
File Type: $54 (84) Auxiliary Type: $DD3E 1 of 16

Apple II
File Type Notes

Developer Technical Support
File Type: $54 (84)
Auxiliary Type: $DD3E

Full Name: Medley Desktop Publishing Document
Short Name: Medley Document

Written by: Matt Deatherage & Eric Soldan May 1989

Files of this type and auxiliary type contain documents for Medley™.

Medley is a WYSIWYG application that integrates word processing, paint, and page layout
programs, with the addition of a spelling checker and thesaurus. The page layout function
supports various shapes for art and text areas. Text automatically wraps around or within these
areas, including irregularly shaped regions. The word processor is full-featured, as is the paint
program. The dictionary has 80,000 words.

For more information on Medley, contact:

Milliken Publishing Company
1100 Research Blvd.
St. Louis, MO 63132
Attention: Medley Technical Support
(314) 991-4220

The Medley file format is copyrighted © 1988 by Milliken Publishing Company and is printed
here with permission.

Definitions

The following definition is used in this document in addition to those defined for all Apple II file
types:

C String A series of ASCII bytes terminated with a byte of $00. There is no count
byte at the beginning, as is the case for the String type (also referred to as
a “Pascal string”).

File Structure

Apple II File Type Notes

2 of 16 File Type: $54 (84) Auxiliary Type: $DD3E

Medley files are basically standard, single-linked tree structures. There is a single object at the
top of the tree, and other objects may branch off this parent object. Each child object is linked to
the parent by a pointer to the child contained within the parent object. A non-standard thing
about the Medley tree structure is that some objects may have regions or polygons associated
with them. The handles to these objects are stored in the parent object when in memory, but on
disk these handles are quite meaningless. Because of this difference, the regions or polygons are
simply appended to the parent object itself when written to disk. The size of the region or
polygon is added to the size of the parent object, giving an aggregate size for the complex object
on disk.

The file is written to disk in an order based on a simple tree-walking algorithm. This algorithm
starts with the highest parent object and writes it to disk. The parent object is checked for child
objects. If one exists, it is written to disk, and then it is checked for child objects. This tree-
walking continues until an object runs out of children. When that occurs, Medley backs up one
tree level, writes the next child object to disk, and scans it for children. This method continues
until all objects are written to disk.

For example, if a parent object named A had two child objects named B and C, where B had
children E and F, and C had children G and H, the objects would be written to disk in the
following order: A, B, D, E, C, F, G. Figure 1 illustrates this structure.

A

B

D E

C

F G

Figure 1–Example of Parent and Child Tree Structure

Some Medley objects, when in memory, have handles to other objects (such as regions or
polygons) in them. Since handles are meaningless on disk, Medley stores these complex objects
in an aggregate form by writing the contents of each associated handle to disk following the
regular object.

The Objects and Their Formats

All objects have a common 13-byte header, which is as follows:

type (+000) Byte The type of the object. Possible values are:
0 = Null Object (never saved to disk)
1 = Root Object (never saved to disk)
2 = File Object
3 = Page Object
4 = Paragraph Object

Developer Technical Support May 1989

File Type: $54 (84) Auxiliary Type: $DD3E 3 of 16

5 = Area Object
6 = Art Object
10 = Document Dictionary Object.
Objects 7, 8 and 9 are for posting undo events. Since
these are not saved to disk, they are irrelevant for the
file format.

numChildren (+001) Word The number of children for this object. Children of
the children are not included.

endData (+003) Long The size of this object on the disk, not counting
associated handles (such as regions and polygons).

reserved (+007) Long Reserved; set to zero when creating files.
objRefNum (+011) Word The reference number of this object, generally zero.

Each object has the header listed above followed by object-specific data. For this reason, the
description of each object will start with offset +013 (the byte following the header).

The File Object

rect (+013) 4 Words Standard QuickDraw II rectangle, giving the
boundary rectangle for the entire file.

pathName (+021) 129 Bytes Class zero pathname for the file on disk (used by the
save command).

saved (+150) Byte This byte is 1 if no changes have been made to the
file since the last save.

windowPtr (+151) Long Pointer to the window for this file. When creating
files, set to zero.

wndwNameIndx (+155) Byte Index into table of window names. Set to zero when
creating files

windowOrigin (+156) 2 Words QuickDraw II point representing the global origin of
this file’s window.

windowSize.h (+160) Word Height of window in pixels. Add to top edge of
window to get bottom edge of window.

windowSize.v (+162) Word Height of window in pixels. Add to left of window
to get right edge of window.

