return
. PAQE

i D_DOPEN call processing

; We allocate our resource at OPEN time, reset the device. and set up for
i data transfers

DOpen LDA OPENFLG i are we open already?
BEQ 1 i b/nope

i If we’re already open. complain!

LoA WXNOTAVAIL i not available
JSR BysErr

i Compute the system intsrnal resource number (SIR) and call AllocSIR to
i try and grab that for us. It performs slot checking as a side effect.

$1 LDA DIB_SLOT
cLe
ADC #*10 i sirmlé+tsloté
STA SIRTABLE
LDA #SIRCOUNT
LDX SIRADDR
LDY SIRADDR+1

LI

*
Note: if an interrupt handler is used, the bank number must be loaded

* from BREG and put into SIRTABLE. See writeup on AllocSIR
-

a2

JSR AllocSIR i this one’s mine!
BCS L 2 i then again, maybe it isn’t!

e a2l

*

* Insert device setup code here If your device generates interrupts,
* do it carefully!

*

ha i il

Mark we’re open, and leave

LDA #80
STA OPENFLG
RTS

i Not availabla!

.2 LDA #XNORESRC
JSR SysErr

SOS Device Driver Writer's Guide Appendix B — Sample Character Driver Skeleton 105

OOF 51 . PAGE 01661
OOFS 01661 L
ooFs! 7 DClose pracessing g:::: i, % GetByte actually does the dirty work of getting a byte from the device
COFS} i Clean up everything. Wait for all writes to complete. Deallocate the o1661 ; : :a i e e NDY taen e Techoge 1 fs called in 2URZ mode, and the
. ' i evice/slot has NOT been selected
QOFS! i resources and go away. 01661 P
COFS! 01661 e
0OF3! AD 2900 DClose LDA OPENFLG i are we open? gres!
ooF8! Dowe BNE .1 i hope sa! Ohee! a0 GetByte RTS
OOFA! 4C 7400 JMP NotOpen ; gripe if we’re not
OOFD! 01671 . PAGE
ggzgf ; After running down any active I/0 and disabling interrupts, free the slot 0167; i D_WRITE call processing
' 01671
3g§°f # oia7: AD 2900 DWrite LDA DPENFLG
OOFg: R~ 016A! DO+ BNE 1 i b/we’re apen
OOFD: ’ . 014C! 4C 7400 JMP NotDpen i and gripe if we’re not!
QOFD} i % Insert rundown and termination code here. If the device generates g}:;: i See if the buffer pointer will cause us any problems
OOFDE i % interrupts, these must be disabled and cleared before DealcSIR is called Ole;
i . O16F1 20 #ass . UsR Fixup i and Fix it if it did
: : 01721
ggig; A9 05 LA #EIRCOUNT 01721 i Compliment the requested byte count to make life easier
. 01721
g?;;; :E ;cngg tg: g;::gg:¢1 01721 A9 FF :gs :g:zm_ i form one’s compliment
' 0174 45 C4
g:gg; :g 3819 tg: aaaxcsxa i free the Tesource 0176 85 C4 STA REQCNT i as it’s easier to increment
s LDA #OFF
010A! 8D 2900 STA OPENFLG i mark us CLOSED. 3}32, :: E; EOR REQCNT+1 and test for zero
o101 &0 RTS i goombye. 017C: B85 €3 sTA REGCNT+1
017E!
010€! PAGE 017E!} i The write loop. See if we terminate on byte count
! . . . 017E!
g:gE: i D_READ call processing 017E! E6 C4 Wloop INC REQCNT
I ;
O10Ei AD 2900 DRead LDA OPENFLG e s e o CNTe1 i br/nope
0111{ DOww BNE $1 i b/we’te open '
01131 4C 7400 JMP NotOpen i and gripe if we‘re not! Olae; Dor BNE st i br/nope. more to write
o116} ' s
o116 i Zero # bytes read 3{::1 i ALl done. Bye!
o116} :
01161 A9 00 st LDA 0 g:gg; 0 RTS
o11c!
0187! A0 00 *1 LDY %0
| ; .
g:ig: i Insure the buffer address won’t cause us any problems 3}::1 Zé c2 hred (BUFFER). ¥ . get byte
N . N iy ik i i . Laaad JSR PutByte i get rid of it
g;:g; 20 wurw JSR FixUp i and fix it if it did. g:gﬁf INCADR BUFFER
. N i N
gi;FF_; i Compliment the requested byte count to make life easier. g:zg; i Go back and do it until the byte count goes to 00!
O11F! A9 FF LDA WOFF ; form one‘s compliment
01211 45 C4 EOR REGCNT oiac) 4c 7EO1 Jme Wioop
0123: 85 C4 STA REGCNT i as it’s easier to increment 019F1 R
0125! A9 FF LDA #OFF ; and test for zero 019F T
0127! 45 C5 EOR REGCNT+1 019F | M . . .
0129! 85 CS STA REGCNT+1 019F: i % PutByte actually does the dirty work. Called in 2MhZ mode, with
012B! 01‘7F; i # slot/device NOT selected!
012B! i The read loop. See if we terminate on requested bdyte count first. O19F | ; :*.*
01281 019F 1
012B! E6 C4 Rloop INC REGCNT i bump it 019F1 &0
012D! DO BNE *1 i didn’t go to zera. PutByte RTS
012F! E& CS INC REGCNT+1 i bump hi byte
0131! FO##* BEG Rdend ; terminate on byte count! 01A0¢ PAGE
0133 01A01
0133 i Get a byte from the device, put it in the user’s buffer., increment 01A0! R .
0133! i the buffer pointer and the number of bytes returned. 01A0! i D_STATUS call processing
01331 01A0¢ ; ;)
0133 20 wwsx 1 JSR GetByte 01A01 i We musg xmphm:‘nt thre:_D_sTATUS calls:
0136! A0 00 LDy #0 01401 ; 1 Retorm devic +
0138! 91 c2 STA (BUFFER), ¥ i store into user buffer 01A0! 2 eturn device control parameters
013a1 48 PHA i save byte on the stack 01A0! : Return NEWLINE flag and character
0138 INCADR BUFFER i bump the pointer 01A0! ; - . :
01491 INW RETCNT N bull\: return count. 01A0! i Additionally, for debugging, we implement:
O14F ¢ 01401 i 80 Read fraom driver space
014F i Check for NEWLINE made, and termination on NEWLINE character 0140} : o Read from COXO space
O14F | 01A0! : Read from CNOO space
014F: &8 PLA i chr back again 01A0! : o fead from CBXX space
0150 2¢ 2400 BIT NLFLAG i is newline mode set? g:aot ang soli
01531 10Dé& BPL Rloop i br/nope,do it some more. AO! AS Cc2 D . .
0155! CD 2B0O cMP NLCHAR i if sa, is this the one? 01A21 Foss Status Lba CacaTaT } command to issve
0138! DOD1 BNE Rloop ; br/nope, keep going. oine! Fors’ cne #l .
015A; Ons
O15A!} i Terminate the read, either on byte count or newline. Move the # 8:::: 23‘02 gE“g 5301 i return device control params
i it. *
o of returned bytes to the user, then split O1AC: BEQ Dsoz2 i Teturn NEWLINE flag and character
O1ACt
01AC! i check for debugging and debugging ops
. O1AC! AD 22
015A! A0 00 Rdend LDY #0 00 LDA ;
015C! AS D1 Lpa RETCNT i 1sb of returned byte count O1AF! Foms BEG P Poas it enabled?
O15E! 91 C8 STA (BREAD). Y O1BL1 4C waus : br/nope, gripe
oroe: oL STa 01841 JMP DS8x i go look for debug calls
: o1841
0161 AS D2 LDA RETCNT+1 i Status cod
01631 91 C8 sTA (BREAD), ¥ i return it oiB4t) code no good. Complain
0165! 60 RTS » and leave.

106 SOS Device Driver Writer's Guide

A9
20

AS

21
2819

00
2A00
€3

2800
c3

c2

FO#s»

ce

o1

FO#»

ce

[+-]

FOxs

AD

FO#.

4C

4c

AO
B1
ep
c8
B1
ep

&0

[}

AS

2200
*

tne

B401

00

2A00

c3
2B00

€3

c3

FOx#
C? FF
FO#*

CSNG LDA #XCTLCODE i cantrol/status code no good
JSR SYSERR

i Doing nothing is easy

DS0Q RTS

i Return device control parameters. To be determined by the device
DSo1 RTS

i Raturn NEWLINE flag and character.

