
Apple IIGS

#80: QuickDraw II Clipping 1 of 9

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#80: QuickDraw II Clipping

Written by: Eric Soldan March 1990

This Technical Note explains a lot about QuickDraw II operation, specifically clipping.

Before Beginning

Before beginning this Note, some statements, disclaimers, and definitions:

1. This is not a substitute for the QuickDraw II introduction in the Apple IIGS

Toolbox Reference, but rather a supplement.
2. A pixelmap is a series of bytes that hold pixel data whose rectangular shape is

defined by a LocInfo structure.

This Note describes in great detail the way that QuickDraw II does things with pixelmaps. It
begins with a description of the LocInfo structure, which is the most important thing to
understand in terms of QuickDraw II pixelmap management. Once this is understood, this Note
covers how it applies to using functions such as PPToPort , PaintPixels , and
CopyPixels. And once this is understood, it then describes how LocInfo structures are
used to control drawing into a grafPort. (PPToPort is used in this Note. PaintPixels
and CopyPixels are very close in function to PaintPixels. The information and theory in
this Note also apply to these calls.)

Understanding the material in this Note should help you better understand the entire toolbox. It
is surprising how much can be accomplished with the toolbox without completely understanding
these concepts; it is also surprising how much easier programming with the toolbox gets when
these concepts are fully understood.

Note: Structures are written with C syntax in this Note. In addition, this Note uses the
screen address 0xE12000L. The possibility of shadowing being active and the
screen address being 0x12000L is ignored.

The Beginning

One must begin with the LocInfo structure, which is as follows:

Apple II Technical Notes

Apple IIGS

2 of 9 #80: QuickDraw II Clipping

struct LocInfo {
 Word portSCB; /* SCB in low byte */
 Pointer ptrToPixImage; /* ImageRef */
 Word width; /* Width */
 Rect boundsRect; /* BoundsRect */
};

For this Note, one can change this structure a little bit by calling the width element
rowBytes. This convention is good because rowBytes is more descriptive than width (it
indicates that one is measuring the width in bytes) and it allows one to use the word “width”
elsewhere in this Note without confusion. So for the purposes of the Note, the new LocInfo
structure definition is as follows:

struct LocInfo {
 Word portSCB; /* SCB in low byte */
 Pointer ptrToPixImage; /* ImageRef */
 Word rowBytes; /* Width in bytes*/
 Rect boundsRect; /* BoundsRect */
};

The ptrToPixImage field is a pointer to some block of bytes in memory. (This block of
bytes is referred to as the pixImage from here on.) A pixImage doesn’t have any inherent
shape. QuickDraw II deals with it as a rectangle, and the LocInfo record defines the
rectangularity of it.

When saving a 32,000 byte screen image, one doesn’t save the number of bytes of which each
row consists. One assumes that each row is 160 bytes by convention, and this is a safe
assumption, since the IIGS video hardware expects 160 bytes. But the point is that in the 32,000
bytes of screen data, there is no indicator as to the specific size of a row. One must just know
that it is 160 bytes per row. This size is fine for screen shots, but it is not fine when different
pixelmaps can be different widths. If they can be different widths, then one also needs some
information as to what those widths are, hence the portSCB, rowBytes, and boundsRect
fields in a LocInfo structure.

The boundsRect and portSCB fields tell the shape of the pixelmap in pixels, the
boundsRect tells how many pixels wide and tall the pixelmap is, and the portSCB tells how
big those pixels are (320-mode pixels are four bits wide and 640-mode pixels are two bits wide).
One would think that this would be enough information to determine the size of the pixImage,
but it isn’t. The rowBytes can be larger than the boundsRect/portSCB would indicate
(see Figure 1). This situation is legal; it means that some bytes are being wasted, but it is legal.

Developer Technical Support March 1990

Apple IIGS

#80: QuickDraw II Clipping 3 of 9

boundsRect
0,0

rowBytes

Block of bytes pointed to by ptrToPixImage.

313,97

Figure 1–Sample LocInfo Structure

One simply has to know the size of the pixImage, since it cannot be determined by the
LocInfo information. If the pixImage is the screen, then it is 32,000 bytes. If it is a fixed or
locked handle, then one can do a FindHandle on the pointer followed by a GetHandleSize
on the found handle.

Figure 1 represents a sample LocInfo structure. The portSCB (although not pictured) is also
relevant, as it determines the size of the pixels. If the pixelmap is a 320-mode pixelmap, one
could change it to a 640-mode pixelmap by changing the portSCB to 640 mode and doubling
the width of the boundsRect. In doing this conversion, note that rowBytes is not affected
and that the pixImage does not change size.