COrigin (+164) Long QuickDraw II point representing the scroll bar origin
of this file’s window. When creating files, set this to
whatever origin you wish Medley to display. Make
sure that the coordinate is valid.

editHndl (+168) Long Handle to the paragraph containing the cursor. This
is converted to a child number on disk, since handles
on disk are meaningless.

editOffset (+172) Word Offset to the cursor within the paragraph pointed to
by editHndl.

cursor (+174) 4 Words Standard QuickDraw II rectangle, giving the
rectangle used for the insert cursor. This can be set
to a null rectangle when creating files, and will be
calculated when the file is loaded.

showAllBorders (+182) Byte If this is set to one, then all area borders will display,
regardless of each area’s border display setting.

updateRect (+183) 4 Words Standard QuickDraw II rectangle used for posting
specific updates for the interruptible word processor.
When creating files, set this to a null rectangle.

topMrgn (+191) Fixed The top margin in inches.
bottomMrgn (+195) Fixed The bottom margin in inches.
leftMrgn (+199) Fixed The left margin in inches.

Apple II File Type Notes

4 of 16 File Type: $54 (84) Auxiliary Type: $DD3E

rightMrgn (+203) Fixed The right margin in inches.
gutterMrgn (+207) Fixed The gutter margin in inches.
pageWidth (+211) Fixed The width of the page in inches.
pageHeight (+215) Fixed The height of the page in inches.
selectPage (+219) Word The active page for area editing.
numSelected (+221) Word The number of areas currently selected by the user.
sizingDot (+223) Word The sizing dot number of an area that was last

clicked. This sizing dot will be used as the current
sizing dot when the arrows are used to size an area.

effectivePage (+225) Word The page number of the page the user was effectively
editing. This is different from selectPage when the
user was editing global areas at save time, for global
areas are treated as on page zero.

printRecord (+227) 140 Bytes A standard IIGS Print Manager print record; the one
in use for this document at save time. This field can
be undefined, if the printRecordDefined field is zero.

interruptMode (+367) Word Currently undocumented. (Set to zero.)
editScroll (+369) Byte Currently undocumented. (Set to zero.)
firstHndl (+370) Long Handle where wrap-around regions should actually

start; i.e., where an update is needed. When creating
files, set this to zero.

firstMrn (+374) Word MiniRect number (line number of paragraph) where
wrap-around regions should actually start; i.e., where
an update is needed. When creating files, set this to
zero.

selectMode (+376) Word Some text is selected if this is 1. Each paragraph will
indicate the range of characters selected within that
paragraph. This allows the screen update routine to
quickly determine which characters in a paragraph
should be drawn selected.

showPgphMarks (+378) Byte Indicates whether paragraph marks are currently
being shown.

showSpaces (+379) Byte Indicates whether spaces are shown with marks and
tabs are shown with arrows.

showMoveChangeInfo
(+380) Byte Indicates whether the Move/Change window is

active.
moveChangeInfoRect

(+381) 4 Words Standard QuickDraw II Rectangle giving the position
of the Move/Change window.

addNewUndo (+389) Byte Currently undocumented.
revNum (+390) Word Revision number of the version of Medley that

created this file. For files created following this
standard, use $0100 (for Medley 2.0).

showRulers (+392) Byte Indicates whether the rulers are showing.
windowType (+393) Word The type of window this is. 0 = document, 1 =

clipboard. When creating files, set this to zero.
auxDictPath (+395) 129 Bytes Class zero GS/OS pathname to the auxiliary

dictionary file for this document. When creating
files, set this to a null pathname (a length byte of
zero).

grayScale (+524) Word Whether or not grayScale mode is active. Zero for
color, one for grayScale.

printRecordDefined
(+526) Word Non-zero if a print record is defined. This is used

because the Printer and Port drivers must be loaded
before calling PrDefault or PrValidate, and