DS02 Loy 0
LDA NLFLAG ;5 newline active/inactive flag
STA (CSLIST), ¥ ; return to user
INY
LDA NLCHA i newline character
STA (CSLIST). ¥ i return that
RTS i and split.
PAGE

5 D_CONTROL call processing

We must implement three D_CONTROL calls
o Reset device
1 Set cantrol parameters
2 Set NEWLINE flag and character

For debugging:, we implement a few more
80 Write deiver space

B1 Write COXO space
82 Write CNxx space
83 Write CBxx space
DControl LDA CTLSTAT i what we supposed to do?
BEQ DCoo i device reset
cMP #1
BEG DCO1 i set control params
cMP »2
BEG Dco2 i set NEWLINE flag and chr

i check for debugging and debugging ops.

LDA DEBUG i is it enabled?
BEG s4 i if so, no more commands!
JMP pCex i go check for debugs

i Control code no good. Complain
4 JMP CSNG

i Set NEWLINE flag and character

DCo2 LDY %0
LDA (CSLIST), Y i the flag
STA NLFLAG i updated
INY
LDA (CSLIST), Y i newline character
STA NLCHAR
RTS i easy to do.

i Reset the device. To be defined by the device
Dpcoo RTS
i Load control parameters. Defined by the device
DCO1 RTS

. INCLUDE MISC

. PAGE

i Bump is called to bump the buffer pointer by one page (256 bytes)
i We dink the MSB of the buffer pointe, and fall into FixUp to see if
i we generated an anomaly (and fix it up)

Bump INC BUFFER+1 i bump and fall into next code

i Fix up the buffer pointer to correct for any addressing anomalies'

i Since we’l]l call Bump after sach page, we just need to do the initial
i checking for two cases

3 00XX bank N — > 80XX bank N-1

i 20XX bank BF if N was O (!!'!)

i FFXX bank N - > 7FXX bank N+1

FixUp LDA BUFFER+1 ; look at MSB
BEQ 2 i br/that’s one!
CHP #OFF i is it the other one?

BEG *3 i br/yup, fix it!

&0

A9 80
as c3
CE C314
AD C314
c9 7F
DO*=

A% 20
as c3

ep cai4
DO#»

18
&6 C3

EE C314
&0

20 #wus
04

20 2819

FOux

6D #aus

20 wens
91 ¢3
ce

EE sess

EE wess
€6 DO

AO 01

Appendix B — Sample Character Driver Skeleton

RTS i an easy one!
2 LDA 80 i 00XX -> BOXX
§TA BUFFER+1
DEC BUFFER+1401 i bank N -> bank N-1
LDA BUFFER+1401 i see if it was bank O
CMP #7F i (80) before the DEC..
BNE 4 i br/nope, all fixed
LDA #20 i if it was, change both
STa BUFFER+1 i msb of address and
LDA #BF
STA BUFFER+1401 i bank number for bank BF (!'!!)
BNE 4 i always branches. . .
3 cLC
ROR BUFFER+1 i FFXX -> 7FXX (clever coding)}
INC BUFFER+1401 i bank N -> bank N+1
4 RTS i bye.
JPAGE

DS

D_STATUS debugging calls. These calls transfer data from the driver and
its 1/0 space to the user buffer. The format of the status list for these
calls is

80 | #bytes ! disp ! disp ! data. .. Read from driver area
81 | #bytes | disp ! 00 | data. Read from COXx space
82 | #bytes ! disp ! 00 ! data. .. Read from CNxx space
83 ! #bytes ! disp ! disp ! data. .. Read from CBxx space

#bytes ~ number of bytes to transfer, 00 to 255

For various bizarre reasons, we choose to modify the load instruction
rather than use indexing. The range checking on the various calls depends
on how much code I write to do range checking

Cammon code. Set up # bytes to transfer, bump CSLIST pointer. and
do the transfer. We do it in IMhZ mode as we may be looking at the slot

8 x JSR DSCSET i do setup for debug calls
BCC $2 i b/went ak

DSCSET didn‘t like something. The error code is in A, let’s complain!'

JSR SysErr i bye

i Check the number of bytes to transfer.

2

BEG Scram i split if 00 bytes to transfer!

i Define the instruction to do as an abs LDA

DS

1

Scram RTS

i

LDA #0AD
sTA Gak i not the best technique

set 1MhZ mode., and do the transfer

setimhz
loop JSR Gak i go do it.
STA (CSLIST), ¥ i return data to user
INY
INC ADDRL
BNE $1
INC ADDRH
DEC NBYTES i bump pointers, decrement count
BNE DSloop i loop through all bytes
set2mhz i back to full speed

all done.

/page

Setup code for both status and control debug calls. We validate the
displacement and possibly length parameters in the control/status list,
and set up the address in ADDRL, ADDRH in the instruction we’ll execute
later on to do the transfers

DSCSET LDY L2} i index used by later code
LDA CTLSTAT i op to perform
cMP w80 i T/w driver space?
BEG DS8e0 i b/yes, set up for that
CMP #81
BEQ DSe1 i r/w COXx space
cMp “82
BEGQ Dpsea i r/w CNOO space
CMP #83
BEG Dse3 i r/w CBxx space
CMP “a4
1 BEQ 1

i hang solid!

Not one of aurs, return error code in A with C set

108 SOS Device Driver Writer’'s Guide

o

026B! A% 21 2 LDA #XCTLCODE

026D! 38 SEC

026E! &0 RTS

026F |

026F ! i Return bad parameter errvor

QR6F |

026F | A9 22 NGPARAM LDA #XCTLPARAM i parameter is no good
0271! 38 SEC

0272 &0 RTS

02731

0273 18 0S80 cLc i read from driver

02741 AD 2700 LDA DIBPTR i point to us

0277% 71 C3 ADC (CSLISTY, Y i add in first byte

027%! BD #x#s STA ADDRL i put into instruction
027¢C! c8 INY

027D! AD 2800 LDA DIBPTR+1

0280: 71 C3 ADC (CSLIST), Y i form hi byte

0282 BD ##x+x STA ADDRH i store into instruction
0285: 4C w#xes JMP DCfin i go finish up

ozes!

0288! B1 C3 DS81 LDA (CSLIST), Y i pick up displacement
028A! 30E3 BMI NGPARAM i that won’t do!

028C: C? 10 CMP #10

O2QBE: 10DF BPL NGPARAM 5 nor will that! only our slot
0z2790! AA TAX i stash for a maoment
0291! AD 1300 LDA DIB_SLOT i what’s our slot?

0294! FOD9 BEG NGPARAM i cute. we don‘t have one
02961 0A ASL A

0297: oA ASL A

0298: 0A ASL A

0299! 0A ASL A i multiply by 16

o29a: 18 cLc

029B! &9 80 ADC #B80 i form XO for the slot
029D: 71 €3 ADC (CSLIST)., Y i add in displacement
029F! 8D #x## STa ADDRL i store low byte into instruction
02A2¢ C8 INY

02A3: Bl C3 LDA (CSLIST), Y i better be 00!

02A5:! DoCe BNE NGPARAM i anly your slot!

02A7: AOC 00 LDY #0

02A9! B1 C3 LDA {(CSLIST)., Y i how many bytes again™
02AB! 30C2 BMI NGPARAM i nope

02AD: c8 INY i point to displacement again
02AE! 18 cLC

Q2AF:! 71 €3 ADC (CSLIST)., ¥ i must be << 10

02B1: €9 10 CMP #10

02B3! 10BA BPL NGPARAM i nope. won't do at all
O2B5! 4C w#xw# JMP DCFin i go finish up

oz288!

0288! AD 1500 psBs2 LDA DIB_SLOT i read from CNOO space
O2BB! FOB2 BEQ NGPARAM i must have a slot to do 1t though!
02BD! 07 CO ORA #0CO i farm CN

O2BF | 8D ##%x STA ADDRH i and hose into instruction
02C2: B1 C3 LDA (CSLIST)., Y i displacement

02C4: 8D witus sSTA ADDRL i into instruction (YUK!)
02C7! C8 INY

oz2ca: B1 €3 LDA (CSLIST), Y i check hi byte

02CA! DOA3 BNE MNGPARAM i barf if bad

02CC! FO#+ BEQ DCfin i go do cleanup processing (always branches
02CE!