In the example illustrated in Figure 1, the pixImage is bigger than the boundsRect, but
again, this is okay. However, this is not the case for the screen, where the rowBytes is 160 and
the height of the boundsRect is 200 (the size of the screen is exactly equal to 160 * 200 =
32,000).

There are some rules to determining the rowBytes value. First, rowBytes must not be too
small. This is obvious. Second, rowBytes must be evenly divisible by eight. This is not at all
obvious, but it is very important. QuickDraw II makes some assumptions for speed, and one of
them is that rowBytes is a multiple of eight.

So much for describing the LocInfo structure. Now for how to use it via PPToPort.

PPToPort accepts (among other things) a pointer to a source LocInfo record and a pointer to
a source rectangle. PPToPort does not use the source rectangle directly; it first intersects it
with the boundsRect in the LocInfo record, and it uses this intersection rectangle instead.
This intersection rectangle guarantees that the area involved is completely enclosed by the

Apple II Technical Notes

Apple IIGS

4 of 9 #80: QuickDraw II Clipping

boundsRect (and therefore within the pixImage). If the source rectangle is entirely outside
the boundsRect, then the intersection of the source rectangle and the boundsRect is empty,
thus nothing is drawn.

boundsRect
0,0

50,25

523,77

rowBytes

Block of bytes pointed to by ptrToPixImage.

313,97

intersection rectangle

313,77

sourceRect

Figure 2–Sample LocInfo Structure With sourceRect

Figure 2 contains a sourceRect which is not completely contained by the boundsRect; the
sourceRect is so wide that it even goes beyond the edge of the pixImage. If the entire
contents of this rectangle were drawn, the result would be quite a mess, since it extends beyond
the boundary of the pixelmap. However, PPToPort first intersects the sourceRect and the
boundsRect, and then uses the resulting intersection rectangle (illustrated with a thicker
border in the figure). PPToPort uses only the contents of the intersection rectangle.

Up until now, the boundsRect upper-left corner has always been 0,0. This is an easy way to
think of it, but it is not necessary. The important thing to remember about these rectangles is
their relation to one another. If one were to offset both the boundsRect and sourceRect in
this example, the values for the corners of the rectangles would change, but the relationship
between the two rectangles would stay the same. Figure 3 illustrates the same example if one
were to offset both rectangles by -60,-45.

Developer Technical Support March 1990

Apple IIGS

#80: QuickDraw II Clipping 5 of 9

-60,-45
boundsRect

-10,-20

463,32

rowBytes

Block of bytes pointed to by ptrToPixImage.

253,52

intersection rectangle

253,32

sourceRect

Figure 3–Sample LocInfo Structure Offset by -60,-45

Notice that the same area of the pixImage is involved, even though the boundsRect and
sourceRect are offset. When one offsets both the boundsRect and sourceRect by the
same amount, the referenced part of the pixImage does not change—this is an important
concept.

Time to ask a question that is answered shortly: “Why isn’t the upper-left corner of the
boundsRect always 0,0?” Because the LocInfo record isn’t always a source LocInfo
record. It can also be a destination LocInfo record, and the most common pixelmap to which a
destination LocInfo record refers is the screen.

If you had not noticed, the discussion changes gears here—to discuss LocInfo records that
indicate a destination pixelmap. Basically, everything is the same as has been described with
two exceptions. First, destination pixelmaps do not have a sourceRect. Instead there is a
rectangle that describes some portion of the destination pixelmap, and this rectangle is called the
portRect. Second, the LocInfo record is part of a grafPort, and each grafPort has a
LocInfo record as part of the grafPort data structure.

It is important to remember that a LocInfo record can be used as either a source or destination
LocInfo. All a LocInfo record does is define some bytes in memory as a pixImage. Even
the screen, which is usually used as a destination pixelmap, can be used as a source pixelmap.
There could be situations where one might want to take part of the screen and copy it into some
off-screen pixelmap, and in this case, the screen would be a source of pixel data, not a
destination.

In the case of the screen pixelmap, there are no wasted bytes in the pixImage, as all of the
screen bytes are enclosed by the boundsRect. The screen width of 160 is evenly divisible by

Apple II Technical Notes

Apple IIGS

6 of 9 #80: QuickDraw II Clipping

eight, so there is no slop at the right edge, and there are no extra rows hanging off the bottom of
the boundsRect.

Figure 4 shows a sample LocInfo and portRect (every grafPort has a LocInfo and a
portRect).

portRect

boundsRect
0,0

98,54

rowBytes

Block of bytes pointed to by ptrToPixImage.
In the case of the screen, this is $E12000.