Developer Technical Support May 1989

File Type: $54 (84) Auxiliary Type: $DD3E 5 of 16

that means the boot disk must be on line. If Medley
knows the print record is good, it proceeds without
calling the Print Manager.

evenPageNumText
(+528) 48 Bytes The text for even-numbered pages to be displayed by

the page number.
oddPageNumText

(+576) 48 Bytes The text for odd-numbered pages to be displayed by
the page number.

pageNumInfo (+624) 32 Words A word for each of the pages possible in the file,
through the absolute maximum of thirty-two.

affectPageRange (+688) 2 Bytes The range of pages affected by the Medley “Change
Page Numbers” command. The first byte is the
beginning page; the second byte is the ending page.

pageNumFont (+690) 4 Bytes A Font Manager FontID, identifying the font used for
the page numbers. This is a two-byte font family
number, followed by a one-byte font style and one-
byte font size.

startPageNum (+694) Word The page number of the first page. This is a zero-
based counter; page one is represented as zero.

offsetFromEdge (+696) Word The distance in points that the page numbering text
appears from the edge of the paper.

Note: The following three fields are in Medley 2.0 files, but do not exist in Medley 1.0
files. If you are reading a 1.0 file, the value of revNum will be $0000. If reading
a 1.0 File Object, resize it to 2.0 size (including the three fields below) and
initialize their values to the values given below.

maxNumPages (+698) Word The maximum number of pages in this document.
When creating new files, initialize this to 32 ($20)
unless condensed (below) is non-zero. If condensed
is non-zero, you really have to hurt yourself to get
this field right. Below is the algorithm Medley uses
to calculate this field (in something close but not
exactly related to pseudo-code). Please recall that all
variables relating to the margins (taken from the file
object) are Fixed.

workHeight := topMrgn + bottomMrgn
if [condensed is non-zero] then workHeight := workHeight * 2
workHeight := pageHeight - workHeight
workHeight := workHeight * [pixels per vertical inch]
workHeight := workHeight + $0000FFFF
[this counts a fractional point as a whole point]
i := HiWord(workHeight) [this gives the integer portion]
i := i + 3 [accounts for 3-pixel page breaks]
i := (16384 - 208) / i [gives number of pages in conceptual drawing
space. Since Medley allows 48-point characters plus leading, the tallest
a text rectangle may be is 208 pixels. Text that does not fit in
maxNumPages is kept around in a non-displayable, non-editable, non-
printable page. Any shortening of the document will cause some or all of
the previously non-displayed text to flow up into the document.]
i := min(32,i) [32 is the absolute maximum number of pages Medley allows
due to QuickDraw’s conceptual drawing space limitations.]

maxNumPages := i

Apple II File Type Notes

6 of 16 File Type: $54 (84) Auxiliary Type: $DD3E

condensed (+700) Word Indicates whether the document is designed to use
condensed printing. If non-zero, the document is
designed to use condensed printing. When creating
files, it is easiest not to deal with condensed printing,
so set this field to zero. However, if you wish to
create a document that Medley may edit and print as
condensed, you must correctly relate this field to the
previous one by the algorithm given above.

reserved (+702) 6 Bytes These six bytes should be set to zero.

Developer Technical Support May 1989

File Type: $54 (84) Auxiliary Type: $DD3E 7 of 16

The Page Object

Pages are the first-level children of files. There is one page object for each page in a document
(file object).

rect (+013) 4 Words Standard QuickDraw II rectangle giving the
boundary rectangle for this page.

wrapDir (+021) Byte The direction of word-wrapping. 1 = Down, 2 =
across.

rgn (+022) Long Handle to the region for this page in memory. The
region is the page rectangle less any areas on that
page. Global areas are not subtracted from this
region. They are subtracted from the page rectangle
for the global page (page zero). On disk, where the
page region would be written, you can write a 10,
followed by the rectangle for the page. This is a
rectangular region. The aggregate size of the page
object on disk must include these 10 bytes. This is
assuming, of course, that there are no areas on that
page to make the page region non-rectangular.

hideGlobalArt (+026) Byte A non-zero value indicates that global art is not
displayed on this page.

hideGlobalPageParts
(+027) Byte A non-zero value indicates that global page parts are

not displayed on this page.