ORCE! B1 C3 pse3 LDA (CSLIST), Y i low bye of displacement
02D0! 8D *#xx STA ADDRL. i poke into instruction
02031 C8 INY

02D4! B1 C3 LDA (CSLIST). Y i hi byte of displacement
02D&! 3097 BMI NGPARAM i no good

oz2p8! C? 10 CcMP #10 i legal range is O-F
02DA! 1093 BPL NGPARAM i bigger is no good!
02DC:i 18 cLc

02DD! &9 C9 ADC #0C8

O2DF! 8D ###w» STA ADDRH i stare into instruction
02621

0262} i Set up the number of bytes to transfer

02E2!

02E2! A0 00 DCfin LDY #0 i point back at #bytes to do
O2E4! B1 C3 LDA (CSLIST), Y i get it from list

O2E&! AA TAX

02E7! 85 DO sTA NBYTES i stash in zero page
02691

02E9! i Roll the dice. Bump CSLIST pointer by 3 and assume it won’t cross into
02E?! i an addressing anomaly. Not guaranteed to work!'

0R2EF!

0RES! 18 cLC

02EA! AS C3 LDA CSLIST

O2EC! &9 03 ADC 43

O2EE! B85 C3 STA CSLIST i bump lo byte by 3

02F0! A9 00 LDA #0

02F21 &5 C4 ADC CSLIST+1

02F4! B5 C4 STA CSLIST+1 i maybe bump hi byte

Appendix B — Sample Character Driver Skeleton

' 18 cLe
2§§3: 8a TXA i set 1/nz on # bytes, with C clear
02FB! 60 RTS i return to caller
1
gg;:, + NOTE: The following instruction is built on the fly, to be either an absolute
02F9! i LDA (AD) or an absolute STA (BD). The address in the imstruction is modified
02FF! i as we go to eliminate false strobe problems on indexed instructions
3§§32 1] Gak BYTE 00 i Opcode goes here
02FA! 00 ADDRL BYTE 00 i low byte of address
02FB! 00 ADDRH BYTE 00 i hi byte of address
02FC! &0 RTS ; then we return (Gak')
02FD! . PAGE
h
gg:g: ; D_CONTROL debugging calls. These calls transfer data to the driver and
02FD! ; its I1/0 space from the user buffer. The format of the status list for these
02FD ! i calls is
8§§§: ; 80 ! #bytes ! disp ! disp ! data Write to driver area
02FD! i 81 | #bytes ! disp ! 00 i data Write to COXx space
02FD! ; 82 | #bytes ! disp i 00 ! data Write to CNxx space
02FD! ; 83 | #bytes ! disp i disp ! data Write to CBxx space
02FD! i
o§§0: ; #bytes — number of bytes to transfer, 00 to 255
gg;g; + For various bizarre reasons, we choose to modify the store instruction
02FD} i rather than use indexing. The range checking on the various calls depends
02FD! i on how much code I write to do range checking
02FD!
02FD! ; Common code. Set up % bytes to transfer, bump CSLIST pointer, and
02FD! i do the transfer. We do it in IMhZ mode as we may be looking at the slot
02FD!
02FD! 20 5302 DCBx JSR DSCSET . go do setup
0300! 0% Bce s2
03021
0302! ; Setup barfed. Return error code in A
0302!
0302¢ 20 2819 JSR SysErr
0308! ; .
030S! FOxw 2 BEG Leave » and scram if it‘s 00
03071
0307 i Define the instruction as an abs STA (blecch®)
03071
0307! A9 8D ’ LDA #8D
0309 8D F902 sTA Gak i set up as an abs STA instruction!
030C!
030C ¢ ; set IMhZ mode, and do the transfer
030C
030C! setlmhz
03171
0317! B1 €3 DCloop LDA (CSLIST). Y i pick up user data
031%9! 20 F902 JSR Gak 5 put it away
o31c: €8 INY
031D! EE FAO2 INC ADDRL
0320! DOw« BNE *1
0322! EE FBO2 ING ADDRH
0325! Cé6 DO 1 DEC NBYTES ; bump pointers, decrement count
0327! DOEE BNE DCloop i laop through all bytes
03291
03291 set2mhz i back to full speed
03341 &0 Leave RTS i all done
03351 “END
AB ~ Absolute LB - Label UD - Undefined MC - M.
RF - Ret DF - Def PR - P:u; e FC - F:;:n

PB - Public PV - Private €S - Consts

ADDRH LB 02FB! ADDRL L@

' O2FA! ALLOCSIR AB
;::J::m C: gocz: BUMP LB 01F0! CHAR PR
1EF B O1EO! DCBX

DCONTROL. LB 01C9: DEALCSIR AB 1914! DEBUG
DOIT LB 0059: DOPEN

Al
002C: SIRCOUNT
Sosn 00 NIT AB 00CI:
XCTLPARA AB 0022i XEOPERRD Ab DOC11 SHITCH

Current minimum *Pace is 20993 words.

Assembly complete: 905 lines
Errors flagged on this Assembly

BADODP LB
CSLIST AB
DCB LB
18 LB
DOTABLE LB
82 LB
ENTRY LB
INITOK LB
NOTOPEN LB
RLOOP LB

SIRTABLE LB
SYSERR AB

04Ci XIOERROR AB 0027: XNDDRIVE AB

BADREQ LB O0bA: BREAD AB 00CB: BREG AB FFEF
CSNG LB 01B4i CTLSTAT AB 00C2! DCOO LB O1EE
DCFIN LB 02E2{ DCLODP LB 0317! DCLOSE LB 0OFS
DIBBLOCK LB 001A! DIBPTR LB 0027: DIBSLOT LB 0015

DREAD LB O10E: DS00 LB 01B9! DSO1 LB 01BA
DS83 LB O2CE: DSBX LB O21B: DSCSET LB 0253
EREG AB FFDF: FIXUP LB O1F2; GAK LB 02F9

LEAVE LB 0334: NBYTES AB 00DO
PUTBYTE LB O19F! RDEND LB 0154
SCRAM LB 0252i SELCBOO AB 1922! SETIMHZ MC ---—
SLOTCN LB 0025! SLOTCX LB 0026! SOFAR LB 0023
WLOOP LB O17E: XBADOP AB 0026! XCTLCODE AB 0021
XNORESRC AB 0025! XNOTAVAI AB 0024! XNDTOPEN AE 0023

110 SOS Devicc Driver Writer's Guide

Appendix C — 6502B Instruction Set

6502B Instruction Set

6502 Microprocessor Instructions

———

ADC Add Memory to Accumulator with
Carry

AND “AND” Memory with Accumulator

ASL Shift Left One Bit (Memory or
Accumulator)

BCC Branch on Carry Clear

BCS Branch on Carry Set

BEQ Branch on Result Zero

BIT Test Bits in Memory with
Accumulator

BMI Branch on Resuit Minus

BNE Branch on Result not Zero

BPL Branch on Result Plus

BRK Force Break

BVC Branch on Overflow Clear

BVS Branch on Overflow Set

CLC Clear Carry Flag

CLD Clear Decimal Mode

CLl Clear Interrupt Disable Bit

CLv Clear Overflow Flag

CMP Compare Memory and Accumulator

CPX Compare Memory and Index X

CPY Compare Memory and Index Y

DEC Decrement Memory by One

DEX Decrement Index X by One

DEY Decrement index Y by One

EOR “Exclusive-Or" Memory with
Accumulator

INC Increment Memory by One

INX Increment Index X by One

INY Increment Index Y by One

JMP

Jump to New Location

JSR

LDA
LDX
LDY
LSR

NOP
ORA
PHA
PHP
PLA
PLP

ROL

ROR

RTI
RTS

SBC

SEC
SED
SEI

STA
STX
STY
TAX
TAY

TSX

TXS
TYA

Jump to New Location Saving
Return Address

Load Accumulator with Memory
Load Index X with Memory
Load Index Y with Memory
Shift Right one Bit (Memory or
Accumulator)

No Operation
“OR” Memory with Accumulator

Push Accumulator on Stack
Push Processor Status on Stack
Pull Accumulator from Stack
Pull Processor Status from Stack

Rotate One Bit Left (Memory or
Accumulator)

Rotate One Bit Right (Memory or
Accumulator)

Return from Interrupt

Return from Subroutine

Subtract Memory from Accumulator
with Borrow

Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Status

Store Accumulator in Memory
Store Index X in Memory

Store Index Y in Memory

Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Pointer
Transfer Index to Accumulator

112 SOS Device Driver Writer's Guide

The Following Notation Applies to this Summary

R4 | NOTOZTX>

<

Accumulator ¥ Logical Exclusive Or
Index Registers 1 Transfer From Stack
Memory ! Transfer To Stack
Borrow g Transfer To

Processor Status Register “— Transfer To

Stack Pointer \ Logical OR

Change PC Program Counter

No Change PCH Program Counter High
Add PCL Program Counter Low
Logical AND OPER Operand

Subtract # Immediate Addressing Mode

FIGURE 1. ASL-SHIFT LEFT ONE BIT OPERATION

[eflrefsefe]z][ojo]

FIGURE 2. ROTATE ONE BIT LEFT (MEMORY
OR ACCUMULATOR)

e s e T

FIGURE 3.

e T

NOTE 1: BIT—TESTS BITS

Bit 6 and 7 are transferred to the status register. If the
result of A A M is zero then Z=1, otherwise Z=0.

