
Apple IIGS

#84: TaskMaster Madness 1 of 5

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#84: TaskMaster Madness

Written by: C.K. Haun <TR> July 1990

This Technical Note discusses the enhancements made to TaskMaster in System Software
5.0.

TaskMaster has been expanded to handle extended control actions and give you more
information about events in System Software 5.0. This Note discusses some features of the
expanded TaskMaster and TaskMasterDA, and how you can best exploit the new features
in your applications.

Stop Making It So Difficult

Developers just want to work too hard. You get a neat new thing like the expanded
TaskMaster, and you still want to do all the work yourself. The new TaskMaster does
nearly everything for you, as long as you treat it correctly.

What this means is you do not have to call FindControl, TrackControl, TEIdle,
LEKey, handle keystrokes for controls, keep track of click counts, or any of the other mundane
event management tasks unless you specifically want to perform actions that TaskMaster does
not perform. For the standard controls and situations this means that you do not have to do
anything.

The magic keys to this life of freedom and ease are the five newly defined taskMask flag bits,
labeled in the interfaces as tmContentControls, tmControlKey, tmControlMenu,
tmMultiClick and tmIdleEvents. This Note looks at what the new bits do for you, but
first a word of warning.

Warning: If you set any of these new bits, TaskMaster assumes you are using the
new extended task record. This means that you cannot just go into an
older program and set these bits and expect your program to work
successfully. You also must allocate the additional space for the extended
portion of the task record. If you do not, TaskMaster puts task data in
areas that you do not expect, and Bad Things happen.

Apple II Technical Notes

2 of 5 #84: TaskMaster Madness

Bits ’o This, Bits ’o That

Click Bits

tmMultiClick tells TaskMaster to keep the new “click information” fields in the extended
task record updated. This allows you to have TaskMaster keep track of multiclick events; the
wmClickCount field is one, two or three depending on whether the last action was a single,
double, or triple click. In fact, if you can click your mouse button fast enough, you can time
quadruple clicks, sextuple clicks, or as high as you want, although anything over triple-clicking
is nearly impossible for users to consistently manage. wmClickCount just gets incremented
by one when the click falls within the double time interval. wmLastClickTick is updated
with the system tick value at last click. wmLastClickPt contains the location of the last
mouse click. TaskMaster calls GetDblTime internally to determine the correct time
intervals for these values.

Idle Bits

tmIdleEvents tells TaskMaster to call the idle routines for controls that need idle events,
like TextEdit controls and LineEdit controls. This also means that only the active control is
blinking a cursor, since TaskMaster is working with the target bits of the extended control
records to keep track of which TextEdit or LineEdit control is active and switching the target
control in response to mouse clicks and Tab keypresses. This is also the area where you tell
TaskMaster how to highlight your window controls. Using the Control Manager calls
MakeNextCtlTarget and MakeThisCtlTarget allows you to specify which LineEdit or
TextEdit control is active. You can use these calls to highlight input errors the user has made.
For example, if someone has entered text in a LineEdit control that requires a number, you can
alert the user if he enters non-numeric characters with an Alert or AlertWindow call. You
can then direct the user to the LineEdit control that contains the bad entry by calling
MakeThisCtlTarget with the handle of that LineEdit control. This deactivates any other
target control and moves the insertion point to the LineEdit control that needs the correction.

Contentious Bits

tmContentControls, tmControlMenu and tmControlKey bits are the real
workhorses of the expanded TaskMaster.

When the tmContentControls and tmControlMenu bits are set, TaskMaster
handles the mouse activity side of events—tracking, highlighting or popping-up the selected
control. If the control is a radio button, check box, pop-up menu or list control, TaskMaster
also performs the correct action for the click, either setting the control value, scrolling the list,
setting the pop-up menu to the selected item, and so on. TaskMaster then returns a
taskCode of wInControl ($21). The control handle is stored in wmTaskData2, the part
code of the part selected in wmTaskData3 and the control ID is in wmTaskData4. For many
of the controls in your windows your application needs to take no further actions, TaskMaster
has set the control values. When the user closes the window or clicks on a button that causes an
action, you can then read the values of all the controls you care about at that point and do what
you need to do, instead of keeping track as the user manipulates controls.

Developer Technical Support July 1990

Apple IIGS

#84: TaskMaster Madness 3 of 5

The last new bit, tmControlKey, works with the tmControlMenu bit to handle key events
for your extended controls.

When a key event occurs, TaskMaster sends the event to the internal routine
TaskMasterKey. TaskMasterKey first looks at the tmMenuKey bit (which has been in
TaskMaster since the Window Manager was implemented). If it is set, then TaskMaster
tries to handle the event as a menu event, calling MenuKey for the current menu bar.