The Paragraph Object

Paragraphs are the children of the file object; they are not the children of page objects since a
paragraph may be seen on more than one page or page part. Paragraph objects are, however,
stored on disk immediately following page objects and their children. Paragraph objects are
first-level objects also.

wrapHere (+013) Word Insertion offset point in paragraph data where
wrapping should continue. For wrapping from
beginning of paragraph, set this field to zero.

fullWrap (+015) Word Same as wrapHere, but indicates at what point
miniRect construction or reconstruction must
continue. Again, for full-wrapping of a paragraph,
set to zero.

rulerOffset (+017) Word Offset in bytes from beginning of paragraph object to
indicate where the ruler starts. (The ruler is just
before the character data, just after the miniRects.) If
there is no ruler, then the default ruler is used by
Medley. (If the dataOffset value is the same as the
rulerOffset, then there is no ruler, and the default
ruler will be used.) The default ruler has tabs at each
1/2 inch mark, no indent or paragraph indent, and the
right margin is at maximum.

dataOffset (+019) Word Offset in bytes from beginning of paragraph object to
indicate where character data starts. If there are no
miniRects built yet (probable if file is being created
outside Medley) and there is no ruler, then this value
will be a 32.

Apple II File Type Notes

8 of 16 File Type: $54 (84) Auxiliary Type: $DD3E

numRects (+021) Word The number of discrete text rectangles in this
paragraph. When creating a file, set fullWrap to
zero, and numRects to zero, and place your character
data starting at byte 32 of a paragraph object, and the
rectangles will be built when the file is loaded by
Medley as wrap occurs.

begInvOffset (+023) Word Offset from the beginning of the character data where
inverse text starts in this paragraph.

endInvOffset (+025) Word Offset from the beginning of the character data where
inverse text ends in this paragraph.

topLeading (+027) Byte The number of pixels leading above each line in this
paragraph.

botLeading (+028) Byte The number of pixels leading below each line in this
paragraphs.

begPgphGap (+029) Byte The number of pixels extra leading above this
paragraph.

endPgphGap (+030) Byte The number of pixels extra leading below this
paragraph.

flags (+031) Flag Byte Bits 0 and 1 are used to indicate justify mode.
00 = left justify.
01 = right justify.
10 = center justify.
11 = full justify.
Bit 7 indicates a page-break after this paragraph.

miniRects (+032) MiniRects Any miniRects, if any, are contained here. The
number of miniRects is given by numRects above.

MiniRects have the following format:

miniRect.rect (+000) 4 Words Standard QuickDraw II rectangle that is calculated by
the wordWrap routine to bound a line of text.

mr.begOffset (+008) Word Offset from start of character data to the first
character this miniRect bounds.

mr.endOffset (+010) Word Offset from start of character data to just past the last
character this miniRect bounds.

A Ruler in the document will be after the miniRects, if there are any. The offset to the Ruler is
given by rulerOffset. Rulers are formatted as follows:

leftPgphMrgn (+000) Byte The left margin for this paragraph, in sixteenths of an
inch.

rightPgphMrgn (+001) Byte The right margin for this paragraph, in sixteenths of
an inch. This is an offset from the default right
margin from Medley's "Set margins" command. For
example, the value 16 represents a right margin one
inch to the left of the default right margin.

pgphIndent (+002) Byte The indentation for this paragraph, in sixteenths of an
inch.

numTabs (+003) Byte The number of tabs in this ruler.
tabs (+004) Tabs There are numTabs of these.

Tabs are formatted as follows:

tab Flag Word Tabs consist of a high byte of flags and low byte of
position. The bits are assigned as follows:
Bits 15-12 = Reserved; set to zero.
Bits 11-10 = Tab Leader style:

Developer Technical Support May 1989

File Type: $54 (84) Auxiliary Type: $DD3E 9 of 16

00 = No leader
01 = Leader of dots (.......)
10 = Leader of dashes (- - - - - - -)
11 = Solid Leader (____________)

Bits 9-8 = Tab Type:
00 = Left Tab
01 = Right Tab
10 = Center Tab
11 = Decimal Tab

Bits 7-0 = Byte value; the position of this tab as
an offset from the left margin in
sixteenths of an inch. A value of
sixteen indicates a tab one inch to the
right of the left margin.