Appendix C — 6502B Instruction Set

Programming Model
= S
7 0
[A | AccumuLaTOR
7 0
| Y | INDEX REGISTER Y
7 0
[X | INDEX REGISTER X
15 7 0
[PCH [PCL | PROGRAM COUNTER
7 0
[01 |) | sTACK POINTER
7 0
[n]v][e[p]1]z]c] PROCESSOR STATUS REGISTER, “P”
CARRY
ZERO

INTERRUPT DISABLE
DECIMAL MODE
BREAK COMMAND
OVERFLOW
NEGATIVE

114 SOS Device Driver Writer’'s Guide

Instruction Codes

Appendix C — 6502B Instruction Set 115

Assembly HEX
Name Operation Addressing Language oP No. [“P” Status Reg
Description Mode Form Code |Bytes| NZCIDV
ADC
Add memory to A+M+C —A,C | Immediate ADC #0per 69 2 I
accumulator with carry Zero Page ADC Oper 65 2
Zero Page,X ADC OperX 75 2
Absolute ADC Oper 6D 3
Absolute,X ADC OQper,X 7D 3
Absolute,Y ADC Oper,Y 79 3
(Indirect, X} ADC (Oper,X) 61 2
(Indirect),Y ADC (Oper),Y il 2
AND
“AND" memory with AAM—A Immediate AND #Oper 29 2 S/
accumulator Zero Page AND Oper 25 2
Zero Page,X AND OperX 35 2
Absolute AND Oper 2D 3
Absolute,X AND Oper,X 3D 3
Absolute,Y AND Oper,Y 39 3
(Indirect,X) AND (Oper,X) 2 2
(Indirect,Y) AND (Oper).Y | 31 2
ASL
Shift left one bit (See Figure 1) | Accumulator | ASLA 0A 1 SIS
(Memory or Accumulator) Zero Page ASL Oper 06 2
Zero Page,X ASL Oper,X 16 2
Absolute ASL Oper 0E 3
Absolute, X ASL Oper,X 1E 3
BCC
Branch on carry clear Branch on C=0 | Relative BCC Oper 90 A
BCS
Branch on carry set Branch on C=1 | Relative BCS Oper BO 2 | --===-
BEQ
Branch on result zero Branch on Z=1 | Relative BEQ Oper FO 2 | ————
BIT
Test bits in memory AAM, M7 —N,| Zero Page B|T: Oper 24 2 M M
with accumulator Mg -V Absolute BIT™ Oper 2C 3 7/--~Ms
BMI
Branch on result minus Branch on N=1 { Relative BM Oper 30 2 | —————-
BNE
Branch on result not zero | Branch on Z=0 | Relative BNE Oper Do 2 | —————
BPL
Branch on result plus Branch on N=0 | Relative BPL Oper 10 2 | —————
BRK
Force Break Forced Implied BRK* 00 1 —1--
Interrupt
PC+2|P|
BVC
Branch on overflow clear | Branch onV=0 | Reiative BVC Oper 50 2 | ------

Note 1 5 and 7 are transferred to the status register if the
result of AV M is then 1 otherwise Z +

Note 2 A BRK command cannot
be masked by setting 1

. Assembly HEX
Name Operation Addressing Language oP No. {“P” Status Reg
Description Mode Form Code | Bytes| NZCIDV
BVS
Branch on overflow set Branch on V=1 | Relative BVS Oper 70 2 | e
cLe
Clear carry flag 0—-C Implied cLC 18 1 —0--
CLD
Clear decimal mode 0-D Implied CLD D8 1 ~0--—
cu
0—1 Implied CLt 58 1 -—-0--
CLv
Clear overflow flag 0-V Implied cw B8 1 0————-
CMP
Compare memory and A—M Immediate CMP #0per] 2 JIS===
accumulator Zero Page CMP Oper C5 2
Zero Page X CMP Oper,X D5 2
Absolute CMP Oper cD 3
Absolute, X CMP Oper,X DD 3
Absolute,Y CMP Oper,Y D9 3
(Indirect,X) CMP (Oper,X) | C1 2
(Indirect),Y CMP (Oper),Y | D1 2
CPX
Compare memory and X—M Immediate CPX #0,
{ per E0 2 ——=
index X Zero Page CPX Oper E4 2 W
Absolute CPX Oper EC 3
cPY
Compare memory and Y—M Immediate CPY #0
{ per co 2 ———
index Y Zero Page CPY Oper c4 2 W
Absolute CPY Oper cc 3
DEC
t[))et(:)rement memory M—1-M Zero Page DEC Oper C6 2 J=—==
y one Zero Page X DEC Oper,X D6 2
Absolute DEC Oper CE 3
Absolute,X DEC Oper,X DE 3
DEX
Decrement index X —1 i
Y one X—1-X Implied DEX CA 1 JJ/-——=
DEY
Decrement i ;
by one ent index Y Y—1-Y Implied DEY 88 1 JI====

116 SOS Device Driver Writer's Guide

Appendix C — 65028 Instruction Set 117

Assembly HEX
Name Operation Addressing Language OP | No. [‘P” Status Reg
Description Mode Form Code |Bytes{ NZCIDV
EOR
“Exclusive-Or” memory |[AVM—A Immediate EQR #0per 49 2 S/
with accumulator Zero Page EOR Oper 45 2
Zero Page,X EGR Oper,X 55 2
Absolute EOR Oper 4D 3
Absolute, X EOR OperX 5D 3
Absolute,Y EOR OperY 59 3
(Indirect,X) EOR (Oper,X) 41 2
(Indirect),Y EOR (Oper),Y | 51 2
INC
Increment memory M+1-M Zero Page INC Oper E6 2 S/
by one Zero Page,X INC Oper,X F6 2
Absolute INC Oper EE 3
Absolute,X INC Oper,X FE 3
INX
Increment index X by one | X + 1 =X Implied INX E8 1 S
INY
Increment indexY byone [Y + 1Y Implied INY c8 1 S
JMP
Jump to new location (PC+1) —PCL | Absolute JMP Oper 4C 3 | -—---=
(PC+2) —PCH | Indirect JMP (Oper) 6C 3
JSR
Jump to new location PC+2] Absolute JSR Oper 20 R
saving return address {PC+1) -PCL
(PC+2) —PCH
LDA
Load accumulator M —A Immediate LDA #0per A9 2 JJ————
with memory Zero Page LDA Oper A5 2
Zero Page,X LDA Oper,X BS 2
Absolute LDA Oper AD 3
Absolute, X LDA OperX BD 3
Absolute,Y LDA OperY B9 3
{Indirect,X) LDA (Oper,X) Al 2
(Indirect),Y LDA (Oper),Y B1 2
LDX
Load index X M—X Immediate LDX #Oper A2 2 S
with memory Zero Page LDX Oper A6 2
Zero Page,Y LDX OperY B6 2
Absolute LDX Oper AE 3
Absolute,Y LDX OperY BE 3
LDY
Load index Y MY Immediate LDY #O0per AQ 2 Sy
with memory Zero Page LDY Oper Ad 2
Zero Page,X LDY Oper,X B4 2
Absolute LDY Oper AC 3
Absolute, X LDY Oper,X BC 3