640,200

640,143

intersection rectangle

Figure 4–Sample LocInfo and portRect

Following are two important points to remember:

1. Every grafPort works in local (not global) coordinates (local coordinates are
defined soon).

2. The origin of the grafPort is the upper-left corner of the portRect. There is
no GetOrigin call; there is a SetOrigin call, but no GetOrigin. To get
the origin of a grafPort, one needs to do a GetPortRect call, and then look
at the upper-left corner to determine the current origin of the grafPort. This is
the way to get the origin.

In the case of Figure 4, local and global coordinate systems are the same, as is always the case
when the boundsRect has an upper-left corner of 0,0 (which it seldom does). So, for this
exceptional case, one doesn’t need a definition of local coordinates. In the global coordinate
system, the upper-left corner of the screen is 0,0. In local coordinates, the upper-left corner of
the screen is whatever the boundsRect says it is. So when the upper-left corner of the
boundsRect is 0,0, the global and local coordinate systems are the same.

In Figure 4, if one tried to draw something to point 0,0, it would not draw—it would be clipped
because it is outside the portRect. So even if one tried to draw there, it would not change point
0,0. If a user moved a mouse to that location and an application performed a GetMouse (which

Developer Technical Support March 1990

Apple IIGS

#80: QuickDraw II Clipping 7 of 9

returns the mouse location in the local coordinates of the current grafPort), it would return
0,0 as the mouse location.

If one did a SetOrigin(0,0), then the boundsRect and portRect would be offset by
the difference between the old and new origins. Both rectangles would be offset, so the
relationship between them would remain the same, as Figure 5 illustrates.

portRect

boundsRect
-98,-54

0,0

rowBytes

Block of bytes pointed to by ptrToPixImage.
In the case of the screen, this is $E12000.

542,146

542,89
819,89

intersection rectangle

Figure 5–Sample LocInfo and portRect, Both Offset

Now if a user moves a mouse to the upper-left corner of the screen, a call to GetMouse returns
a value of -98,-54, as expected, and if a user moves the mouse to the upper-left corner of the
portRect, a call to GetMouse returns 0,0, again as expected. This is how origins work and
how the conceptual drawing space relates to the grafPort. The boundsRect of the
grafPort (in the LocInfo record of the grafPort) and the portRect of the grafPort
are offset when one calls SetOrigin. It is that simple.

Now that it is simple, time to complicate matters with one more player in the QuickDraw II
clipping world: the visRgn.

The visRgn exists for one purpose: to cause more clipping. It never causes anything to be
clipped less than the portRect does, and in the case of a top window that is completely visible,
the visRgn and the portRect are exactly the same size. Even more than that, the enclosing
rectangle for the visRgn (every region has an enclosing rectangle) is this case would be exactly
the same as that of the portRect. This all makes sense when one looks at the purpose of a
visRgn. Again, the visRgn can only cause more clipping. If the entire window is visible, one
does not want more clipping, so a visRgn the same size as the portRect guarantees that it
does not clip any more than the portRect, as it must clip the same amount.

Apple II Technical Notes

Apple IIGS

8 of 9 #80: QuickDraw II Clipping

The visRgn is a different size than the portRect when the window is not the top window and
part of it is overlapped (or if part of the window is off the screen). The part that is overlapped is
excluded from the visRgn, and this excluded part is clipped to protect the window above from
being drawn upon. This is how window clipping works. This is all there is to it.

Figure 6 enhances Figure 5 by adding an overlapping window to demonstrate the visRgn.

portRect of current grafPort

boundsRect of current grafPort
-98,-54

0,0

rowBytes

Block of bytes pointed to by ptrToPixImage.
In the case of the screen, this is $E12000.

542,146

542,89

819,89

intersection rectangle

portRect of some overlapping window

visRgn of current grafPort

Figure 6–Sample LocInfo and portRect With Overlapping Window

What happens to the visRgn during a SetOrigin? Remember that the boundsRect and
portRect get offset. The visRgn does too. Again, if all of these elements are offset
together, then the relationship between them remains the same; they stay the same, relative to
one another. (For more information, see Einstein’s theory of general relativity.)

The final component for clipping is the clipRgn, which is the application’s property and,
therefore, the application’s responsibility. The system sets the clipRgn about as big as it can
get to start (much bigger than the portRect); this is often referred to as arbitrarily large, even
though it isn’t so arbitrary. The system creates all grafPort structures with a large clipRgn,
and this can be a problem for certain types of QuickDraw II operations. Since the clipRgn
already reaches to the borders of the conceptual drawing space, it cannot be offset; it is
effectively stuck, due to its size. It is a good practice to make the clipRgn smaller than the
system default.