Following miniRects and rulers is the actual character data for this paragraph. This is all Bytes.
However, a Byte value of $01 through $07 indicates the beginning of a Font Escape. Font
Escapes indicate changes in style or size of the text, and are formatted as follows:

FontEscape (+000) Byte An indication of the type of text the following fontID
affects:
1 = Regular Text
2 = Superscript Text
3 = Subscript Text
4-7 = Reserved; do not use

fontID (+001) 4 Bytes A Font Manager FontID, identifying the font used for
the page numbers. This is a two-byte font family
number, followed by a one-byte font style and one-
byte font size.

The text portion of a paragraph always begins with a Font Escape and ends with the end-of-
paragraph character Byte $A6 (¶). This makes the minimum size of a paragraph (assuming no
miniRects or rulers) thirty-eight bytes (32 bytes for the Paragraph Object, five bytes for the Font
Escape and one byte for the $A6).

Apple II File Type Notes

10 of 16 File Type: $54 (84) Auxiliary Type: $DD3E

The Area Object

Area Objects are the children of pages or paragraphs.

type (+013) Byte The type of area this area object describes. Possible
values are:
0 = Null Area
1 = Group Area
2 = Rectangular Area
3 = Round Rectangular Area
4 = Oval Area
5 = Polygon Area

select (+014) Byte This value is one if this area is selected.
showBorder (+015) Byte This value is one if the border of this area is showing.
contentType (+016) Byte 0 = Art, 1 = Wrap Down, 2 = Wrap Across.
rgn (+017) Long Handle to the region that describes the shape of this

area. On disk, this region is at the end of this object
(see the Reading The File section of this Note).

interiorRgn (+021) Long Handle to the regions that describes the interior of
this area. On disk, this region is at the end of this
object (see the Reading The File section of this
Note).

sizingRgn (+025) Long Handle that contains all the sizing dots. It is too slow
to draw them one at a time. Also, detecting that the
user clicked in a sizing dot can be done quickly -- just
not which one.

flags (+029) Word Only bit zero of this word is significant; if set it
indicates this area should be printed to LaserWriters
in gray-scale. All other bits of this word should be
zero.

reserved (+031) Word Reserved for Milliken. Set to zero.

At this point is the description of the area itself. This description varies on the type field above:

For rectangles (type = 2):

rect (+033) 4 Words Standard QuickDraw II rectangle describing the
rectangle for this area.

For round rectangle (type = 3):

rect (+033) 4 Words Standard QuickDraw II rectangle describing the
boundary rectangle for the round rect.

height (+041) Word The height of the oval portion of the rectangle.
width (+043) Word The width of the oval portion of the rectangle.

For ovals (type = 4):

oval (+033) 4 Words A standard QuickDraw II rectangle describing the
bounding rectangle for this oval. The oval drawn is
the ellipse inscribed in this rectangle.

For Polygons (type = 5):

polygon (+033) Bytes A handle to a QuickDraw II polygon. This handle
may be passed to QD Polygon routines. On disk, this

Developer Technical Support May 1989

File Type: $54 (84) Auxiliary Type: $DD3E 11 of 16

polygon is appended to the end of this object (see the
Reading The File section on this Note).

These objects are the last items in the area object.

The Art Object

Art Objects are the children of pages, paragraphs or areas.

BBox (+013) 4 Words A standard QuickDraw II rectangle representing the
bounding box of this art object.

offsetFromRgn (+021) 2 Words Normally zero. The area containing an art image can
be grown and shrunk. The art within it is not clipped
to the bounding rectangle of the area until the user
deselects the area. (If it is saved to disk while
selected, then it is saved unclipped). This allows the
user to experiment with different shapes without
clipping the drawing within. If the drawing is to the
left of the left edge of the area, or is above the top
edge, then this offset indicates by how much.

artImage (+025) Bytes The actual bitmap of the art image.

The Document Dictionary Object

The Document Dictionary Object is the very last child of the file object, and contains all the
words the spelling checker should ignore even though they are not in the main dictionary.

count (+013) Word The number of word entries in this dictionary object.
wordList (+015) Word Entries List of dictionary word entries.