. Assembly HEX
Name Operation Addressing Language oP No. {“P” Status Reg
Description Mode Form Code [Bytes]| NZCIDV
LSR
Shift right one bit (See Figure 1) | Accumulator LSRA 4A 1 0//---
(memory or accumulator) Zero Page LSR Oper 46 2
Zero Page,X LSR Oper, X 56 2
Absolute LSR Oper 4E 3
Absolute, X LSR Oper,X 5E 3
NOP ,
No operation No Operation | Implied NOP EA 1| ===
ORA
“OR” memory with AVM—A Immediate ORA #0Qper 09 2 S———
accumulator Zero Page ORA Oper 05 2
Zero Page,X ORA Oper,X 15 2
Absolute ORA Oper 0D 3
Absolute, X ORA Oper,X 1D 3
Absolute,Y ORA Oper,Y 19 3
(indirect,X) ORA (Oper,X) 01 2
(Indirect),Y ORA (Oper),Y | 11 2
PHA
Push accumulator Al Implied PHA 48 1 | -
on stack
PHP
Push processor status Pl Implied PHP 08 1 | —==a—
on stack
PLA
Pull accumulator A Implied PLA ———
from stack ! P % 1 Y
PLP
Pull processor status P Impli
o cs 1 mplied PLP 28 1 From Stack
ROL
Rotate one bit left (See Figure 2) | Accumulator | ROL A 2A /
1 ———
(memory or accumulator) Zero Page ROL Oper 26 2 o
: Zero Page,X ROL Oper,X 36 2
Absolute ROL Oper 2E 3
Absolute, X ROL Oper,X 3E 3
ROR
Rotate one bit right (See Fi
gure 3) | Accumulator ROR A /[
(memory or accumulator)) Zero Page ROR Oper gé ; e
Zero Page,X ROR Oper,X 76 2
Absolute ROR Oper 6E 3
Absolute, X ROR Oper,X 7E 3

118 SOS Device Driver Writer's Guide

Assembly HEX
Name Operation Addressing Language oP No. [‘P” Status Reg
Description Mode Form Code | Bytes| NZCIDV
RTI
Return from interrupt P1PCY Implied RTI 40 1 From Stack
RTS
Return from subroutine [PCT, PC+1—PC|{ Implied RTS 60 1 | -————
SBC
Subtract memory from A- M-C—A | Immediate SBC #0per E9 2 SIS
accumulator with borrow Zero Page SBC Oper E5 2
Zero Page X SBC Oper,X F5 2
Absolute SBC Oper ED 3
Absolute,X SBC Oper,X FD 3
Absolute,Y SBC OperY F9 3
(Indirect,X) SBC (Oper,X) E1 2
(Indirect),Y SBC (Oper),Y F1 2
SEC
Set carry flag 1-C Implied SEC 38 1 B
SED
Set decimal mode 1-D Implied SED F8 1 _———1
SEl
Set interrupt disable 1-l Implied SEl 78 1 el
status
STA
Store accumulator A—M Zero Page STA Oper 85 2 | e
in memory Zero Page,X STA Oper,X 95 2
Absolute STA Oper 8D 3
Absolute,X STA Oper,X 9D 3
Absolute,Y STA Oper,Y 99 3
(Indirect,X) STA (Oper,X) 81 2
(Indirect),Y STA (Oper),Y 91 2
STX
Store index X in memory | X —M Zero Page STX Oper 86 2 | —-=-———-
Zero Page,Y STX OperY 96 2
Absolute STX Oper 8E 3
STY
Store index Y in memory | Y —>M Zero Page STY Oper 84 2 | e
Zero Page,X STY Oper,X 94 2
Absolute STY Oper 8C 3
TAX
Transfer accumulator A —X Implied TAX AA 1 e
to index X
TAY
Transfer accumulator A—-Y Implied TAY A8 1 JI-——=
to index Y
TSX
Transfer stack pointer S —X Implied TSX BA 1 JI--—=
to index X

Appendix C — 65028 lnstruction Set 119

Assembly HEX
Name Operation Addressing Language opP No. |“P” Status Reg
Description Mode Form Code |Bytes| NZCIDV
TXA
Transfer index X X—A Implied TXA 8A 1 JJm———
to accumulator
TXS
Transfer index X to X—-S Implied XS 9A 1 |
stack pointer
TYA
Transfer index Y YA Implied TYA 98 1 S
to accumulator
Hex Operation Codes
00 — BRK 21 — AND — (Indirect, X) 42 —
01 — ORA — (Indirect, X) 22 — 43 —
02 — 23 — 44 —

03 —

04 —_

05 — ORA — Zero Page
06 — ASL — Zero Page
07 —

08 — PHP

09 — ORA — Immediate
OA — ASL — Accumulator
0B —

0C —

0D — ORA — Absolute
OE — ASL — Absolute

OF —

10 — BPL

11 — ORA — (Indirect), Y
12—

13—

14 —

15 — ORA — Zero Page, X

16 — ASL — Zero Page, X
17 —

18 — CLC

19 — ORA — Absolute, Y
1A —

18 —

16—

10 — ORA — Absolute, X

1E — ASL — Absolute, X
1F —

20 — JSR

24 — BIT — Zero Page

25 — AND — Zero Page
26 — ROL — Zero Page
27 —

28 — PLP

29 — AND — Immediate
2A — ROL — Accumulator
2B —

2C — BIT — Absolute

20 — AND — Absolute

2E — ROL — Absolute
2F—

30 — BMI

31 — AND — (Indirect), Y
32—

33—

34 —

35 — AND — Zero Page, X
36 — ROL — Zero Page, X
37 —

38 — SEC

39 — AND — Absolute, Y
3A —

3B —

3C —

30 — AND — Absolute, X
3E — ROL — Absolute, X
3F —

40 — RTI

41 — EOR — (Indirect, X)

45 — EOR — Zero Page
46 — LSR — Zero Page
47 —

48 — PHA

49 — EOR — Immediate
4A — SR — Accumulator
4B —

4C — JMP — Absolute

4D — EOR — Absolute

4E — LSR — Absolute

4F —

50 — BVC

51 — EOR — {(Indirect), Y
52 —

53 —

54 —

55 — EOR — Zero Page, X
56 — LSR — Zero Page, X
57 —

58 — CLI

59 — EOR — Absolute, Y
5A —

5B —

5C —

50 — EOR — Absolute, X
5E — LSR — Absoiute, X
oF —

60 — RTS

61 — ADC — (Indirect, X)
62 —

120 SOS Device Driver Writer's Guide

63 —

64 — .