Note: This also means that any key equivalents in your main menu bar (across the top of
the desktop) take precedence over key equivalents in your window controls.

If this fails (or that bit is not set) and tmControlKey is set, then TaskMasterKey polls the
controls in the currently open window for any controls that would like this keystroke, either for
controls with a keyEquivalent field or a pop-up menu control with key equivalents for menu
items. If it finds a control that wants the key event, it is handled very much like a mouse event.
The action for the control is performed (checking a check box, for example) and the
wmTaskData fields are filled as they would be for a mouse click, and an event code of
wInControl ($21) is returned. If a key event did occur, you can differentiate it from a mouse
event by looking at the wmWhat field of the taskRecord. Even though a wInControl
event code was passed back by TaskMaster, the wmWhat field is either $0001 or $0003, the
former for a mouse down event and the latter if a keystroke stimulated the wInControl event.

Even More Bits

All these new features rely very heavily on the changes made to the Control Manager in System
Software 5.0. Many of the TaskMaster features, keystrokes, target controls, and so on only
work if you have the moreFlags bits set correctly in your control definitions. If you are
having difficulty with new TaskMaster features, check your control definitions against the
information in the Control Manager chapter of Volume 3 of the Apple IIGS Toolbox Reference
and Apple IIGS Technical Note #81, Extended Control Ecstasy.

Don’t Get Goofy

There are some dangers in these new features, of course. By allowing built-in key equivalencies
for almost all the controls that can exist in a window, it may be tempting to define key
equivalents for everything, and create weird and unusual key combinations for your controls.
Please remember the Human Interface Guidelines (specifically Human Interface Note #8,
Keyboard Equivalents) and keep your use of keystroke equivalents to a minimum.
Multimodifier keystrokes (Command-Option-Shift, for example) do not enhance the user’s
experience and can be very confusing.

NDAs Can Have Fun Too

Apple II Technical Notes

4 of 5 #84: TaskMaster Madness

TaskMasterDA has also been added to the Window Manager, providing your new desk
accessories (NDAs) with the same kind of TaskMaster support your applications have. This
lets you easily use extended controls inside NDAs, following the same basic rules as in an
application. There are only a few things to worry about.

Developer Technical Support July 1990

Apple IIGS

#84: TaskMaster Madness 5 of 5

What Does That Stack Picture Really Mean?

The input to TaskMasterDA, as shown in Volume 3 of the Apple IIGS Toolbox Reference, is as
follows:

word, return space

word, eventMask, ignored

long, pointer to taskRecord

space

eventMask

taskRecord

pointer

Figure 1–TaskMasterDA Stack Picture

The call returns a word value, the taskCode . The space and eventMask are self-
explanatory. The book tells you that the eventMask is ignored, which makes sense since the
host application has already gotten the event and you have already specified an eventMask in
your NDA header, so you can use any value here. The taskRecPointer causes the
confusion.

You do not pass a blank event record. When your NDA’s action routine is called, the Y and X
registers contain a pointer to the current event record with which the NDA is working.
TaskMasterDA is filling that taskRecord with some information, so you want to move it
into your NDA’s data area so you can work with it later:

 phy
 phx ; push the pointer that was passed to us
 pushlong #NDArecord ; the space in my NDA for the extended event record
 pea 0
 pea 16 ; only 16 bytes, the original taskRecord size
 _BlockMove

It is very important that you only move 16 bytes. TaskMasterDA can act erratically if the
extended portion of the event record has been filled with nonsense values. This can happen if
your NDA is running in an application that does not use the extended task record and you are
copying non-task data into the extended portion of the task record. By the way, as you are
debugging your NDA and you run into situations where the wmTaskData field values are
weird, this is more than likely the problem.

Also remember to make sure the wmTaskMask field in your NDA’s TaskRecord is set and
the extended portions of the TaskRecord are zeroed out before your NDA starts running; you
want to set all these fields in your NDA’s INIT routine.

Now you can call TaskMasterDA:

 pea 0 ; return space
 pea $FFFF ; eventMask, ignored

Apple II Technical Notes

6 of 5 #84: TaskMaster Madness

 pushlong #nDArecord ; our NDA event record
 _TaskMasterDA
 pla ; event code returned

You can then process the event in a convenient way. Remember again that TaskMaster has
already done the control tracking for the controls in your NDA window. You have the same
multiclick information, control handles and IDs.

Conclusion

TaskMaster is a wonderful thing that makes any programmer’s job easier. So let it work for
you. Learn the capabilities of the new fields and new controls, and take advantage of them. Let
TaskMaster take care of the system details, while you concentrate on the features that make
your application special.

Further Reference
• Apple IIGS Toolbox Reference, Volumes 1 through 3
• Apple IIGS Technical Note #81, Extended Control Ecstasy
• Human Interface Note #8, Keyboard Equivalents