The format of word entries is as follows:

recordLength (+000) Byte The length of this record.
replaceFlag (+001) Byte Reserved, set to zero.
newWord (+002) C String The word in question. This word should be counted

as spelled correctly, and is not in the Main or
Auxiliary Dictionary.

The length of a record is the length of string plus three bytes (one for recordLength, one for
replaceFlag, and a zero termination byte).

Reading the File

When reading a Medley file, objects with regions or polygons will have to be treated specially,
since the handles in the objects are invalid and the regions or polygons actually follow the object
in the disk file.

A sequence for reconstructing Medley files in memory is as follows:

1. Open the file, or set the mark to zero on an open file.

Apple II File Type Notes

12 of 16 File Type: $54 (84) Auxiliary Type: $DD3E

2. Start with a handle that is 13 ($0D) bytes long. Pass this handle to the routine
starting in step three.

3. Save the handle passed to this routine, and read four bytes from disk. This Long
is the total size of an object, including any regions or polygons appended.

4. Read the 13-byte object header into the handle passed to this routine. The
endData field of the header gives the size of the object, minus any associated
regions or polygons. Resize the object’s handle (the handle passed to you) to
this size.

5. Read the rest of the object (endData - 13 bytes) into the object’s handle.
6. Save the value of numChildren in a local variable and set the

numChildren field in the object header to zero. The field in the header
represents the number of children read from disk; setting this to zero properly
indicates that you haven’t read any of the children yet.

7. Look at the object type field. If the object is a file, area, or page object, it may
have a region associated with it. If the object is an area object, it may also have
a polygon associated with it (if the area type field indicates this is so). You can
tell if the object has any appended structures by comparing the total object size
(read in step three) with the endData field (read in step four); if an object has
no appended structures, the two values will be the same.

If there are structures appended to the object, first zero all the handles to the
regions inside the object. This allows elegant error recovery if an error occurs
while reading the region or polygon. When the handles are zeroed, read the
next two bytes from the disk. This Word is the size of the region or polygon in
bytes. Create a handle of that size, place it in the object’s field for this handle,
and place the size Word in the first two bytes of the new handle. Now read the
object from disk into the new handle starting at the beginning +002 (past the
size Word).

Continue in this fashion until all appended regions or polygons have been read
from disk. Any appended structures will be stored in the same order as their
handles occur in the object.

Note: By zeroing the handles before reading the objects, you can return from
this function with an error, and the calling routine will be able to dispose
of all handles that were actually created. The calling routine will know
if a handle was actually created or not by examining the handle field in
the object; NIL handles were not created.

8. Execute a loop for the old number of children (0 to oldNumChildren-1):
9. Create an object that is 13 ($0D) bytes long. Add this handle to the end of the

parent object that was last read. Increment the number of children. You have
just added a child into the child table for an object.

10. Call the recursive subroutine beginning in step three, passing it the handle you
just created. If it returns an error, return the error. This gets you out of the
recursion with the correct error, no matter how many levels deep you are.

Developer Technical Support May 1989

File Type: $54 (84) Auxiliary Type: $DD3E 13 of 16

11. Keep looping until out of children to read. The EOF condition does not have to
be checked, since you will run out of children when you reach the end of the
file. If an EOF is reached before you read all the children, you did something
wrong.

12. Return no error—the file was successfully read.
13. When done with all this, you will return to the code just beyond step two, where

you first called the recursive subroutine at step three. If an error is returned,
dispose of all the handles created by the recursive function. Even if the file read
is aborted, the tree is complete for as much as was read. (This is why the
numChildren field is incremented as you read the file.) An alternate way to
handle this is to use a different userID for the handles created when reading
the file; this allows you to dispose of all of them with one DisposeAll call.

14. Close the file if you opened it, or reset the mark to its previous position if it was
already open.

The entire file does not have to be read from disk. By using the size field, you can skip to the
next object in the file. Using this technique, you can scan the file for whatever it is that interests
you.

Note: You may have noticed that objects successfully created in memory will have a
table of handles to children at the end. Objects on disk will not have these
handles, since the handles on disk are meaningless. The child handle table is
reconstructed as the file is loaded into memory.