SetOrigin does not offset the clipRgn. (This is why the size problem with a big clipRgn
is not so apparent.) The clipRgn is the only clipping component that is not offset by

Developer Technical Support March 1990

Apple IIGS

#80: QuickDraw II Clipping 9 of 9

SetOrigin, and one should consider this when using clipRgn for clipping effects, since an
application must remember to offset it if it needs to be offset.

Now with all of the fundamentals out of the way, it is time to play some grafPort clipping
games. As a refresher, there are four clipping components in a grafPort: the boundsRect,
the portRect, the visRgn, and the clipRgn.

If an application creates its own off-screen grafPort structures, then it can do as it wishes
with all four clipping components. After all, if it has the responsibility to set them up in the first
place, it should have the right to change them. If, however, the Window Manager creates the
grafPort structures, then an application should keeps its figurative hands off certain clipping
components, namely the boundsRect and the visRgn. The clipRgn, by definition, is the
application’s to do with as it sees fit, and if careful, an application can also change the
portRect. Changing the portRect can be very useful, but one needs to be careful and fully
understand all of the ramifications.

So, why would one change the portRect, and how would one do it?

Another figure is in order.

portRect

boundsRect
-98,-54

rowBytes

Block of bytes pointed to by ptrToPixImage.
In the case of the screen, this is $E12000.

542,146

542,89

819,89

intersection rectangle

100,00,0

Figure 7–Sample LocInfo and Modified portRect

One can use the GetPortRect call to get the portRect for the current grafPort. One can
then modify it, and then use the SetPortRect call to inform the grafPort about the change.
Why do this? In Figure 7, the dotted line represents the new left edge of the portRect after the
modification (a simple modification of adding 100 to the old value of zero).

Apple II Technical Notes

Apple IIGS

10 of 9 #80: QuickDraw II Clipping

Note that changing the portRect in this way changes the relationship between the portRect
and the boundsRect. Anything drawn from 0 to 99 (x coordinate) is clipped, since it is
outside the new (modified) portRect. Before the modification, anything drawn from 0 to 99
would have affected the screen.

This modification may cause the portRect to be smaller than the visRgn. This is okay,
since the visRgn can only cause more clipping, not less. So, all of this works just fine. Note
that the origin changed when the left edge of the portRect changed. The upper-left corner of
the portRect is always the origin, and an application changed it. The origin changed without
a SetOrigin call. (Scary, huh?)

One could have done exactly the same thing by making a clipRgn to exclude the x coordinates
from 0 to 99. However, here is something cool. After the modification, do a
SetOrigin(0,0), which sets the upper-left corner of the shrunk portRect to 0,0. One
cannot accomplish this sort of thing as simply by making a clipRgn. One can effectively
move where an origin of 0,0 is the screen, and just building a clipRgn to exclude some part of
the screen does not accomplish this.

Why would one want to change where 0,0 is on the screen? This sort of trick is very useful for
adding rulers to a document window, for example. One of the problems with rulers is that they
should not scroll with the rest of a document. Unfortunately, TaskMaster, if allowed to
handle scrolling, doesn’t know about a ruler at the top of a window and scrolls it with the rest of
the window’s content area. By changing the portRect so that the ruler is not inside of it, one
can keep TaskMaster from scrolling it. In a draw procedure, when it is necessary to draw the
ruler, grow the portRect, set the origin to 0,0, and then draw the ruler. Once it is drawn, set
the portRect back to the smaller size to protect the ruler again.

Another reason one might want to do this is if an application uses a split window (where the top
of the window may show a different part of the document than the bottom). Changing the
portRect has the advantage that the upper-left corner of the portRect is always the origin,
so it makes mapping document coordinates easier.

Another advantage to using the portRect in this way is that it keeps the clipRgn free for
other purposes. Being able to separate types of clipping to either the portRect or the
clipRgn keeps the clipRgn from being overused.

As a final note, it should be observed that the only clipping that is done is on a destination
pixelmap. There is no clipping on a source pixelmap. There is no need. All the clipping needed
is done at the destination end, so it would be wasteful to clip twice.

This finishes the discussion about QuickDraw II and how the boundsRect, portRect,
visRgn, and clipRgn work together to accomplish clipping. Hopefully this Note answers
more questions than it creates.

Further Reference
• Apple IIGS Toolbox Reference, Volume 2

Developer Technical Support March 1990

Apple IIGS

#80: QuickDraw II Clipping 11 of 9

• Relativity the Special and General Theory (1920)

