
Apple IIGS

#2: Transforming I/O Subroutines for Use in “Native” Mode 1 of 3

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#2: Transforming I/O Subroutines
for Use in “Native” Mode

Revised by: Pete McDonald November 1988
Written by: Pete McDonald October 1986

This Technical Note outlines a number of techniques useful when transforming Apple II I/O
subroutines for use in the “native” Apple IIGS environment.

The Apple IIGS execution environment represents quite a departure from the environment to
which the average Apple II developer is accustomed. This fact results in a number of unique
problems when one attempts to convert existing Apple II applications for use in the “native”
Apple IIGS environment. (Note: If you intend to let your application remain an eight-bit
“classic” Apple II application, then you can ignore the information this Technical Note presents.)

I/O subroutines which depend upon critically timed code present some of the biggest conversion
problems due to two major issues. In the native IIgs environment, you cannot guarantee that
there will be memory available in a given bank, and I/O locations are not available in every
bank.

There are a number of possible solutions to this problem. Which ones you should use depend
upon what the program in question is doing. This Note attempts to describe some of the problem
situations and possible solutions.

Examine the 6502 code segment below. It serves no useful purpose, other than to illustrate a
simple manifestation of the problem. Assume IoLoc is a location in the $C000 – $CFFF range
of memory.

Loop LDA IoLoc
DEY
BPL Loop

Because the $C000 – $CFFF range of memory in bank 2 or higher contains RAM instead of I/O
circuitry unless hardware shadowing is enabled, if you place the fragment above in one of these
banks, it will have no effect on the I/O device you intend it to control.

There are two possible solutions in this case. Either change the instruction LDA IoLoc so it
uses long addressing, thereby forcing the CPU to reference the the proper bank. (Note: The
problem with this is the long version of LDA requires an extra CPU cycle to execute. If the code

Apple II Technical Notes

2 of 3 Developer Technical Support

segment is timing critical, then this method is likely to be unacceptable.) Alternately, in the
timing-critical case, we could set the data bank register before entering the loop which would
mean the LDA IoLoc would take the same number of cycles as it did previously, thus leaving
the timing loop unchanged.

These solutions seem pretty easy; therefore, you know there is a catch. The catch, unfortunately,
is that most code is not isolated as in the example. Specifically, code commonly tries to load
from or store to some location in memory other than the I/O location at the same time it is trying
to access the I/O location.

Take, for example, the following fragment:

Loop LDA Data,y
STA IoLoc
DEY
BPL Loop

In this example, we assume that the label Data refers to some kind of table which normally
resides in the same bank as the program. Now if you set the data bank register to access I/O
locations, then the reference to Data will also reference the same bank as the I/O; this solution
is likely not acceptable. One thing you can do is move the data table to the direct page (zero
page for 6502 programmers), but now the LDA Data,y instruction will take one less cycle to
execute. There is a solution, although it is a little complicated. If we set the direct page register
to a non page-aligned location, then we effectively apply a one-cycle penalty to all direct page
references and solve our problem.

Of course, nothing is ever as simple as it seems. What happens to references to other direct page
locations that expect to operate without the one-cycle penalty? To properly address this
question, I would need much more space than I have here, so in lieu of further examples, I offer
some general information. (As an aside, I used these techniques to transform the old “Apple II
Disk II formatter module” for use in any bank of memory in the native IIGS environment. I
accomplished this using, almost exclusively, editor find and replace commands, and I finished in
hours instead of the days which would have been required to completely rewrite the program.)

In addition to the techniques already covered, there are a few other things which may be
necessary to complete a transformation (they were necessary in the case of the formatter
module).

As I already mentioned, one problem is what to do in the case where a program references I/O,
local program-bank data, and the zero-page. In this case, significant rewrites could be required,
but not necessarily.

In the case of the disk formatter, it turned out that some modules used both normal zero-page
addressing and normal 16-bit absolute indexed addressing. Since the transformation process
dictates that we change 16-bit absolute addressing to direct-page addressing with a non page-
aligned direct page, there could have been a problem had both uses of the direct page been
timing critical. Fortunately, by treating each module of the program separately, when I needed
both types of addressing, only one was critical. The solution was to set the direct page to a non

November 1988

Apple IIGS

#2: Transforming I/O Subroutines for Use in “Native” Mode 3 of 3

page-aligned value in some modules and to a page-aligned value in others. There are some
minor logistical issues when a direct page’s base address can be at either $xxx0 or $xxx1, the
biggest of which is keeping track of which is in effect at a given point and knowing to reference
the label as label, label+1, or label-1, depending upon the particular case.

With the formatter transformation, there was one other major issue: there are not direct-page
versions of all the 16-bit absolute addressing modes (i.e., one cannot convert 16bitaddress,x to
8bitaddress,x). In the case of the formatter, I was able to solve this by reversing all the register
use (i.e., all LDY instructions became LDX instructions, all STY instructions became STX
instructions, etc.).

There are still a number of other ways in which one can approach these issues; one that comes to
mind would be using some form of the new stack-relative addressing modes to yield yet another
range of semi-independently accessible addresses.

The real point of this Technical Note is that with a little thought and effort, one can successfully
convert a large subset of likely configurations for use in the native IIGS environment without
major rewrites. The bottom line is to be creative!

Further Reference
• Programming the 65816 Including the 6502, 65C02, and 65802 (Eyes/Lichty)
• Apple IIGS Firmware Reference