Object Ordering

The file object is the first you will encounter in a Medley file. Its children are ordered as
follows:

Page Object—Page #0. This is the global page object, containing all global areas.
Page Object—Page #1. This is the page object for page #1; it must exist.

Other objects are optional, but will appear in the following order:

Page #2 through Page #n
Paragraph #1 through Paragraph #n
Dictionary Object

Some Example Structures

Medley was written mostly in C. Below are some structures relevant to C programs reading
Medley files. Descriptions of the fields may be found earlier in this Note.

#define NULLOBJ 0 /* Object type assignments. */
#define ROOTOBJ 1 /* These are used in the deskObj 'types' field. */
#define FILEOBJ 2

Apple II File Type Notes

14 of 16 File Type: $54 (84) Auxiliary Type: $DD3E

#define PAGEOBJ 3
#define PGPHOBJ 4
#define AREAOBJ 5
#define ARTOBJ 6
#define DOCDICTOBJ 10

#define AREANULL 0 /* Area object sub-type assignments. */
#define AREAGROUP 1 /* These are used in the areaObj 'types' field. */
#define AREARECT 2
#define AREARRECT 3
#define AREAOVAL 4
#define AREAPOLY 5

#define medleyMainType 0x54
#define medleyAuxType 0xDD3E
#define medleyInfo 1
#define auxDictType 2

#define ARTCONTENT 0 /* These are used in the 'contentType' field of area
objects.*/
#define WWDOWN 1
#define WWACROSS 2
#define LWGRAYSCALE 0x0001

#define SAMEESC 0 /* These are used in paragraph objects. */
#define FONTESC 1
#define SUPERESC 2
#define SUBESC 3
#define ESCAPES 7

#define SIZEFONTESC 5 /* More paragraph equates. */
#define ENDPGPHCHR 0xA6
#define TABCHR 9
#define SOFTHYPHEN 30
#define STICKYSPACE 31

#define PAGEBREAK 0x80 /* These are used in the pgphObj 'flags' field. */
#define LEFTJUST 0x00
#define RIGHTJUST 0x01
#define CENTERJUST 0x02
#define FULLJUST 0x03
#define JUSTTYPES 0x03

#define LEFTTAB 0x00 /* These are used in the ruler field of paragraph objects.
*/
#define RIGHTTAB 0x01
#define CENTERTAB 0x02
#define DECIMALTAB 0x03
#define TABTYPES 0x03
#define NOLEADER 0x00
#define DOTSLEADER 0x01
#define DASHESLEADER 0x02
#define SOLIDLEADER 0x03

typedef struct Ruler {
unsigned char leftPgphMrgn;
unsigned char rightPgphMrgn;
unsigned char pgphIndent;
unsigned char numTabs;
unsigned int tab[];

} Ruler;

Developer Technical Support May 1989

File Type: $54 (84) Auxiliary Type: $DD3E 15 of 16

#define NEWREVNUM 0x0100

typedef union URect {
Rect rect;
struct {

long p1;
long p2;

} point;
struct {

Point p1;
Point p2;

} ele;
} URect;

typedef union UPoint {
Point ele;
long point;

} UPoint;

typedef struct region {
unsigned int size;
union URect BBox;
int data[];

} region;

typedef struct polygon {
int size;
union URect BBox;
union UPoint point[];

} polygon;

Apple II File Type Notes

16 of 16 File Type: $54 (84) Auxiliary Type: $DD3E

typedef union ourFontID {
unsigned long fid;
struct {

unsigned int famNum;
char fontStyle;
char fontSize;

} f;
} ourFontID;

struct deskObj {
char type; $00
unsigned int numChildren; $01
unsigned long endData; $03
unsigned long reserved; $07
unsigned int objRefNum; $0B