65 — ADC — Zero Page
66 — ROR — Zero Page
67 —

68 — PLA

69 — ADC — {mmediate
6A — ROR — Accumulator
6B —

6C — JMP — Indirect

6D — ADC — Absolute

6E — ROR — Absolute

6F —

70 — BVS

71 — ADC — (Indirect), Y
72 —

73—

74 —

75 — ADC — Zero Page, X
76 — ROR — Zero Page, X
77—

78 — SEI

79 — ADC — Absolute, Y
7A —

7B —

7C —

7D — ADC — Absolute, X NOP
7E — ROR — Absolute, X NOP
7F —

80 —

81 — STA — (Indirect, X)
82 —

83 —

84 — STY — Zero Page
85 — STA — Zero Page

86 — STX — Zero Page
87 —

88 — DEY
89 —
8A — TXA
8B —

8C — STY — Absolute

8D — STA — Absolute

8E — STX — Absolute

8F —

90 — BCC

91 — STA — (Indirect), Y

92 —

93 —

94 — STY — Zero Page, X
95 — STA — Zero Page, X
96 — STX — Zero Page, Y
97 —

98 — TYA

99 — STA — Absolute, Y
9A — TXS

9B —

9C —

9D — STA — Absolute, X
9E —

9F — :
A0 — LDY — Immediate
A1 — LDA — (Indirect, X)
A2 — LDX — Immediate
A3 —

A4 — LDY — Zero Page
A5 — LDA — Zero Page
A6 — LDX — Zero Page
A7 —

A8 — TAY

A9 — LDA — Immediate
AA — TAX

AB —
AC — LDY — Absolute
AD — Absolute

AE — LDX — Absolute

AF —

BO — BCS

B1 — LDA — (Indirect), Y
B2 —

B3 —

B4 — LDY — Zero Page, X
B5 — LDA — Zero Page, X
B6 — LDX — Zero Page, Y
B7 —

B8 — CLV

B3 — LDA — Absolute, Y
BA — TSX

BB —

BC — LDY — Absolute, X
BD — LDA — Absolute, X
BE — LDX — Absolute, Y
BF —

C0 — CPY — immediate
C1 — CMP — (Indirect, X)
Cc2 —

€3 —

C4 — CPY — Zero Page
C5 — CMP — Zero Page
06 — DEC — Zero Page
C7 —

C8 — INY

C9 — CMP — Immediate
CA — DEX

B —

CC — CPY — Absolute

CD — CMP — Absolute

CE — DEC — Absolute

CF —

DO — BNE

D1 — CMP — (indirect), Y
D2 —

D3 —

D4 —

D5 — CMP — Zero Page, X
D6 — DEC — Zero Page, X
D7 —

D8 — CLD

D9 — CMP — Absolute, Y

DA —

DB —

DC —

DD — CMP — Absolute, X
DE — DEC — Absolute, X

DF —
E0 — CPX — Immediate 122
E1 — SBC — (Indirect, X) 122
E2 —
E3 —

E4 — CPX — Zero Page
E5 — SBC — Zero Page
E6 — INC — Zero Page

E7 —

E8 — INX

E9 — SBC — Immediate
EA —

EB —

EC — CPX — Absolute
ED — SBC — Absolute
EE — INC — Absolute

EF —

FO — BEQ

Ft — SBC — (Indirect), Y
F2 —

F3 —

F4 —

F5 — SBC — Zero Page, X
F6 — INC — Zero Page, X
F7 —

F8 — SED

F9 — SBC — Absolute, Y
FA —

FB —

FC —

FD — SBC — Absolute, X
FE — INC — Absolute, X
FF —

Appendix D — Important Fixed Addresses 121

Important Fixed Addresses

SOS Resources Available for Device Driver’s Use

Addresses Important to Device Drivers

122 SOS Device Driver Writer's Guide

D
Important Fixed Addresses

There are several addresses that are commonly used by device
drivers, entry points for SOS resources available to device drivers,
and areas of memory that are often referred to.

SOS Resources Available for Device
Driver’s Use

ALLOCSIR $1913 To allocate SOS Internal Resource
DEALCSIR $1916 To deallocate SOS Internal Resource

SELC800 $1922 To select the $C800 address space for a
given expansion slot
SYSERR $1928 To report execution errors to SOS

QUEEVENT $191F To signal SOS that an event is to be queued

Addresses Important to Device Drivers

$FFDO Zero-page (Z) Register
$FFDF Environment (E) Register
$FFEF Bank (B) Register

$18C0-C9 Driver parameter table area
$18CA-FF Free zero-page area
$14C0-C9 Parameter table extend-page

$14CA-FF Extend-page free area

Glossary 123

Glossary

address n. A name or number designating a location in either the
computer’'s memory or an on-line file.

algorithm n. Any mechanical or computational procedure.
analog data n. Data representable as fractional numbers.

analog-to-digital converter n. A device that converts
measurements of continuously varying physical quantities such as

temperature, voltage, or current into a digital form that can be used
by a computer.

ASCH n. ASClIl is an acronym for the American Standard Code for
Information Interchange. This code assigns a unique value from 0 to

127 to each of 128 numbers, letters, special characters, and control
characters.

assembler n.

¢ ! A program that converts assembly-language
instructions into

machine-language instructions.

assembly language n.
words, called mnemonics,
machine language. Assem
people to write and under
language.

A computer language made up of simple
that can be quickly and easily converted to
bly-language programs are less difficult for
stand than programs written in machine

124 SOS Device Driver Writer's Guide Glossary 125

binary n. The base-two numbering system consisting of the two card n. Atype of printed-circuit board that has a built-in
digits, 0 and 1. Most computer storage devices are designed to store connector so that it may be plugged into a larger board or other
binary digits and computer circuitry is designed to manipulate piece of hardware.

information coded in a binary form.

catalog n. See directory.
bit n. Contraction of Binary digIT; the smallest amount of

information that a computer can hold. A single bit specifies a single Central Processing Unit, or CPU n. The “brain” of the computer.
value of either “0” or “1”. A group of 4 bits together form a nibble, 8 The CPU is responsible for executing instructions that control the
bits form a byte, and various numbers of bits form words. use of memory and perform arithmetic and logical operations. A

microprocessor is a CPU.
board n. Short for printed-circuit board, or PC board. A sheet of

material, usually made of fiberglass or phenolic-resin-impregnated character n. Any symbol that has a widely-understood meaning.

paper. Attached to either or both faces and often even within the in computers, letters, numbers, punctuation marks, and even what

board are layers of copper, etched into the fine lines of specific are normally just concepts, such as carriage returns, are all

circuits. Connected to these copper circuits are electronic characters.

components: resistors, capacitors, coils, and various solid-state

devices. code n. 1. Acomputer program. 2. A method of representing
something in terms of something else. The ASCII code represents

bootstrap or boot v. To get the system running. The primitive characters as binary numbers; the BASIC and Pascal languages are

bootstrap program loads into the computer a more sophisticated codes that represent algorithms in terms of program statements.

program that then takes over the responsibility for the overall

operation of the computer. cold start or cold boot v. To begin operation of the computer or a
given program on the computer by loading in the operating system

buffer n. A device or area of memory that is allocated to hold and the program, and then running.

information temporarily. Buffers act to generally speed up the

performance of computer systems. FOmmand n. 1. An order given to the computer to perform an
immediate action. 2. The part of an instruction that specifies the

bus n. A group of wires that carry a related set of data, such as action to be carried out. In the BASIC instruction “PRINT “Helio” ",

the bits of an address, in a standard format from one place to PRINT is the command. In the Pascal instruction “writeln ('Hello’)”,

another. A bus can transmit information from one part of a computer writeln() is the command.

to another, between the computer and a peripheral device, or

between peripheral devices. COmPiIer n. A program that translates a high-level language

| : version of a program (the source code) into a low-level language

byte n. A basic unit of a computer's memory. A byte usually version (the object code).

comprises eight bits and is thus capable of expressing a range of

numbers from 0 to 255. (2 to the 8th power is 256.) Each character in computer n. A machine that is controlled by stored instructions

the ASCII code can be represented in one byte, with an extra bit left and is used to store, transfer, and transform information.

over.

zg:trol character n. Control characters, the first thirty-two
racters of ASCII, initiate, modify, or stop control functions.

126 SOS Device Driver Writer's Guide

controller n. See peripheral device controller.

CRT An acronym for Cathode-Ray Tube. A CRT is a tube with a
phosphor-coated optical glass faceplate which, when struck by a
directed beam of electrons generated within, glows with visible light.
Some examples of CRTs are oscilloscope tubes, radar screens, and
TV or monitor screens.

data n. Information that can be processed by a computer.

default n. The value or action selected by the system when the
user does not select an allowable value or action.

delimiter n. A character that is used to designate the beginning or
end of a string of characters and therefore is not considered a part
of the string. Spaces are common delimiters of English words.
/Computers/often/allow/other/symbols./

device n. A piece of computer hardware, such as a disk drive or
terminal. Device is short for peripheral device.

device driver n. A small program that acts as a communications
link between a device and the operating system.

digital data n. Data representable as whole numbers. See analog
data.

directory n. A table of information about the files stored on a
mass storage device such as a diskette. Information in a directory can
include the length and address of files, the amount of storage space
files occupy, etc.

disk n. A flat, circular piece of plastic (flexible disk) or metal (hard
disk), either electroplated or coated with a fine magnetic powder,
onto which information is magnetically recorded.

disk drive n. A device that can read information from and record
information on a flexible disk or hard disk in much the same way that
a tape recorder reads from and records on magnetic tape.

