
Apple IIGS

#17: Application Memory Management and the MMStartUp User ID 1 of 2

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#17: Application Memory Management and
the MMStartUp User ID

Revised by: Steven Glass & Rich Williams November 1988
Written by: Jim Merritt June 1987

This Technical Note describes a technique which permits an application to dispose of any
memory it has used with a single Memory Manager call without clobbering other system
components or itself.

Ground Rules for Application Memory Usage

Apple IIGS programs must be responsible for allocating and disposing of any memory they use,
over and above that which the operating system itself gives them. In general, no IIGS program
should use any memory except that which the Memory Manager has explicitly granted to it. A
program may request additional memory for its own use at any time with one or more calls to the
NewHandle routine. At program termination, the application is responsible for explicitly
disposing of any memory that it explicitly acquired, and if it fails to do so, it could leave the IIGS

memory management system in a corrupted state.

You may dispose of memory on a handle-by-handle basis, or you may dispose of it en masse by
calling DisposeAll, but you should never use DisposeAll with the user ID that the
MMStartUp routine provides. This user ID is the “master user ID” for the application, and it
tags the memory space which the operating system reserves for the program’s code and static
data at load time. Calling DisposeAll with this user ID results in immediate deallocation of
the memory in which the calling program resides; therefore, an application which allocates
dynamic data space using only the user ID that MMStartUp gives it should not use
DisposeAll to deallocate that space, but rather use DisposeHandle to deallocate it handle
by handle.

Cleaning Up With DisposeAll

It is possible, however, for a program to use a different, unique user ID when allocating its own
RAM, then pass that user ID to DisposeAll when it terminates to deallocate all of its private
memory at once without endangering itself or other parts of the IIGS system. With this
technique, the question is how best to acquire a new user ID? One method to acquire a new user

Apple II Technical Notes

2 of 2 Developer Technical Support

ID is to request a completely new one of the appropriate type from the User ID Manager in the
Miscellaneous Tools. In this case, when the application terminates, it must not only deallocate
the memory it used, but also the additional user ID which it requested from the User ID
Manager.

Actually, it is not necessary for a program to acquire a completely new user ID to use
DisposeAll without clobbering itself. Instead, the application may modify the auxID field
of the master user ID which MMStartUp assigns to create a unique user ID for allocating its
own memory. The 16-bit user ID contains the auxID field in bits $8 – $B. The value of this
field, which may range from $0 to $F, is always zero in the application’s master user ID, but you
can fill it with any non-zero value to create up to 15 new and distinct user IDs, each of which
you can pass to NewHandle to allocate memory.and to DisposeAll to deallocate memory
without endangering the memory tagged by the master user ID. The following assembly code
fragment illustrates this technique:

; assumes full native mode
pushword #0 ; room for user ID
_MMStartUp
pla ; master user ID
sta MasterID
ora #$0100 ; auxID:= 1

; (COULD HAVE BEEN ANYTHING FROM $1 to $F)

sta MyID ; use this to allocate private memory
...
etc.
...

; ready to exit program
pushword MyID
_DisposeAll ; dumps only my own RAM

; now do any remaining processing related to termination

You do not need to explicitly deallocate any user ID that you derive by changing the auxID
field of a valid master user ID. When the system (usually the one to deallocate the master)
deallocates the master user ID, it also deallocates its derivatives.

One Word of Caution

Several of the Memory Manager’s “All” calls (e.g., DisposeAll) treat a zeroed auxID field
as a wildcard which matches any value that the field may contain, thus if you call DisposeAll
with the application’s master user ID (where the auxID field is zero), the Memory Manager will
not only deallocate all memory belonging to the master user ID, but also all handles and memory
segments that are associated with user IDs which are derived from that master. The Loader’s
UserShutDown mechanism typically executes such a call when cleaning up after a normal
(i.e., non-restartable) application to keep the memory management system from clogging. This
action is purely a defensive measure, and well-behaved applications – particularly restartable
ones – should dispose of their own memory and never rely upon the operating system to clean up
after them.

November 1988

Apple IIGS

#17: Application Memory Management and the MMStartUp User ID 3 of 2

Further Reference
• Apple IIGS Toolbox Reference, Volume 1