$0D

union d {
data[]; /* Plain label object access field. */

struct file { /* Level 1 objects are files. */
union URect rect; /* $0D */
char pathName[129]; /* $15 */
char saved; /* $96 */
GrafPortPtr windowPtr; /* $97 */
char windowNameIndx; /* $9B */
long windowOrigin; /* $9C */
long windowSize; /* $A0 */
long COrigin; /* $A4 */
struct deskObj **editHndl; /* $A8 */
unsigned int editOffset; /* $AC */
union URect cursor; /* $AE */
char showAllBorders; /* $B6 */
union URect updateRect; /* $B7 */
unsigned long topMrgn; /* $BF */
unsigned long bottomMrgn; /* $C3 */
unsigned long leftMrgn; /* $C7 */
unsigned long rightMrgn; /* $CB */
unsigned long gutterMrgn; /* $CF */
unsigned long pageWidth; /* $D3 */
unsigned long pageHeight; /* $D7 */
int selectPage; /* $DB */
int numSelected; /* $DD */
int sizingDot; /* $DF */
int effectivePage; /* $E1 */
PrRec printRecord; /* $E3 */
int interruptMode; /* $16F */
char editScroll; /* $171 */
struct deskObj **firstHndl; /* $172 */
int firstMrn; /* $176 */
unsigned int selectMode; /* $178 */
char showPgphMarks; /* $17A */
char showSpaces; /* $17B */
char showMoveChangeInfo; /* $17C */
union URect moveChangeInfoRect; /* $17D */
char addNewUndo; /* $185 */
unsigned int revNum; /* $186 */
char showRulers; /* $188 */
unsigned int windowType; /* $189 */
char auxDictPathname[129]; /* $18B */
unsigned int grayScale; /* $20C */
unsigned int printRecordDefined; /* $20E */
char evenPageNumText[48]; /* $210 */
char oddPageNumText[48]; /* $240 */
unsigned int pageNumInfo[MAXNUMPAGES]; /* $270 */
unsigned int affectPageRange; /* $2B0 */

Developer Technical Support May 1989

File Type: $54 (84) Auxiliary Type: $DD3E 17 of 16

ourFontID pageNumFont; /* $2B2 */
unsigned int startPageNum; /* $2B6 */
unsigned int offsetFromEdge; /* $2B8 */
unsigned int maxNumPages; /* $2BA */
unsigned int condensed; /* $2BC */
char reserved[6]; /* $2BE */

} file; /* $2C4 */

struct page {
union URect rect; /* $0D */
char wrapDir; /* $15 */
region **rgn; /* $16 */
char hideGlobalArt; /* $1A */
char hideGlobalPageParts; /* $1B */

} page; /* $1C */

struct pgph { /* Must be level 2 or greater. */
unsigned int wrapHere; /* $0D */
unsigned int fullWrap; /* $0F */
unsigned int rulerOffset; /* $11 */
unsigned int dataOffset; /* $13 */
unsigned int numRects; /* $15 */
unsigned int begInvOffset; /* $17 */
unsigned int endInvOffset; /* $19 */
char topLeading; /* $1B */
char botLeading; /* $1C */
char begPgphGap; /* $1D */
char endPgphGap; /* $1E */
char flags; /* $1F */
struct miniRect { /* $20 */

union URect rect;
unsigned int begOffset;
unsigned int endOffset;

} miniRect[];
/* Ruler goes here if there is a custom ruler for this

paragraph.*/
/* Text starts after the ruler. Text always starts

with a fontEsc. A fontEsc is 5 bytes, a typeByte
followed by the fontID. Text always ends with end-
of-pgph chr. */

} pgph; /* $20 */

struct area {
char type; /* $0D */
char select; /* $0E */
char showBorder; /* $0F */
char contentType; /* $10 */
region **rgn; /* $11 */
region **interiorRgn; /* $15 */
region **sizingRgn; /* $19 */
unsigned int flags; /* $1D */
unsigned int reserved; /* $1F */
union obj {

union URect rect; /* $21 */
struct rrect {

union URect rect; /* $21 */
int height; /* $29 */
int width; /* $2B */

} rrect;
union URect oval; /* $21 */
polygon **poly; /* $21 */

} obj;
} area; /* $2D */

Apple II File Type Notes

18 of 16 File Type: $54 (84) Auxiliary Type: $DD3E

struct art {
union URect BBox; /* $0D */
union UPoint offsetFromRgn; /* $15 */
char artImage[]; /* $19 */

} art;

struct docDict {
unsigned int count; /* $0D */
char wordList[] /* $0F */

} docDict; /* $0F */

} d;
};