Glossary 127

diskette n. The smaller (5 1/4 inch) of two usual forms of flexible
disk (also called floppy disk), the other (8 inch) simply being called a
flexible (or floppy) disk.

display 1. n. Information exhibited visually, especially on the
screen of a display device. 2. v. To exhibit information
visually. 3. n. Adisplay device.

edit v. To change stored data or modify its format (for example, to
insert, delete or move characters in a file).

editor n. A program that interacts with the user, aliowing entry of
text, graphics, and so on, into the computer and convenient editing
of that information.

execute v. 1.To carryouta command or instruction. 2. (colloq.)
To run a program or a portion of a program.

file n. A named, ordered collection of data.

file name n. The name used to identify a file. The operating
system is able to locate that file by its name.

firmware n. Software stored in a ROM.

flexible disk n. See diskette.
floppy disk n. See diskette.

gfa;_)hics n. 1.iInformation that is conveyed in terms of pictures (as
dlstmguished from text). 2. Information displayed from a page of
gfaPthS_ memory, rather than text memory. Such a graphics page
typically requires eight to sixteen times as much memory as a text

page. This information might include text. An example would be an
annotated chart or graph.

hardware n. The physical components of a computer and its
peripheral devices,

128 SOS Device Driver Writer's Guide

Hertz (Hz) n. Cycles per second. A bicycle wheel which makes two
revolutions in one second is spinning at a rate of 2 Hz. The Apple lllI's
microprocessor runs at approximately 2 million Hz, or 2 MHz.

hexadecimal n. A number system which uses the ten digits 0
through 9 and the six letters A through F to represent values in base
16. Assembly-language instructions often use hexadecimal notation.

high-level language n. A programming language that is relatively
easy for humans to understand. FORTRAN, BASIC, and Pascal are all
examples of high-level languages. One statement of a high-level
language usually corresponds to several statements in a low-level
language.

/0 adj. Short for input/output: a general term referring to the
transfer of information into and out of a computer or peripheral
device.

I/O device n. An input/output device attached to a computer that
makes it possible to bring information into the computer and for the
computer to send information to the user or to another device. Such
devices include keyboards, monitor screens, and serial interface
cards.

IC n. Seeintegrated circuit

input n. Information (data) arriving at a computer or device.
v. 1.The act of receiving data. 2. To type information into a
computer. (jargon)

instruction n. The smallest portion of a program that a computer
can execute. In 6502 machine language, an instruction comprises
one, two, or three bytes and corresponds to a single machine
operation. In a higher-level language, an instruction may be many
characters long and may correspond to many operations.

integrated circuit (IC) n. A small piece (smaller than the size of a
fingernail and about as thin) of pure, crystalline semiconductor
material, usually silicon, that has had refined impurities introduced to
form the various elements of an electronic circuit. Integrated circuits,
or chips, are the basic building blocks of computers.

Glossary 129

interface n. 1. The electronic components that allow two different
devices, or the computer and a device to communicate. 2. The part
of a computer program that interacts with the user.

interpreter n. A program, usually written in machine language,
that individually translates each step in a high-level language
program into a series of low-level machine language operations and
then carries out those operations before proceeding to the next step.
This is different from a compiler, which does all the translating before
the resultant object code is run. The execution of an interpreted
high-level program typically takes up to 100 times as long as that of
compiled object code.

K n. A prefix (kilo), derived from Greek, used to denote one
thousand. In common computer-related usage, K usually represents
2 to the 10th power or 1024.

kilobyte n. 1024 bytes.
load v. To transfer a program or data into the computer’s memory.

low-level language n. Relative to high-level languages, low-level
languages are simpler, more primitive, and are more tightly tied to the
hardware of the computer than to the intuitive thought processes of
a human. Low-level languages on Apple computers include assembly
and machine languages.

machine language n. The computer language that controls the
lowest-level internal operations of the computer. Each statement or

instruction in machine language causes the machine to perform one
operation.

memory n. Devices in which data can be stored and from which
the data can be obtained at a later time. Typical memory devices
include several types of integrated circuits (normally found within the
computer), disks, punched cards (do not fold, spindle, or mutilate),
and magnetic tapes. The information in a memory may be permanent,
that is, it may be read from but not written to (see Read-Only
Memory), or information may be written into as well as read from a
memory (see read/write memory). Memory is further defined as to
how specific locations of information may be accessed; there is
Random-Access Memory and serial access memory.

130 SOS Device Driver Writer's Guide

microcomputer n. A computer that uses a microprocessor as the
primary part of its Central Processing Unit.

microprocessor n. A Central Processing Unit contained in a single
integrated circuit.

mnemonic n. A short, easy-to-remember word or group of letters
that stands for another word. Assembly-language instructions are
mnemonics.

monitor n. 1. A CRT, or CRT with its attendant circuits, which looks
like a TV set with no channel selectors. 2. A computer program that
allows the user to directly initiate machine-language instructions.

native code n. The machine-language code usable directly by the
CPU of the computer upon which the code is to be run. See P-code
and P-machine.

network n. 1. A number of interconnected, individually controlled
computers. 2. The hardware system used to interconnect such a
group of computers.

object code n. The code that results from a program’s source
code, written in a high-level language, being translated by a compiler
or assembler into a lower-level language.

operating system n. The collection of programs that organize a
computer and its peripheral devices into a working unit that can be
used to develop and execute applications programs.

output n. Data that have been, are being, or are to be transmitted.
v. The act of transmitting data. (jargon)

page n. 1. A screenful of information on a video display. A page is
not necessarily 8.5" x 11". 2. A segment of internal storage.

peripheral n. A shortened form of “peripheral device”. A device
attached to the computer that can provide input and/or accept output
from the computer. Peripherals include printers, disk drives, and
speech synthesizers.

Glossary 131

peripheral device controller n. A specialized circuit that connects
a peripheral device to the computer. Such controllers are called
intelligent if they include small device handlers held in ROMs.
Controllers for the Apple Il computer are most easily used if
intelligent; those for the Apple Ill use software device handlers that
are stored on diskette and become part of the operating system.

P-code n. Short for pseudo-code. Program instructions intended
to be executed by a P-machine.

P-machine n. Short for pseudo-machine. Software that emulates a
CPU. P-machines are created to allow one computer to imitate the
CPU of another and thus to run software created for that other
computer's CPU. (Purists will point out that some P-machines imitate
CPUs that don't really exist at all.) Programs run on a P-machine run
slower than they would if the hardware CPU of the computer could
run them directly.

port n. The point of connection between the computer and
peripheral devices, other computers, or a network. A port is usually a
physical connector terminating a bus.

program n. A stored sequence of instructions that causes a
computer to perform some function or operation. v. To create
such a sequence of instructions.

protocol n. A set of conventions governing information exchange
between two communicating computers, or between a computer and
a peripheral device.

Random-Access Memory (RAM) n. 1. Memory that has a unique
address for each unit of storage and a method by which each unit
may be immediately read from or written to. Such memory is made
up of some minimum grouping of bits; either nibbles, bytes, or
words. 2. The integrated circuits forming the main read-write
memory of the computer. The values stored in most types of RAM
memories are lost when power is no longer supplied.

132 SOS Device Driver Writer's Guide

Read-Only Memory (ROM) n. The integrated circuits that contain
the computer’s permanent memory; phonograph records and optical
disks are ROMs. Information stored in ROM is not lost when the
power is removed. Most ROM is randomly accessible, but the term
random-access memory is usually reserved for read-write memory
that is randomly accessible.

read-write memory n. Memory in which values may be stored and

read by the processor. Random-Access Memory, magnetic tape, and
disks are each read-write memories.

scroll v. To move all the information on a display (usually upward)
to make room for more information (usually at the bottom of the
screen).

software n. A collective term for computer programs. Software is
generally stored for future use on either disk or magnetic tape. When
actually being executed, software is typically held in read-write
memory.

SOS (Sophisticated Operating System) n. The operating system
used by the Apple lll computer. It is designed to allow easy
development of new languages and the addition of new peripheral
devices while maintaining compatibility with existing hardware and
software running under SOS.

source code n. The original version of a program, written in a
high-level language for later compilation or assembly.

word n. A group of bits that occupies one storage location and is
treated by the operating system as a unit and is transported as such.
Aword is differentiated from both a byte (8 bits) and a nibble (4 bits)
in that its length is defined by the underlying design of the CPU
being used. Apple computer CPUs typically use either 1- or 2-byte
words. See P-machine.

Figures and Tables 133

Fgues and Tables

1 Overview of SOS Device Drivers

Figure 1-1 The SOS/Apple Il Abstract Machine
Figure 1-2 SOS Data and Control Flow
Figure 1-3 Generalized Device Driver Model

Table 1-1 SOS Device Drivers and Devices

2 The Physical Environment of SOS

14 Figure 2-1 Generalized Apple Il Diagram
14 Figure 2-2 SOS System Address Space

3 Request Handling

30

25
26
28
31
34

Figure 3-1

Table
Table
Table
Table
Table

3-1
3-2
3-3
3-4
3-5

Device Driver Structure

Character Device Driver Request Parameters
Block Device Driver Request Parameters
SOS Device Driver Environment

DIB Header Block Structure
Currently-assigned SOS Device Types and
Subtypes

134 SOS Device Driver Writer’s Guide

4 SOS-provided Services

48 Table 4-1 System Internal Resource (SIR) Numbers

53 Table 4-2 SOS Driver Error Codes

5 Interrupt Handling

63 Table 5-1 Interrupt Polling Priorities

7 Interfacing with Apple I
Peripheral Connectors

73
79
81
81
82

74

78

Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5

Table 7-1

Table 7-2

Apple lll Peripheral Connector Pinout
{/O Timing Diagram

Sample 6520 interfacing Circuit
Sample (A) 6522 Interfacing Circuit
Sample (B) 6522 Interfacing Circuit

Signal Description for Peripheral {/O
Connectors
Loading and Driving Rules

A

abstract machine, SOS 16
ACIA (Asynchronous
Communication Interface
Adapter) 21, 22, 79
address
enhanced-indirect 20
space, SOS 14
addressing 14
bank-switched 19
enhanced-indirect 18, 19-20
memory 19-20
ALLOCSIR 48-50
Apple Il Emulation mode iv, 85
Apple lll Pascal Assembler 69
architecture, SOS 16
arming, event 54
Assembler, Apple Il Pascal 69
assignments
device subtype 34
device type 34
asynchronous interrupt 54
.AUDIO ii

Index 135

B

B (or bank) register 18, 19, 28, 62

bank-switched addressing 19
block 4
device(s) iii, 4
driver(s) 26, 69
functions 6, 11
writing 69
file iii
logical 6
numbers 26
blocks field, DIB 35
buffers 11, 36, 66
bus timing 79

C
cables, 1/O 83
card designs, prototyping 82
character
devices 4
driver(s) 68
functions 4, 11
writing 68

136 SOS Device Driver Writer's Guide Index 137

file iii files 2 driver(s) errors, system 53
NEWLINE 56 format 34 block 26, 69 event
classes, device 4 information block 30-31 functions 6, 11 arming 54
clock name, DIB 32 writing 69 fence 55
modes 80 physical 2 buffers 36 handling 54
rate 17 requests 2, 3, 5, 30, 36 design 66 priority 55
system 29, 62 reset 45 documentation 36 queue 54
code selection, external 22 parameter table 28 recognition 55
files, device driver 69 subtype request parameter table execution environment 27
reentrancy 61 assignments 34 24-26 ExerSOS 68-69
time-dependant 67 byte, DIB 34 requests 36 expansion, |/O 82
command register 21 type character 68 selection 51
comment field, DIB 31 assignments 34 functions 4, 11 extend-address page 18-19
conceptual model, SOS 7 byte, DIB 32 writing 68 extended-address page usage 27
configuration diagnostics 66 design 66 external device selection 22
block, DIB 35, 36 DIB (Device Information Block) device i, 2
programs, system 2 30-31 block 11 F
connectors, peripheral 72 comment field 31 code files 69 fence, event 55
.CONSOLEii configuration block 35, 36 skeleton iv, 10 field, DIB blocks 35
control entry field 32 standard 3 file 2, 4, 6
parameters 6 filler byte 34 format 4 block iii
register(s) 14, 16, 22 flag byte 32 character iii
header block 31 E device iii
D link field 35 E (or environment) register 16 random-access iii
DEALCSIR 48-51 slot byte 32 electrical description 73 filler byte, DIB 34
decoupling 77 unit _byte 32 EMI, minimizing 83 flag
design _version number 35 emulation mode iv, 85 byte, DIB 32
driver 66 d!rect9r|e§ 4.6 enhanced-indirect addressing interrupt 61
interrupt handlers 61 disabling interrupts 63 18, 19-20 .FMTD1 4
prototyping cards 82 DMAv . . entry field, DIB 32 format
detection, error 70 documentation, driver 36 environment device 34
device(s) DRCLOSE 5, 24, 38 execution 68-69 driver 4
block iii, 4 DRCONTROL 6-7, 24, 43, 68-69 interrupt handler 62 full-speed mode 80
character 4 DRINIT 5, 6, 24, 37, 68-69, 85 error codes functions
classes 4 DROPEN 5, 24, 37 detection 70 block driver 6, 11
driver(s) i, 2 DRREAD 5-6, 24, 38, 68-69 handling 52 character driver 4, 11
adding 2 DRREPEAT 7, 24, 40 reporting 70
buffers 11 DRSTATUS 6-7, 24, 41, 68-69 SOS 53 G
code files 69 DRWRITE 5, 7, 24, 40, 68-69 special 70
removing 2 drive rules, 1/O 77 system 53
skeleton 10

standard 3

138 SOS Device Driver Writer's Guide

H
handler
interrupt 2, 30, 51, 60
design 61
environment 62
request 2, 24, 30
handling
error codes 52
event 54
hardware
interfacing 72
testing 84
header block, DIB 31

/
/0
cables 83
drive rules 77
expansion 62
selection 51
loading 77
space 62
selection 29
state, system 29
input gperation i
interfacing, hardware 72
internal resource system 48
interrupt(s) 2, 27, 62, 66
asynchronous 54
disabling 63
flag 61
handler(s) 2, 30, 51, 60
design 61
environment 62
handling 60
IRQ 60
NMI 51
polling priorities 63
receiver 48
resources 64

response times 61
state, system 29
IRQ interrupts 60

J
K

L

link field, DIB 31

loading, I/0 77

logical block 6
numbers 26

M
manufacturer field, DIB 35
maximum response time 63
memory

addressing 19-20

organization 14

space size 19
minimizing EMI 83
minimum response time 63
mode(s)

1 MHz 80

clock 80

emulation iv, 85

full-speed 80

NEWLINE 5

N
NEWLINE 38, 42, 44, 68-69
character 5-6
mode 5
NMI interrupt handling 55
numbers, block 26

o
OEM prototyping card 72
operation

input i

output i
organization, memory 14
output operation i

P

parameters, control 6

Pascal Assembler, Apple il 69
peripheral connectors 72
physical devices 2

PIA 79

polling priorities, interrupt 63
port, serial 21

.PRINTER ii, 4, 60

priority, event 55

.PROFILE ii

prototyping card design 82

Q
QUEEVENT 55-56
queue, event 54

R
random-access file iii
rate, clock 17
receive/transmit register 21
receiver, interrupt 48
recognition, event 55
reentrancy, code 61
register(s)
bank 18, 19, 28, 62
command 21
control 22
receive/transmit 21
status 21
system control 14, 16

Index 139

X 62

Y 62

Z17
reporting errors 70
request(s)

device 2, 3, 30

handlers 2, 24, 30

handling 24, 27
reset, device 45
resource(s) 48

allocation 49

interrupt 64
response time

maximum 63

minimum 63

interrupt 61

.RS232ii, 4
RS232 port 21

S
SCP 2
SELC800 52
selection
$C800 space 22, 29
I/0 expansion 51
I/O space 29
semaphores 61
serial port 21
short circuit tests 84
SIR 48, 64
skeleton driver iv
skeleton, device driver 10
slot byte, DIB 32
SOSi
abstract machine 16
address space 14
architecture 16
conceptual model 7
device
classes 4
requests 2, 3, 5, 30, 36

140 SOS Device Driver Writer's Guide_

error codes 53
SOS.DRIVER 2
space size, memory 19
space, 1/0 62
special error codes 70
stack 62
standard device drivers 3
status register 21
SYSERR 52-53, 70
system
clock 29, 62
configuration program 2
control registers 14, 16, 22
errors 53
I/O state 29
internal resource 48
interrupt state 29

T
table, driver request parameter
24-26
testing
hardware 84
short circuits 84
time-dependant code 67
timing, bus 79

u
unit byte, DIB 32

"4
version number, DIB 35
VIA 80

w

writing
block drivers 69
character drivers 68

X

X register 62
X-address page 18-19
X-byte 20

Y
Y register 62

V4

Z register 17
zero-page 62
zero-page use 27

Special Symbols
$C800 selection 22
.AUDIO ii
.CONSOLE ii
.FMTD1 4
.PRINTER iij, 4, 60
.PROFILE ii
.RS232ii, 4

